xfs_icache.c 47.4 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
8
#include "xfs_shared.h"
9
#include "xfs_format.h"
10 11
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
12 13 14
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
15 16
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
17
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
18
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_icache.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22 23
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
24
#include "xfs_reflink.h"
C
Christoph Hellwig 已提交
25
#include "xfs_ialloc.h"
26

J
Jeff Layton 已提交
27
#include <linux/iversion.h>
28

D
Dave Chinner 已提交
29 30 31
/*
 * Allocate and initialise an xfs_inode.
 */
32
struct xfs_inode *
D
Dave Chinner 已提交
33 34 35 36 37 38 39 40 41 42 43
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
44
	ip = kmem_zone_alloc(xfs_inode_zone, 0);
D
Dave Chinner 已提交
45 46 47
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
48
		kmem_cache_free(xfs_inode_zone, ip);
D
Dave Chinner 已提交
49 50 51
		return NULL;
	}

D
Dave Chinner 已提交
52 53 54
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

55
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
56 57 58 59 60 61 62 63 64
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
65 66 67
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
68
	memset(&ip->i_df, 0, sizeof(ip->i_df));
D
Dave Chinner 已提交
69 70
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
71
	memset(&ip->i_d, 0, sizeof(ip->i_d));
72 73
	ip->i_sick = 0;
	ip->i_checked = 0;
74 75 76
	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
	INIT_LIST_HEAD(&ip->i_ioend_list);
	spin_lock_init(&ip->i_ioend_lock);
D
Dave Chinner 已提交
77 78 79 80 81 82 83 84 85 86 87

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
88
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
89 90 91 92 93 94 95 96 97
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
98 99
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
100 101

	if (ip->i_itemp) {
D
Dave Chinner 已提交
102 103
		ASSERT(!test_bit(XFS_LI_IN_AIL,
				 &ip->i_itemp->ili_item.li_flags));
D
Dave Chinner 已提交
104 105 106 107
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

108
	kmem_cache_free(xfs_inode_zone, ip);
109 110
}

111 112 113 114 115 116 117 118 119 120 121
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

122 123 124 125
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
126 127
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
128 129 130 131 132 133 134 135 136 137 138
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

139
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

186
	lockdep_assert_held(&pag->pag_ici_lock);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

208
	lockdep_assert_held(&pag->pag_ici_lock);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

258 259 260 261 262 263 264 265
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
266
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
267 268 269 270
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
271
	finish_wait(wq, &wait.wq_entry);
272 273
}

274 275 276 277
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
278
 * overwrite the values unconditionally. Hence we save the parameters we
279
 * need to retain across reinitialisation, and rewrite them into the VFS inode
280
 * after reinitialisation even if it fails.
281 282 283 284 285 286 287
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
288
	uint32_t	nlink = inode->i_nlink;
289
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
290
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
291
	umode_t		mode = inode->i_mode;
292
	dev_t		dev = inode->i_rdev;
293 294
	kuid_t		uid = inode->i_uid;
	kgid_t		gid = inode->i_gid;
295 296 297

	error = inode_init_always(mp->m_super, inode);

298
	set_nlink(inode, nlink);
299
	inode->i_generation = generation;
J
Jeff Layton 已提交
300
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
301
	inode->i_mode = mode;
302
	inode->i_rdev = dev;
303 304
	inode->i_uid = uid;
	inode->i_gid = gid;
305 306 307
	return error;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * If we are allocating a new inode, then check what was returned is
 * actually a free, empty inode. If we are not allocating an inode,
 * then check we didn't find a free inode.
 *
 * Returns:
 *	0		if the inode free state matches the lookup context
 *	-ENOENT		if the inode is free and we are not allocating
 *	-EFSCORRUPTED	if there is any state mismatch at all
 */
static int
xfs_iget_check_free_state(
	struct xfs_inode	*ip,
	int			flags)
{
	if (flags & XFS_IGET_CREATE) {
		/* should be a free inode */
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
				ip->i_ino, VFS_I(ip)->i_mode);
			return -EFSCORRUPTED;
		}

		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ip->i_ino);
			return -EFSCORRUPTED;
		}
		return 0;
	}

	/* should be an allocated inode */
	if (VFS_I(ip)->i_mode == 0)
		return -ENOENT;

	return 0;
}

D
Dave Chinner 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
373
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
374
		error = -EAGAIN;
D
Dave Chinner 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
391
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
392
		error = -EAGAIN;
D
Dave Chinner 已提交
393 394 395 396
		goto out_error;
	}

	/*
397 398
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
D
Dave Chinner 已提交
399
	 */
400 401
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
402 403 404 405 406 407 408 409 410
		goto out_error;

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

411 412 413 414 415
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
416 417 418 419 420 421 422 423 424 425 426
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

427
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
428
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
429
		if (error) {
430
			bool wake;
D
Dave Chinner 已提交
431 432 433 434 435 436
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
437
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
438
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
439 440
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
456
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
457
		inode->i_state = I_NEW;
458 459
		ip->i_sick = 0;
		ip->i_checked = 0;
D
Dave Chinner 已提交
460 461 462 463 464 465 466

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
467
			error = -EAGAIN;
D
Dave Chinner 已提交
468 469 470 471 472 473 474 475 476 477 478 479
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

480 481
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
482
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
510
		return -ENOMEM;
D
Dave Chinner 已提交
511

C
Christoph Hellwig 已提交
512
	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
D
Dave Chinner 已提交
513 514 515
	if (error)
		goto out_destroy;

C
Christoph Hellwig 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	/*
	 * For version 5 superblocks, if we are initialising a new inode and we
	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
	 * simply build the new inode core with a random generation number.
	 *
	 * For version 4 (and older) superblocks, log recovery is dependent on
	 * the di_flushiter field being initialised from the current on-disk
	 * value and hence we must also read the inode off disk even when
	 * initializing new inodes.
	 */
	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
		VFS_I(ip)->i_generation = prandom_u32();
	} else {
		struct xfs_dinode	*dip;
		struct xfs_buf		*bp;

		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
		if (error)
			goto out_destroy;

		error = xfs_inode_from_disk(ip, dip);
		if (!error)
			xfs_buf_set_ref(bp, XFS_INO_REF);
		xfs_trans_brelse(tp, bp);

		if (error)
			goto out_destroy;
	}

546 547 548 549 550
	if (!xfs_inode_verify_forks(ip)) {
		error = -EFSCORRUPTED;
		goto out_destroy;
	}

D
Dave Chinner 已提交
551 552
	trace_xfs_iget_miss(ip);

553 554

	/*
555 556
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
557
	 */
558 559
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
560 561 562 563 564 565 566 567 568
		goto out_destroy;

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
569
		error = -EAGAIN;
D
Dave Chinner 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
594 595
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
596
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
597 598 599 600 601 602 603
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
604
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
605
		error = -EAGAIN;
D
Dave Chinner 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
672
		return -EINVAL;
D
Dave Chinner 已提交
673

674
	XFS_STATS_INC(mp, xs_ig_attempts);
675

D
Dave Chinner 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
691
		if (flags & XFS_IGET_INCORE) {
692
			error = -ENODATA;
693 694
			goto out_error_or_again;
		}
695
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
696 697 698 699 700 701 702 703 704 705 706

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
707
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
708 709
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
710
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
711
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
712 713 714
	return 0;

out_error_or_again:
715
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
716 717 718 719 720 721 722
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
757
	xfs_irele(ip);
758 759 760
	return 0;
}

761 762 763 764 765 766 767 768
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

769 770
STATIC int
xfs_inode_ag_walk_grab(
771 772
	struct xfs_inode	*ip,
	int			flags)
773 774
{
	struct inode		*inode = VFS_I(ip);
775
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
793 794
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
795 796 797
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

798 799
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
800
		return -EFSCORRUPTED;
801 802 803

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
804
		return -ENOENT;
805 806 807

	/* inode is valid */
	return 0;
808 809 810

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
811
	return -ENOENT;
812 813
}

814 815 816
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
817
	struct xfs_perag	*pag,
818
	int			(*execute)(struct xfs_inode *ip, int flags,
819 820 821
					   void *args),
	int			flags,
	void			*args,
822 823
	int			tag,
	int			iter_flags)
824 825 826 827
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
828
	int			done;
829
	int			nr_found;
830 831

restart:
832
	done = 0;
833 834
	skipped = 0;
	first_index = 0;
835
	nr_found = 0;
836
	do {
837
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
838
		int		error = 0;
839
		int		i;
840

841
		rcu_read_lock();
842 843 844

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
845 846
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
847 848 849 850 851 852
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

853
		if (!nr_found) {
854
			rcu_read_unlock();
855
			break;
856
		}
857

858
		/*
859 860
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
861
		 */
862 863 864
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

865
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
866 867 868
				batch[i] = NULL;

			/*
869 870 871 872 873 874 875 876 877 878
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
879
			 */
880 881
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
882 883 884
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
885
		}
886 887

		/* unlock now we've grabbed the inodes. */
888
		rcu_read_unlock();
889

890 891 892
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
893 894 895
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
896
			error = execute(batch[i], flags, args);
897
			xfs_irele(batch[i]);
D
Dave Chinner 已提交
898
			if (error == -EAGAIN) {
899 900 901
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
902
			if (error && last_error != -EFSCORRUPTED)
903
				last_error = error;
904
		}
905 906

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
907
		if (error == -EFSCORRUPTED)
908 909
			break;

910 911
		cond_resched();

912
	} while (nr_found && !done);
913 914 915 916 917 918 919 920

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

921 922
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
923
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
924
 */
925
void
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
943 944 945

	if (!sb_start_write_trylock(mp->m_super))
		return;
946
	xfs_icache_free_eofblocks(mp, NULL);
947 948
	sb_end_write(mp->m_super);

949 950 951
	xfs_queue_eofblocks(mp);
}

952 953 954 955 956
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
957
void
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
975 976 977

	if (!sb_start_write_trylock(mp->m_super))
		return;
978
	xfs_icache_free_cowblocks(mp, NULL);
979 980
	sb_end_write(mp->m_super);

981 982 983
	xfs_queue_cowblocks(mp);
}

984
int
985
xfs_inode_ag_iterator_flags(
986
	struct xfs_mount	*mp,
987
	int			(*execute)(struct xfs_inode *ip, int flags,
988 989
					   void *args),
	int			flags,
990 991
	void			*args,
	int			iter_flags)
992
{
993
	struct xfs_perag	*pag;
994 995 996 997
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

998
	ag = 0;
999 1000
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
1001 1002
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
1003 1004 1005
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
1006
			if (error == -EFSCORRUPTED)
1007 1008 1009
				break;
		}
	}
E
Eric Sandeen 已提交
1010
	return last_error;
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

1024 1025 1026
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
1027
	int			(*execute)(struct xfs_inode *ip, int flags,
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
1041 1042
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
1043
		xfs_perag_put(pag);
1044 1045
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
1046
			if (error == -EFSCORRUPTED)
1047 1048 1049
				break;
		}
	}
E
Eric Sandeen 已提交
1050
	return last_error;
1051 1052
}

D
Dave Chinner 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1062 1063 1064 1065 1066
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1067 1068

	/*
1069 1070 1071
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1072 1073
	 */
	if ((flags & SYNC_TRYLOCK) &&
1074
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1075 1076 1077 1078 1079 1080
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1081 1082 1083 1084 1085
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1086 1087
	 */
	spin_lock(&ip->i_flags_lock);
1088 1089 1090
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1091 1092 1093 1094 1095 1096 1097 1098
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1099
/*
1100 1101
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1102 1103 1104 1105 1106 1107 1108
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1109 1110
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1111 1112
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1113 1114 1115 1116
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1117 1118
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1119
 * the inode is clean.
1120
 *
1121 1122 1123 1124 1125 1126
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1127
 *
1128 1129 1130
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1131
 *	pinned, async	=> requeue
1132
 *	pinned, sync	=> unpin
1133 1134
 *	stale		=> reclaim
 *	clean		=> reclaim
1135
 *	dirty, async	=> requeue
1136
 *	dirty, sync	=> flush, wait and reclaim
1137
 */
1138
STATIC int
1139
xfs_reclaim_inode(
1140 1141
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1142
	int			sync_mode)
1143
{
1144
	struct xfs_buf		*bp = NULL;
1145
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1146
	int			error;
1147

1148 1149
restart:
	error = 0;
1150
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1151 1152 1153 1154 1155
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1156

1157 1158
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1159
		/* xfs_iflush_abort() drops the flush lock */
1160
		xfs_iflush_abort(ip);
1161 1162
		goto reclaim;
	}
1163
	if (xfs_ipincount(ip)) {
1164 1165
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1166
		xfs_iunpin_wait(ip);
1167
	}
1168 1169
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1170
		goto reclaim;
1171
	}
1172

1173 1174 1175 1176 1177 1178 1179
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1180 1181 1182
	/*
	 * Now we have an inode that needs flushing.
	 *
1183
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1184
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1185
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1186 1187
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1188 1189 1190 1191
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1192 1193 1194
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1195
	 */
1196
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1197
	if (error == -EAGAIN) {
1198 1199 1200 1201
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1202 1203
	}

1204 1205 1206 1207 1208
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1209
reclaim:
1210 1211
	ASSERT(!xfs_isiflocked(ip));

1212 1213 1214
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1215
	 * We do this as early as possible under the ILOCK so that
1216 1217 1218 1219 1220
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1221 1222 1223 1224 1225 1226
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1227
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1228

1229
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1230 1231 1232 1233 1234 1235 1236
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1237
	spin_lock(&pag->pag_ici_lock);
1238
	if (!radix_tree_delete(&pag->pag_ici_root,
1239
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1240
		ASSERT(0);
1241
	xfs_perag_clear_reclaim_tag(pag);
1242
	spin_unlock(&pag->pag_ici_lock);
1243 1244 1245 1246 1247 1248 1249

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1250
	 * unlocked after the lookup before we go ahead and free it.
1251
	 */
1252
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1253
	xfs_qm_dqdetach(ip);
1254
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1255

1256
	__xfs_inode_free(ip);
1257
	return error;
1258 1259 1260 1261 1262 1263 1264

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1265
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1266
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1267 1268 1269
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1270 1271
	 */
	return 0;
1272 1273
}

1274 1275 1276 1277 1278 1279
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1280
STATIC int
1281 1282 1283 1284 1285 1286 1287 1288 1289
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1290 1291
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1292

1293
restart:
1294
	ag = 0;
1295
	skipped = 0;
1296 1297 1298
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1299
		int		nr_found = 0;
1300 1301 1302

		ag = pag->pag_agno + 1;

1303 1304 1305
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1306
				xfs_perag_put(pag);
1307 1308 1309 1310 1311 1312
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1313
		do {
D
Dave Chinner 已提交
1314 1315
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1316

1317
			rcu_read_lock();
D
Dave Chinner 已提交
1318 1319 1320 1321
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1322 1323
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1324
				done = 1;
1325
				rcu_read_unlock();
1326 1327 1328 1329
				break;
			}

			/*
D
Dave Chinner 已提交
1330 1331
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1332
			 */
D
Dave Chinner 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1345 1346 1347 1348 1349 1350 1351
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1352
				 */
1353 1354 1355
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1356 1357 1358 1359
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1360

D
Dave Chinner 已提交
1361
			/* unlock now we've grabbed the inodes. */
1362
			rcu_read_unlock();
D
Dave Chinner 已提交
1363 1364 1365 1366 1367

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1368
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1369 1370 1371 1372
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1373

1374 1375
			cond_resched();

D
Dave Chinner 已提交
1376
		} while (nr_found && !done && *nr_to_scan > 0);
1377

1378 1379 1380 1381 1382
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1383 1384
		xfs_perag_put(pag);
	}
1385 1386 1387 1388 1389 1390 1391 1392

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1393
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1394 1395 1396
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1397
	return last_error;
1398 1399
}

1400 1401 1402 1403 1404
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1405 1406 1407
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1408 1409 1410
}

/*
1411
 * Scan a certain number of inodes for reclaim.
1412 1413
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1414
 * progress, while we will throttle the speed of reclaim via doing synchronous
1415 1416 1417
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1418
 */
1419
long
1420 1421 1422
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1423
{
1424
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1425
	xfs_reclaim_work_queue(mp);
1426
	xfs_ail_push_all(mp->m_ail);
1427

1428
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1429
}
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1442

1443 1444
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1445 1446
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1447 1448 1449 1450
	}
	return reclaimable;
}

1451 1452 1453 1454 1455
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1456 1457
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1458
		return 0;
1459

1460 1461
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1462 1463
		return 0;

1464
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1465
	    ip->i_d.di_projid != eofb->eof_prid)
1466 1467 1468
		return 0;

	return 1;
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1489
	    ip->i_d.di_projid == eofb->eof_prid)
1490 1491 1492 1493 1494
		return 1;

	return 0;
}

1495 1496 1497 1498 1499 1500
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1501
	int ret = 0;
1502
	struct xfs_eofblocks *eofb = args;
1503
	int match;
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1520
	if (eofb) {
1521 1522 1523 1524 1525
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1526 1527 1528 1529 1530 1531 1532
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1533

1534 1535 1536 1537
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1538
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1539 1540 1541 1542 1543
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1544
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1545 1546 1547 1548

	return ret;
}

1549 1550
static int
__xfs_icache_free_eofblocks(
1551
	struct xfs_mount	*mp,
1552 1553 1554 1555
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1556
{
1557 1558 1559 1560 1561
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1573 1574
}

1575 1576 1577 1578 1579 1580
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1581 1582 1583 1584 1585
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1586 1587 1588 1589 1590 1591
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1592
	 * Run a sync scan to increase effectiveness and use the union filter to
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1616
		execute(ip->i_mount, &eofb);
1617 1618 1619 1620

	return scan;
}

1621 1622 1623 1624 1625 1626 1627
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1643
static void
1644
__xfs_inode_set_blocks_tag(
1645 1646 1647 1648 1649
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1650 1651 1652 1653 1654
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1655 1656 1657 1658
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1659
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1660 1661
		return;
	spin_lock(&ip->i_flags_lock);
1662
	ip->i_flags |= xfs_iflag_for_tag(tag);
1663 1664
	spin_unlock(&ip->i_flags_lock);

1665 1666 1667
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1668
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1669
	radix_tree_tag_set(&pag->pag_ici_root,
1670
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1671 1672 1673 1674 1675
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1676
				   tag);
1677
		spin_unlock(&ip->i_mount->m_perag_lock);
1678 1679

		/* kick off background trimming */
1680
		execute(ip->i_mount);
1681

1682
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1683 1684 1685 1686 1687 1688 1689
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1690
xfs_inode_set_eofblocks_tag(
1691
	xfs_inode_t	*ip)
1692 1693
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1694
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1695 1696 1697 1698 1699
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1700
__xfs_inode_clear_blocks_tag(
1701 1702 1703 1704
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1705 1706 1707 1708
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1709
	spin_lock(&ip->i_flags_lock);
1710
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1711 1712
	spin_unlock(&ip->i_flags_lock);

1713 1714 1715 1716
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1717 1718
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1719 1720 1721 1722
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1723
				     tag);
1724
		spin_unlock(&ip->i_mount->m_perag_lock);
1725
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1726 1727 1728 1729 1730 1731
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1732 1733 1734 1735 1736
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1737
	return __xfs_inode_clear_blocks_tag(ip,
1738 1739 1740 1741
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1742 1743 1744
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1745
 */
1746 1747
static bool
xfs_prep_free_cowblocks(
1748
	struct xfs_inode	*ip)
1749
{
1750 1751 1752 1753
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
1754
	if (!xfs_inode_has_cow_data(ip)) {
1755 1756
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1757
		return false;
1758 1759 1760 1761 1762 1763
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1764 1765
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1766 1767
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	int			match;
	int			ret = 0;

1795
	if (!xfs_prep_free_cowblocks(ip))
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1813 1814
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1815

1816 1817 1818 1819
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
1820
	if (xfs_prep_free_cowblocks(ip))
1821
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1822

1823 1824
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1849
	trace_xfs_inode_set_cowblocks_tag(ip);
1850
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1851
			trace_xfs_perag_set_cowblocks,
1852 1853 1854 1855 1856 1857 1858
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1859
	trace_xfs_inode_clear_cowblocks_tag(ip);
1860
	return __xfs_inode_clear_blocks_tag(ip,
1861
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1862
}
1863 1864 1865

/* Disable post-EOF and CoW block auto-reclamation. */
void
1866
xfs_stop_block_reaping(
1867 1868 1869 1870 1871 1872 1873 1874
	struct xfs_mount	*mp)
{
	cancel_delayed_work_sync(&mp->m_eofblocks_work);
	cancel_delayed_work_sync(&mp->m_cowblocks_work);
}

/* Enable post-EOF and CoW block auto-reclamation. */
void
1875
xfs_start_block_reaping(
1876 1877 1878 1879 1880
	struct xfs_mount	*mp)
{
	xfs_queue_eofblocks(mp);
	xfs_queue_cowblocks(mp);
}