xfs_icache.c 46.3 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
8
#include "xfs_format.h"
9 10
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
11 12 13 14
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
15 16
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
17
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
18
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_icache.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22 23
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
24
#include "xfs_reflink.h"
25

26 27
#include <linux/kthread.h>
#include <linux/freezer.h>
J
Jeff Layton 已提交
28
#include <linux/iversion.h>
29

D
Dave Chinner 已提交
30 31 32
/*
 * Allocate and initialise an xfs_inode.
 */
33
struct xfs_inode *
D
Dave Chinner 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
53 54 55
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

56
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
57 58 59 60 61 62 63 64 65
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
66 67 68
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
69
	memset(&ip->i_df, 0, sizeof(ip->i_df));
D
Dave Chinner 已提交
70 71
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
72
	memset(&ip->i_d, 0, sizeof(ip->i_d));
73 74
	ip->i_sick = 0;
	ip->i_checked = 0;
75 76 77
	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
	INIT_LIST_HEAD(&ip->i_ioend_list);
	spin_lock_init(&ip->i_ioend_lock);
D
Dave Chinner 已提交
78 79 80 81 82 83 84 85 86 87 88

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
89
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
90 91 92 93 94 95 96 97 98
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
99 100
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
101 102

	if (ip->i_itemp) {
D
Dave Chinner 已提交
103 104
		ASSERT(!test_bit(XFS_LI_IN_AIL,
				 &ip->i_itemp->ili_item.li_flags));
D
Dave Chinner 已提交
105 106 107 108
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

109 110 111
	kmem_zone_free(xfs_inode_zone, ip);
}

112 113 114 115 116 117 118 119 120 121 122
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

123 124 125 126
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
127 128
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
129 130 131 132 133 134 135 136 137 138 139
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

140
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
141 142
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

187
	lockdep_assert_held(&pag->pag_ici_lock);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

209
	lockdep_assert_held(&pag->pag_ici_lock);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

259 260 261 262 263 264 265 266
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
267
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
268 269 270 271
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
272
	finish_wait(wq, &wait.wq_entry);
273 274
}

275 276 277 278
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
279
 * overwrite the values unconditionally. Hence we save the parameters we
280
 * need to retain across reinitialisation, and rewrite them into the VFS inode
281
 * after reinitialisation even if it fails.
282 283 284 285 286 287 288
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
289
	uint32_t	nlink = inode->i_nlink;
290
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
291
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
292
	umode_t		mode = inode->i_mode;
293
	dev_t		dev = inode->i_rdev;
294 295 296

	error = inode_init_always(mp->m_super, inode);

297
	set_nlink(inode, nlink);
298
	inode->i_generation = generation;
J
Jeff Layton 已提交
299
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
300
	inode->i_mode = mode;
301
	inode->i_rdev = dev;
302 303 304
	return error;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * If we are allocating a new inode, then check what was returned is
 * actually a free, empty inode. If we are not allocating an inode,
 * then check we didn't find a free inode.
 *
 * Returns:
 *	0		if the inode free state matches the lookup context
 *	-ENOENT		if the inode is free and we are not allocating
 *	-EFSCORRUPTED	if there is any state mismatch at all
 */
static int
xfs_iget_check_free_state(
	struct xfs_inode	*ip,
	int			flags)
{
	if (flags & XFS_IGET_CREATE) {
		/* should be a free inode */
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
				ip->i_ino, VFS_I(ip)->i_mode);
			return -EFSCORRUPTED;
		}

		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ip->i_ino);
			return -EFSCORRUPTED;
		}
		return 0;
	}

	/* should be an allocated inode */
	if (VFS_I(ip)->i_mode == 0)
		return -ENOENT;

	return 0;
}

D
Dave Chinner 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
370
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
371
		error = -EAGAIN;
D
Dave Chinner 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
388
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
389
		error = -EAGAIN;
D
Dave Chinner 已提交
390 391 392 393
		goto out_error;
	}

	/*
394 395
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
D
Dave Chinner 已提交
396
	 */
397 398
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
399 400 401 402 403 404 405 406 407
		goto out_error;

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

408 409 410 411 412
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
413 414 415 416 417 418 419 420 421 422 423
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

424
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
425
		if (error) {
426
			bool wake;
D
Dave Chinner 已提交
427 428 429 430 431 432
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
433
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
434
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
435 436
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
452
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
453
		inode->i_state = I_NEW;
454 455
		ip->i_sick = 0;
		ip->i_checked = 0;
D
Dave Chinner 已提交
456

457 458
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
459 460 461 462 463 464 465

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
466
			error = -EAGAIN;
D
Dave Chinner 已提交
467 468 469 470 471 472 473 474 475 476 477 478
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

479 480
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
481
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
509
		return -ENOMEM;
D
Dave Chinner 已提交
510 511 512 513 514

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

515 516 517 518 519
	if (!xfs_inode_verify_forks(ip)) {
		error = -EFSCORRUPTED;
		goto out_destroy;
	}

D
Dave Chinner 已提交
520 521
	trace_xfs_iget_miss(ip);

522 523

	/*
524 525
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
526
	 */
527 528
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
529 530 531 532 533 534 535 536 537
		goto out_destroy;

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
538
		error = -EAGAIN;
D
Dave Chinner 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
563 564
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
565
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
566 567 568 569 570 571 572
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
573
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
574
		error = -EAGAIN;
D
Dave Chinner 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
641
		return -EINVAL;
D
Dave Chinner 已提交
642

643
	XFS_STATS_INC(mp, xs_ig_attempts);
644

D
Dave Chinner 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
660
		if (flags & XFS_IGET_INCORE) {
661
			error = -ENODATA;
662 663
			goto out_error_or_again;
		}
664
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
665 666 667 668 669 670 671 672 673 674 675

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
676
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
677 678
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
679
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
680
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
681 682 683
	return 0;

out_error_or_again:
684
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
685 686 687 688 689 690 691
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
726
	xfs_irele(ip);
727 728 729
	return 0;
}

730 731 732 733 734 735 736 737
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

738 739
STATIC int
xfs_inode_ag_walk_grab(
740 741
	struct xfs_inode	*ip,
	int			flags)
742 743
{
	struct inode		*inode = VFS_I(ip);
744
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
762 763
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
764 765 766
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

767 768
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
769
		return -EFSCORRUPTED;
770 771 772

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
773
		return -ENOENT;
774 775 776

	/* inode is valid */
	return 0;
777 778 779

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
780
	return -ENOENT;
781 782
}

783 784 785
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
786
	struct xfs_perag	*pag,
787
	int			(*execute)(struct xfs_inode *ip, int flags,
788 789 790
					   void *args),
	int			flags,
	void			*args,
791 792
	int			tag,
	int			iter_flags)
793 794 795 796
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
797
	int			done;
798
	int			nr_found;
799 800

restart:
801
	done = 0;
802 803
	skipped = 0;
	first_index = 0;
804
	nr_found = 0;
805
	do {
806
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
807
		int		error = 0;
808
		int		i;
809

810
		rcu_read_lock();
811 812 813

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
814 815
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
816 817 818 819 820 821
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

822
		if (!nr_found) {
823
			rcu_read_unlock();
824
			break;
825
		}
826

827
		/*
828 829
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
830
		 */
831 832 833
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

834
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
835 836 837
				batch[i] = NULL;

			/*
838 839 840 841 842 843 844 845 846 847
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
848
			 */
849 850
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
851 852 853
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
854
		}
855 856

		/* unlock now we've grabbed the inodes. */
857
		rcu_read_unlock();
858

859 860 861
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
862 863 864
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
865
			error = execute(batch[i], flags, args);
866
			xfs_irele(batch[i]);
D
Dave Chinner 已提交
867
			if (error == -EAGAIN) {
868 869 870
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
871
			if (error && last_error != -EFSCORRUPTED)
872
				last_error = error;
873
		}
874 875

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
876
		if (error == -EFSCORRUPTED)
877 878
			break;

879 880
		cond_resched();

881
	} while (nr_found && !done);
882 883 884 885 886 887 888 889

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

890 891
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
892
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
893
 */
894
void
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

916 917 918 919 920
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
921
void
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

943
int
944
xfs_inode_ag_iterator_flags(
945
	struct xfs_mount	*mp,
946
	int			(*execute)(struct xfs_inode *ip, int flags,
947 948
					   void *args),
	int			flags,
949 950
	void			*args,
	int			iter_flags)
951
{
952
	struct xfs_perag	*pag;
953 954 955 956
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

957
	ag = 0;
958 959
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
960 961
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
962 963 964
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
965
			if (error == -EFSCORRUPTED)
966 967 968
				break;
		}
	}
E
Eric Sandeen 已提交
969
	return last_error;
970 971
}

972 973 974 975 976 977 978 979 980 981 982
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

983 984 985
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
986
	int			(*execute)(struct xfs_inode *ip, int flags,
987 988 989 990 991 992 993 994 995 996 997 998 999
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
1000 1001
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
1002
		xfs_perag_put(pag);
1003 1004
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
1005
			if (error == -EFSCORRUPTED)
1006 1007 1008
				break;
		}
	}
E
Eric Sandeen 已提交
1009
	return last_error;
1010 1011
}

D
Dave Chinner 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1021 1022 1023 1024 1025
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1026 1027

	/*
1028 1029 1030
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1031 1032
	 */
	if ((flags & SYNC_TRYLOCK) &&
1033
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1034 1035 1036 1037 1038 1039
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1040 1041 1042 1043 1044
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1045 1046
	 */
	spin_lock(&ip->i_flags_lock);
1047 1048 1049
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1050 1051 1052 1053 1054 1055 1056 1057
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1058
/*
1059 1060
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1061 1062 1063 1064 1065 1066 1067
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1068 1069
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1070 1071
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1072 1073 1074 1075
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1076 1077
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1078
 * the inode is clean.
1079
 *
1080 1081 1082 1083 1084 1085
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1086
 *
1087 1088 1089
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1090
 *	pinned, async	=> requeue
1091
 *	pinned, sync	=> unpin
1092 1093
 *	stale		=> reclaim
 *	clean		=> reclaim
1094
 *	dirty, async	=> requeue
1095
 *	dirty, sync	=> flush, wait and reclaim
1096
 */
1097
STATIC int
1098
xfs_reclaim_inode(
1099 1100
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1101
	int			sync_mode)
1102
{
1103
	struct xfs_buf		*bp = NULL;
1104
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1105
	int			error;
1106

1107 1108
restart:
	error = 0;
1109
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1110 1111 1112 1113 1114
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1115

1116 1117
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1118
		/* xfs_iflush_abort() drops the flush lock */
1119
		xfs_iflush_abort(ip, false);
1120 1121
		goto reclaim;
	}
1122
	if (xfs_ipincount(ip)) {
1123 1124
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1125
		xfs_iunpin_wait(ip);
1126
	}
1127 1128
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1129
		goto reclaim;
1130
	}
1131

1132 1133 1134 1135 1136 1137 1138
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1139 1140 1141
	/*
	 * Now we have an inode that needs flushing.
	 *
1142
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1143
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1144
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1145 1146
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1147 1148 1149 1150
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1151 1152 1153
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1154
	 */
1155
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1156
	if (error == -EAGAIN) {
1157 1158 1159 1160
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1161 1162
	}

1163 1164 1165 1166 1167
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1168
reclaim:
1169 1170
	ASSERT(!xfs_isiflocked(ip));

1171 1172 1173
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1174
	 * We do this as early as possible under the ILOCK so that
1175 1176 1177 1178 1179
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1180 1181 1182 1183 1184 1185
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1186
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1187

1188
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1189 1190 1191 1192 1193 1194 1195
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1196
	spin_lock(&pag->pag_ici_lock);
1197
	if (!radix_tree_delete(&pag->pag_ici_root,
1198
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1199
		ASSERT(0);
1200
	xfs_perag_clear_reclaim_tag(pag);
1201
	spin_unlock(&pag->pag_ici_lock);
1202 1203 1204 1205 1206 1207 1208

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1209
	 * unlocked after the lookup before we go ahead and free it.
1210
	 */
1211
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1212
	xfs_qm_dqdetach(ip);
1213
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1214

1215
	__xfs_inode_free(ip);
1216
	return error;
1217 1218 1219 1220 1221 1222 1223

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1224
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1225
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1226 1227 1228
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1229 1230
	 */
	return 0;
1231 1232
}

1233 1234 1235 1236 1237 1238
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1239
STATIC int
1240 1241 1242 1243 1244 1245 1246 1247 1248
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1249 1250
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1251

1252
restart:
1253
	ag = 0;
1254
	skipped = 0;
1255 1256 1257
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1258
		int		nr_found = 0;
1259 1260 1261

		ag = pag->pag_agno + 1;

1262 1263 1264
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1265
				xfs_perag_put(pag);
1266 1267 1268 1269 1270 1271
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1272
		do {
D
Dave Chinner 已提交
1273 1274
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1275

1276
			rcu_read_lock();
D
Dave Chinner 已提交
1277 1278 1279 1280
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1281 1282
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1283
				done = 1;
1284
				rcu_read_unlock();
1285 1286 1287 1288
				break;
			}

			/*
D
Dave Chinner 已提交
1289 1290
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1291
			 */
D
Dave Chinner 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1304 1305 1306 1307 1308 1309 1310
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1311
				 */
1312 1313 1314
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1315 1316 1317 1318
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1319

D
Dave Chinner 已提交
1320
			/* unlock now we've grabbed the inodes. */
1321
			rcu_read_unlock();
D
Dave Chinner 已提交
1322 1323 1324 1325 1326

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1327
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1328 1329 1330 1331
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1332

1333 1334
			cond_resched();

D
Dave Chinner 已提交
1335
		} while (nr_found && !done && *nr_to_scan > 0);
1336

1337 1338 1339 1340 1341
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1342 1343
		xfs_perag_put(pag);
	}
1344 1345 1346 1347 1348 1349 1350 1351

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1352
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1353 1354 1355
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1356
	return last_error;
1357 1358
}

1359 1360 1361 1362 1363
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1364 1365 1366
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1367 1368 1369
}

/*
1370
 * Scan a certain number of inodes for reclaim.
1371 1372
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1373
 * progress, while we will throttle the speed of reclaim via doing synchronous
1374 1375 1376
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1377
 */
1378
long
1379 1380 1381
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1382
{
1383
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1384
	xfs_reclaim_work_queue(mp);
1385
	xfs_ail_push_all(mp->m_ail);
1386

1387
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1388
}
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1401

1402 1403
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1404 1405
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1406 1407 1408 1409
	}
	return reclaimable;
}

1410 1411 1412 1413 1414
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1415 1416
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1417
		return 0;
1418

1419 1420
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1421 1422
		return 0;

1423
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1424 1425 1426 1427
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1454 1455 1456 1457 1458 1459
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1460
	int ret = 0;
1461
	struct xfs_eofblocks *eofb = args;
1462
	int match;
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1479
	if (eofb) {
1480 1481 1482 1483 1484
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1485 1486 1487 1488 1489 1490 1491
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1492

1493 1494 1495 1496
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1497
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1498 1499 1500 1501 1502
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1503
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1504 1505 1506 1507

	return ret;
}

1508 1509
static int
__xfs_icache_free_eofblocks(
1510
	struct xfs_mount	*mp,
1511 1512 1513 1514
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1515
{
1516 1517 1518 1519 1520
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1532 1533
}

1534 1535 1536 1537 1538 1539
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1540 1541 1542 1543 1544
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1545 1546 1547 1548 1549 1550
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1551
	 * Run a sync scan to increase effectiveness and use the union filter to
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1575
		execute(ip->i_mount, &eofb);
1576 1577 1578 1579

	return scan;
}

1580 1581 1582 1583 1584 1585 1586
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1602
static void
1603
__xfs_inode_set_blocks_tag(
1604 1605 1606 1607 1608
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1609 1610 1611 1612 1613
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1614 1615 1616 1617
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1618
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1619 1620
		return;
	spin_lock(&ip->i_flags_lock);
1621
	ip->i_flags |= xfs_iflag_for_tag(tag);
1622 1623
	spin_unlock(&ip->i_flags_lock);

1624 1625 1626
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1627
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1628
	radix_tree_tag_set(&pag->pag_ici_root,
1629
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1630 1631 1632 1633 1634
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1635
				   tag);
1636
		spin_unlock(&ip->i_mount->m_perag_lock);
1637 1638

		/* kick off background trimming */
1639
		execute(ip->i_mount);
1640

1641
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1642 1643 1644 1645 1646 1647 1648
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1649
xfs_inode_set_eofblocks_tag(
1650
	xfs_inode_t	*ip)
1651 1652
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1653
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1654 1655 1656 1657 1658
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1659
__xfs_inode_clear_blocks_tag(
1660 1661 1662 1663
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1664 1665 1666 1667
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1668
	spin_lock(&ip->i_flags_lock);
1669
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1670 1671
	spin_unlock(&ip->i_flags_lock);

1672 1673 1674 1675
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1676 1677
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1678 1679 1680 1681
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1682
				     tag);
1683
		spin_unlock(&ip->i_mount->m_perag_lock);
1684
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1685 1686 1687 1688 1689 1690
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1691 1692 1693 1694 1695
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1696
	return __xfs_inode_clear_blocks_tag(ip,
1697 1698 1699 1700
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1701 1702 1703
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1704
 */
1705 1706
static bool
xfs_prep_free_cowblocks(
1707
	struct xfs_inode	*ip)
1708
{
1709 1710 1711 1712
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
1713
	if (!xfs_inode_has_cow_data(ip)) {
1714 1715
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1716
		return false;
1717 1718 1719 1720 1721 1722
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1723 1724
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1725 1726
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	int			match;
	int			ret = 0;

1754
	if (!xfs_prep_free_cowblocks(ip))
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1772 1773
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1774

1775 1776 1777 1778
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
1779
	if (xfs_prep_free_cowblocks(ip))
1780
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1781

1782 1783
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1808
	trace_xfs_inode_set_cowblocks_tag(ip);
1809
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1810
			trace_xfs_perag_set_cowblocks,
1811 1812 1813 1814 1815 1816 1817
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1818
	trace_xfs_inode_clear_cowblocks_tag(ip);
1819
	return __xfs_inode_clear_blocks_tag(ip,
1820
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1821
}
1822 1823 1824

/* Disable post-EOF and CoW block auto-reclamation. */
void
1825
xfs_stop_block_reaping(
1826 1827 1828 1829 1830 1831 1832 1833
	struct xfs_mount	*mp)
{
	cancel_delayed_work_sync(&mp->m_eofblocks_work);
	cancel_delayed_work_sync(&mp->m_cowblocks_work);
}

/* Enable post-EOF and CoW block auto-reclamation. */
void
1834
xfs_start_block_reaping(
1835 1836 1837 1838 1839
	struct xfs_mount	*mp)
{
	xfs_queue_eofblocks(mp);
	xfs_queue_cowblocks(mp);
}