xfs_icache.c 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
22
#include "xfs_log_priv.h"
23 24
#include "xfs_inum.h"
#include "xfs_trans.h"
25
#include "xfs_trans_priv.h"
26 27 28 29 30 31 32 33 34 35
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
36
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
37
#include "xfs_trace.h"
38
#include "xfs_fsops.h"
39
#include "xfs_icache.h"
40

41 42 43
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
				struct xfs_perag *pag, struct xfs_inode *ip);

/*
 * Allocate and initialise an xfs_inode.
 */
STATIC struct xfs_inode *
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

	kmem_zone_free(xfs_inode_zone, ip);
}

STATIC void
xfs_inode_free(
	struct xfs_inode	*ip)
{
	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));

	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

		error = -inode_init_always(mp->m_super, inode);
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
			error = EAGAIN;
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
	XFS_STATS_INC(xs_ig_found);

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
		return ENOMEM;

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
		error = EAGAIN;
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
338 339
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
D
Dave Chinner 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
		XFS_STATS_INC(xs_ig_dup);
		error = EAGAIN;
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
		return EINVAL;

	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
		XFS_STATS_INC(xs_ig_missed);

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
		xfs_setup_inode(ip);
	return 0;

out_error_or_again:
	if (error == EAGAIN) {
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

460 461 462 463 464 465 466 467
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

468 469 470 471 472 473
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return EFSCORRUPTED;

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		return ENOENT;

	if (is_bad_inode(inode)) {
		IRELE(ip);
		return ENOENT;
	}

	/* inode is valid */
	return 0;
509 510 511 512

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
	return ENOENT;
513 514
}

515 516 517
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
518
	struct xfs_perag	*pag,
519
	int			(*execute)(struct xfs_inode *ip,
520 521 522 523 524
					   struct xfs_perag *pag, int flags,
					   void *args),
	int			flags,
	void			*args,
	int			tag)
525 526 527 528
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
529
	int			done;
530
	int			nr_found;
531 532

restart:
533
	done = 0;
534 535
	skipped = 0;
	first_index = 0;
536
	nr_found = 0;
537
	do {
538
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
539
		int		error = 0;
540
		int		i;
541

542
		rcu_read_lock();
543 544 545

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
546 547
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
548 549 550 551 552 553
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

554
		if (!nr_found) {
555
			rcu_read_unlock();
556
			break;
557
		}
558

559
		/*
560 561
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
562
		 */
563 564 565 566 567 568 569
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
570 571 572 573 574 575 576 577 578 579
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
580
			 */
581 582
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
583 584 585
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
586
		}
587 588

		/* unlock now we've grabbed the inodes. */
589
		rcu_read_unlock();
590

591 592 593
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
594
			error = execute(batch[i], pag, flags, args);
595 596 597 598 599 600 601
			IRELE(batch[i]);
			if (error == EAGAIN) {
				skipped++;
				continue;
			}
			if (error && last_error != EFSCORRUPTED)
				last_error = error;
602
		}
603 604

		/* bail out if the filesystem is corrupted.  */
605 606 607
		if (error == EFSCORRUPTED)
			break;

608 609
		cond_resched();

610
	} while (nr_found && !done);
611 612 613 614 615 616 617 618

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
 * based on the 'background_prealloc_discard_period' tunable (5m by default).
 */
STATIC void
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

645
int
646 647 648
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
649 650 651 652
					   struct xfs_perag *pag, int flags,
					   void *args),
	int			flags,
	void			*args)
653
{
654
	struct xfs_perag	*pag;
655 656 657 658
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

659
	ag = 0;
660 661
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags,
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
692
		xfs_perag_put(pag);
693 694 695 696 697 698 699 700 701
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

702 703 704
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
D
Dave Chinner 已提交
705
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
706 707 708 709
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
D
Dave Chinner 已提交
710
xfs_reclaim_work_queue(
711
	struct xfs_mount        *mp)
712 713
{

714 715
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
D
Dave Chinner 已提交
716
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
717
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
718
	}
719 720
	rcu_read_unlock();
}
721

722 723 724 725 726 727 728
/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
D
Dave Chinner 已提交
729
void
730 731 732 733 734 735 736
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
D
Dave Chinner 已提交
737
	xfs_reclaim_work_queue(mp);
738 739
}

D
Dave Chinner 已提交
740
static void
741 742 743 744 745 746 747
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
748 749 750 751 752 753 754 755

	if (!pag->pag_ici_reclaimable) {
		/* propagate the reclaim tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
756 757

		/* schedule periodic background inode reclaim */
D
Dave Chinner 已提交
758
		xfs_reclaim_work_queue(ip->i_mount);
759

760 761 762
		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
763
	pag->pag_ici_reclaimable++;
764 765
}

D
David Chinner 已提交
766 767 768 769 770
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
771 772 773 774
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
775 776
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
777

D
Dave Chinner 已提交
778
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
779
	spin_lock(&pag->pag_ici_lock);
780
	spin_lock(&ip->i_flags_lock);
781
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
782
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
783
	spin_unlock(&ip->i_flags_lock);
784
	spin_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
785
	xfs_perag_put(pag);
786 787
}

788 789
STATIC void
__xfs_inode_clear_reclaim(
790 791 792
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
793
	pag->pag_ici_reclaimable--;
794 795 796 797 798 799 800 801 802 803
	if (!pag->pag_ici_reclaimable) {
		/* clear the reclaim tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
804 805
}

D
Dave Chinner 已提交
806
STATIC void
807 808 809 810 811 812 813 814 815 816
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
	__xfs_inode_clear_reclaim(pag, ip);
}

D
Dave Chinner 已提交
817 818 819 820 821 822 823 824 825
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
826 827 828 829 830
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
831 832

	/*
833 834 835
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
836 837
	 */
	if ((flags & SYNC_TRYLOCK) &&
838
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
839 840 841 842 843 844
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
845 846 847 848 849
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
850 851
	 */
	spin_lock(&ip->i_flags_lock);
852 853 854
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
855 856 857 858 859 860 861 862
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

863
/*
864 865
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
866 867 868 869 870 871 872
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
873 874
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
875 876
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
877 878 879 880
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
881 882
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
883
 * the inode is clean.
884
 *
885 886 887 888 889 890
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
891
 *
892 893 894
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
895
 *	pinned, async	=> requeue
896
 *	pinned, sync	=> unpin
897 898
 *	stale		=> reclaim
 *	clean		=> reclaim
899
 *	dirty, async	=> requeue
900
 *	dirty, sync	=> flush, wait and reclaim
901
 */
902
STATIC int
903
xfs_reclaim_inode(
904 905
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
906
	int			sync_mode)
907
{
908 909
	struct xfs_buf		*bp = NULL;
	int			error;
910

911 912
restart:
	error = 0;
913
	xfs_ilock(ip, XFS_ILOCK_EXCL);
914 915 916 917 918
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
919

920 921 922 923
	if (is_bad_inode(VFS_I(ip)))
		goto reclaim;
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
924
		xfs_iflush_abort(ip, false);
925 926
		goto reclaim;
	}
927
	if (xfs_ipincount(ip)) {
928 929
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
930
		xfs_iunpin_wait(ip);
931
	}
932 933 934 935 936
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

937 938 939 940 941 942 943
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

944 945 946
	/*
	 * Now we have an inode that needs flushing.
	 *
947
	 * Note that xfs_iflush will never block on the inode buffer lock, as
948
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
949
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
950 951
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
952 953 954 955
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
956 957 958
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
959
	 */
960
	error = xfs_iflush(ip, &bp);
961 962 963 964 965
	if (error == EAGAIN) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
966 967
	}

968 969 970 971 972 973
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
974 975
reclaim:
	xfs_ifunlock(ip);
976
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
977 978 979 980 981 982 983 984 985

	XFS_STATS_INC(xs_ig_reclaims);
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
986
	spin_lock(&pag->pag_ici_lock);
987 988 989
	if (!radix_tree_delete(&pag->pag_ici_root,
				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
		ASSERT(0);
990
	__xfs_inode_clear_reclaim(pag, ip);
991
	spin_unlock(&pag->pag_ici_lock);
992 993 994 995 996 997 998

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
999
	 * unlocked after the lookup before we go ahead and free it.
1000
	 */
1001
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1002
	xfs_qm_dqdetach(ip);
1003
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1004 1005

	xfs_inode_free(ip);
1006
	return error;
1007 1008 1009 1010 1011 1012 1013 1014 1015

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1016 1017 1018
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1019 1020
	 */
	return 0;
1021 1022
}

1023 1024 1025 1026 1027 1028
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1029
STATIC int
1030 1031 1032 1033 1034 1035 1036 1037 1038
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1039 1040
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1041

1042
restart:
1043
	ag = 0;
1044
	skipped = 0;
1045 1046 1047
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1048
		int		nr_found = 0;
1049 1050 1051

		ag = pag->pag_agno + 1;

1052 1053 1054
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1055
				xfs_perag_put(pag);
1056 1057 1058 1059 1060 1061
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1062
		do {
D
Dave Chinner 已提交
1063 1064
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1065

1066
			rcu_read_lock();
D
Dave Chinner 已提交
1067 1068 1069 1070
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1071 1072
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1073
				done = 1;
1074
				rcu_read_unlock();
1075 1076 1077 1078
				break;
			}

			/*
D
Dave Chinner 已提交
1079 1080
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1081
			 */
D
Dave Chinner 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1094 1095 1096 1097 1098 1099 1100
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1101
				 */
1102 1103 1104
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1105 1106 1107 1108
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1109

D
Dave Chinner 已提交
1110
			/* unlock now we've grabbed the inodes. */
1111
			rcu_read_unlock();
D
Dave Chinner 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
				if (error && last_error != EFSCORRUPTED)
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1122

1123 1124
			cond_resched();

D
Dave Chinner 已提交
1125
		} while (nr_found && !done && *nr_to_scan > 0);
1126

1127 1128 1129 1130 1131
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1132 1133
		xfs_perag_put(pag);
	}
1134 1135 1136 1137 1138 1139 1140 1141

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1142
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1143 1144 1145
		trylock = 0;
		goto restart;
	}
1146 1147 1148
	return XFS_ERROR(last_error);
}

1149 1150 1151 1152 1153
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1154 1155 1156
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1157 1158 1159
}

/*
1160
 * Scan a certain number of inodes for reclaim.
1161 1162
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1163
 * progress, while we will throttle the speed of reclaim via doing synchronous
1164 1165 1166
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1167
 */
1168 1169 1170 1171
void
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1172
{
1173
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1174
	xfs_reclaim_work_queue(mp);
1175
	xfs_ail_push_all(mp->m_ail);
1176

1177 1178
	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
}
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1191

1192 1193
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1194 1195
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1196 1197 1198 1199
	}
	return reclaimable;
}

1200 1201 1202 1203 1204
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1205 1206 1207
	if (eofb->eof_flags & XFS_EOF_FLAGS_UID &&
	    ip->i_d.di_uid != eofb->eof_uid)
		return 0;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
	if (eofb->eof_flags & XFS_EOF_FLAGS_GID &&
	    ip->i_d.di_gid != eofb->eof_gid)
		return 0;

	if (eofb->eof_flags & XFS_EOF_FLAGS_PRID &&
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1218 1219
}

1220 1221 1222 1223 1224 1225 1226 1227
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
	int			flags,
	void			*args)
{
	int ret;
1228
	struct xfs_eofblocks *eofb = args;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (eofb) {
		if (!xfs_inode_match_id(ip, eofb))
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	ret = xfs_free_eofblocks(ip->i_mount, ip, true);

	/* don't revisit the inode if we're not waiting */
	if (ret == EAGAIN && !(flags & SYNC_WAIT))
		ret = 0;

	return ret;
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
1267
	struct xfs_eofblocks	*eofb)
1268
{
1269 1270 1271 1272 1273
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1274
	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1275
					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
void
xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_set_eofblocks_tag(ip);

	tagged = radix_tree_tagged(&pag->pag_ici_root,
				   XFS_ICI_EOFBLOCKS_TAG);
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_EOFBLOCKS_TAG);
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				   XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
1302 1303 1304

		/* kick off background trimming */
		xfs_queue_eofblocks(ip->i_mount);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
					      -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_clear_eofblocks_tag(ip);

	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			     XFS_ICI_EOFBLOCKS_TAG);
	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				     XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
					       -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}