xfs_icache.c 46.2 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
8
#include "xfs_shared.h"
9
#include "xfs_format.h"
10 11
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
12 13 14
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
15 16
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
17
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
18
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_icache.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22 23
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
24
#include "xfs_reflink.h"
25

J
Jeff Layton 已提交
26
#include <linux/iversion.h>
27

D
Dave Chinner 已提交
28 29 30
/*
 * Allocate and initialise an xfs_inode.
 */
31
struct xfs_inode *
D
Dave Chinner 已提交
32 33 34 35 36 37 38 39 40 41 42
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
43
	ip = kmem_zone_alloc(xfs_inode_zone, 0);
D
Dave Chinner 已提交
44 45 46
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
47
		kmem_cache_free(xfs_inode_zone, ip);
D
Dave Chinner 已提交
48 49 50
		return NULL;
	}

D
Dave Chinner 已提交
51 52 53
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

54
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
55 56 57 58 59 60 61 62 63
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
64 65 66
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
67
	memset(&ip->i_df, 0, sizeof(ip->i_df));
D
Dave Chinner 已提交
68 69
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
70
	memset(&ip->i_d, 0, sizeof(ip->i_d));
71 72
	ip->i_sick = 0;
	ip->i_checked = 0;
73 74 75
	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
	INIT_LIST_HEAD(&ip->i_ioend_list);
	spin_lock_init(&ip->i_ioend_lock);
D
Dave Chinner 已提交
76 77 78 79 80 81 82 83 84 85 86

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
87
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
88 89 90 91 92 93 94 95 96
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
97 98
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
99 100

	if (ip->i_itemp) {
D
Dave Chinner 已提交
101 102
		ASSERT(!test_bit(XFS_LI_IN_AIL,
				 &ip->i_itemp->ili_item.li_flags));
D
Dave Chinner 已提交
103 104 105 106
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

107
	kmem_cache_free(xfs_inode_zone, ip);
108 109
}

110 111 112 113 114 115 116 117 118 119 120
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

121 122 123 124
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
125 126
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
127 128 129 130 131 132 133 134 135 136 137
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

138
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
139 140
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

185
	lockdep_assert_held(&pag->pag_ici_lock);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

207
	lockdep_assert_held(&pag->pag_ici_lock);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

257 258 259 260 261 262 263 264
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
265
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
266 267 268 269
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
270
	finish_wait(wq, &wait.wq_entry);
271 272
}

273 274 275 276
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
277
 * overwrite the values unconditionally. Hence we save the parameters we
278
 * need to retain across reinitialisation, and rewrite them into the VFS inode
279
 * after reinitialisation even if it fails.
280 281 282 283 284 285 286
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
287
	uint32_t	nlink = inode->i_nlink;
288
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
289
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
290
	umode_t		mode = inode->i_mode;
291
	dev_t		dev = inode->i_rdev;
292 293 294

	error = inode_init_always(mp->m_super, inode);

295
	set_nlink(inode, nlink);
296
	inode->i_generation = generation;
J
Jeff Layton 已提交
297
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
298
	inode->i_mode = mode;
299
	inode->i_rdev = dev;
300 301 302
	return error;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * If we are allocating a new inode, then check what was returned is
 * actually a free, empty inode. If we are not allocating an inode,
 * then check we didn't find a free inode.
 *
 * Returns:
 *	0		if the inode free state matches the lookup context
 *	-ENOENT		if the inode is free and we are not allocating
 *	-EFSCORRUPTED	if there is any state mismatch at all
 */
static int
xfs_iget_check_free_state(
	struct xfs_inode	*ip,
	int			flags)
{
	if (flags & XFS_IGET_CREATE) {
		/* should be a free inode */
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
				ip->i_ino, VFS_I(ip)->i_mode);
			return -EFSCORRUPTED;
		}

		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ip->i_ino);
			return -EFSCORRUPTED;
		}
		return 0;
	}

	/* should be an allocated inode */
	if (VFS_I(ip)->i_mode == 0)
		return -ENOENT;

	return 0;
}

D
Dave Chinner 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
368
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
369
		error = -EAGAIN;
D
Dave Chinner 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
386
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
387
		error = -EAGAIN;
D
Dave Chinner 已提交
388 389 390 391
		goto out_error;
	}

	/*
392 393
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
D
Dave Chinner 已提交
394
	 */
395 396
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
397 398 399 400 401 402 403 404 405
		goto out_error;

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

406 407 408 409 410
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
411 412 413 414 415 416 417 418 419 420 421
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

422
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
423
		if (error) {
424
			bool wake;
D
Dave Chinner 已提交
425 426 427 428 429 430
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
431
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
432
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
433 434
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
450
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
451
		inode->i_state = I_NEW;
452 453
		ip->i_sick = 0;
		ip->i_checked = 0;
D
Dave Chinner 已提交
454

455 456
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
457 458 459 460 461 462 463

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
464
			error = -EAGAIN;
D
Dave Chinner 已提交
465 466 467 468 469 470 471 472 473 474 475 476
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

477 478
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
479
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
507
		return -ENOMEM;
D
Dave Chinner 已提交
508 509 510 511 512

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

513 514 515 516 517
	if (!xfs_inode_verify_forks(ip)) {
		error = -EFSCORRUPTED;
		goto out_destroy;
	}

D
Dave Chinner 已提交
518 519
	trace_xfs_iget_miss(ip);

520 521

	/*
522 523
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
524
	 */
525 526
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
527 528 529 530 531 532 533 534 535
		goto out_destroy;

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
536
		error = -EAGAIN;
D
Dave Chinner 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
561 562
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
563
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
564 565 566 567 568 569 570
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
571
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
572
		error = -EAGAIN;
D
Dave Chinner 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
639
		return -EINVAL;
D
Dave Chinner 已提交
640

641
	XFS_STATS_INC(mp, xs_ig_attempts);
642

D
Dave Chinner 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
658
		if (flags & XFS_IGET_INCORE) {
659
			error = -ENODATA;
660 661
			goto out_error_or_again;
		}
662
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
663 664 665 666 667 668 669 670 671 672 673

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
674
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
675 676
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
677
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
678
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
679 680 681
	return 0;

out_error_or_again:
682
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
683 684 685 686 687 688 689
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
724
	xfs_irele(ip);
725 726 727
	return 0;
}

728 729 730 731 732 733 734 735
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

736 737
STATIC int
xfs_inode_ag_walk_grab(
738 739
	struct xfs_inode	*ip,
	int			flags)
740 741
{
	struct inode		*inode = VFS_I(ip);
742
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
743

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
760 761
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
762 763 764
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

765 766
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
767
		return -EFSCORRUPTED;
768 769 770

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
771
		return -ENOENT;
772 773 774

	/* inode is valid */
	return 0;
775 776 777

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
778
	return -ENOENT;
779 780
}

781 782 783
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
784
	struct xfs_perag	*pag,
785
	int			(*execute)(struct xfs_inode *ip, int flags,
786 787 788
					   void *args),
	int			flags,
	void			*args,
789 790
	int			tag,
	int			iter_flags)
791 792 793 794
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
795
	int			done;
796
	int			nr_found;
797 798

restart:
799
	done = 0;
800 801
	skipped = 0;
	first_index = 0;
802
	nr_found = 0;
803
	do {
804
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
805
		int		error = 0;
806
		int		i;
807

808
		rcu_read_lock();
809 810 811

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
812 813
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
814 815 816 817 818 819
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

820
		if (!nr_found) {
821
			rcu_read_unlock();
822
			break;
823
		}
824

825
		/*
826 827
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
828
		 */
829 830 831
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

832
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
833 834 835
				batch[i] = NULL;

			/*
836 837 838 839 840 841 842 843 844 845
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
846
			 */
847 848
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
849 850 851
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
852
		}
853 854

		/* unlock now we've grabbed the inodes. */
855
		rcu_read_unlock();
856

857 858 859
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
860 861 862
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
863
			error = execute(batch[i], flags, args);
864
			xfs_irele(batch[i]);
D
Dave Chinner 已提交
865
			if (error == -EAGAIN) {
866 867 868
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
869
			if (error && last_error != -EFSCORRUPTED)
870
				last_error = error;
871
		}
872 873

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
874
		if (error == -EFSCORRUPTED)
875 876
			break;

877 878
		cond_resched();

879
	} while (nr_found && !done);
880 881 882 883 884 885 886 887

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

888 889
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
890
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
891
 */
892
void
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

914 915 916 917 918
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
919
void
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

941
int
942
xfs_inode_ag_iterator_flags(
943
	struct xfs_mount	*mp,
944
	int			(*execute)(struct xfs_inode *ip, int flags,
945 946
					   void *args),
	int			flags,
947 948
	void			*args,
	int			iter_flags)
949
{
950
	struct xfs_perag	*pag;
951 952 953 954
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

955
	ag = 0;
956 957
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
958 959
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
960 961 962
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
963
			if (error == -EFSCORRUPTED)
964 965 966
				break;
		}
	}
E
Eric Sandeen 已提交
967
	return last_error;
968 969
}

970 971 972 973 974 975 976 977 978 979 980
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

981 982 983
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
984
	int			(*execute)(struct xfs_inode *ip, int flags,
985 986 987 988 989 990 991 992 993 994 995 996 997
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
998 999
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
1000
		xfs_perag_put(pag);
1001 1002
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
1003
			if (error == -EFSCORRUPTED)
1004 1005 1006
				break;
		}
	}
E
Eric Sandeen 已提交
1007
	return last_error;
1008 1009
}

D
Dave Chinner 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1019 1020 1021 1022 1023
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1024 1025

	/*
1026 1027 1028
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1029 1030
	 */
	if ((flags & SYNC_TRYLOCK) &&
1031
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1032 1033 1034 1035 1036 1037
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1038 1039 1040 1041 1042
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1043 1044
	 */
	spin_lock(&ip->i_flags_lock);
1045 1046 1047
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1048 1049 1050 1051 1052 1053 1054 1055
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1056
/*
1057 1058
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1059 1060 1061 1062 1063 1064 1065
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1066 1067
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1068 1069
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1070 1071 1072 1073
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1074 1075
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1076
 * the inode is clean.
1077
 *
1078 1079 1080 1081 1082 1083
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1084
 *
1085 1086 1087
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1088
 *	pinned, async	=> requeue
1089
 *	pinned, sync	=> unpin
1090 1091
 *	stale		=> reclaim
 *	clean		=> reclaim
1092
 *	dirty, async	=> requeue
1093
 *	dirty, sync	=> flush, wait and reclaim
1094
 */
1095
STATIC int
1096
xfs_reclaim_inode(
1097 1098
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1099
	int			sync_mode)
1100
{
1101
	struct xfs_buf		*bp = NULL;
1102
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1103
	int			error;
1104

1105 1106
restart:
	error = 0;
1107
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1108 1109 1110 1111 1112
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1113

1114 1115
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1116
		/* xfs_iflush_abort() drops the flush lock */
1117
		xfs_iflush_abort(ip, false);
1118 1119
		goto reclaim;
	}
1120
	if (xfs_ipincount(ip)) {
1121 1122
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1123
		xfs_iunpin_wait(ip);
1124
	}
1125 1126
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1127
		goto reclaim;
1128
	}
1129

1130 1131 1132 1133 1134 1135 1136
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1137 1138 1139
	/*
	 * Now we have an inode that needs flushing.
	 *
1140
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1141
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1142
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1143 1144
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1145 1146 1147 1148
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1149 1150 1151
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1152
	 */
1153
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1154
	if (error == -EAGAIN) {
1155 1156 1157 1158
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1159 1160
	}

1161 1162 1163 1164 1165
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1166
reclaim:
1167 1168
	ASSERT(!xfs_isiflocked(ip));

1169 1170 1171
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1172
	 * We do this as early as possible under the ILOCK so that
1173 1174 1175 1176 1177
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1178 1179 1180 1181 1182 1183
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1184
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185

1186
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1187 1188 1189 1190 1191 1192 1193
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1194
	spin_lock(&pag->pag_ici_lock);
1195
	if (!radix_tree_delete(&pag->pag_ici_root,
1196
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1197
		ASSERT(0);
1198
	xfs_perag_clear_reclaim_tag(pag);
1199
	spin_unlock(&pag->pag_ici_lock);
1200 1201 1202 1203 1204 1205 1206

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1207
	 * unlocked after the lookup before we go ahead and free it.
1208
	 */
1209
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210
	xfs_qm_dqdetach(ip);
1211
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1212

1213
	__xfs_inode_free(ip);
1214
	return error;
1215 1216 1217 1218 1219 1220 1221

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1222
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1223
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1224 1225 1226
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1227 1228
	 */
	return 0;
1229 1230
}

1231 1232 1233 1234 1235 1236
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1237
STATIC int
1238 1239 1240 1241 1242 1243 1244 1245 1246
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1247 1248
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1249

1250
restart:
1251
	ag = 0;
1252
	skipped = 0;
1253 1254 1255
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1256
		int		nr_found = 0;
1257 1258 1259

		ag = pag->pag_agno + 1;

1260 1261 1262
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1263
				xfs_perag_put(pag);
1264 1265 1266 1267 1268 1269
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1270
		do {
D
Dave Chinner 已提交
1271 1272
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1273

1274
			rcu_read_lock();
D
Dave Chinner 已提交
1275 1276 1277 1278
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1279 1280
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1281
				done = 1;
1282
				rcu_read_unlock();
1283 1284 1285 1286
				break;
			}

			/*
D
Dave Chinner 已提交
1287 1288
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1289
			 */
D
Dave Chinner 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1302 1303 1304 1305 1306 1307 1308
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1309
				 */
1310 1311 1312
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1313 1314 1315 1316
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1317

D
Dave Chinner 已提交
1318
			/* unlock now we've grabbed the inodes. */
1319
			rcu_read_unlock();
D
Dave Chinner 已提交
1320 1321 1322 1323 1324

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1325
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1326 1327 1328 1329
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1330

1331 1332
			cond_resched();

D
Dave Chinner 已提交
1333
		} while (nr_found && !done && *nr_to_scan > 0);
1334

1335 1336 1337 1338 1339
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1340 1341
		xfs_perag_put(pag);
	}
1342 1343 1344 1345 1346 1347 1348 1349

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1350
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1351 1352 1353
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1354
	return last_error;
1355 1356
}

1357 1358 1359 1360 1361
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1362 1363 1364
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1365 1366 1367
}

/*
1368
 * Scan a certain number of inodes for reclaim.
1369 1370
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1371
 * progress, while we will throttle the speed of reclaim via doing synchronous
1372 1373 1374
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1375
 */
1376
long
1377 1378 1379
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1380
{
1381
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1382
	xfs_reclaim_work_queue(mp);
1383
	xfs_ail_push_all(mp->m_ail);
1384

1385
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1386
}
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1399

1400 1401
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1402 1403
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1404 1405 1406 1407
	}
	return reclaimable;
}

1408 1409 1410 1411 1412
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1413 1414
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1415
		return 0;
1416

1417 1418
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1419 1420
		return 0;

1421
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1422
	    ip->i_d.di_projid != eofb->eof_prid)
1423 1424 1425
		return 0;

	return 1;
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1446
	    ip->i_d.di_projid == eofb->eof_prid)
1447 1448 1449 1450 1451
		return 1;

	return 0;
}

1452 1453 1454 1455 1456 1457
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1458
	int ret = 0;
1459
	struct xfs_eofblocks *eofb = args;
1460
	int match;
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1477
	if (eofb) {
1478 1479 1480 1481 1482
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1483 1484 1485 1486 1487 1488 1489
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1490

1491 1492 1493 1494
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1495
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1496 1497 1498 1499 1500
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1501
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1502 1503 1504 1505

	return ret;
}

1506 1507
static int
__xfs_icache_free_eofblocks(
1508
	struct xfs_mount	*mp,
1509 1510 1511 1512
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1513
{
1514 1515 1516 1517 1518
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1530 1531
}

1532 1533 1534 1535 1536 1537
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1538 1539 1540 1541 1542
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1543 1544 1545 1546 1547 1548
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1549
	 * Run a sync scan to increase effectiveness and use the union filter to
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1573
		execute(ip->i_mount, &eofb);
1574 1575 1576 1577

	return scan;
}

1578 1579 1580 1581 1582 1583 1584
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1600
static void
1601
__xfs_inode_set_blocks_tag(
1602 1603 1604 1605 1606
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1607 1608 1609 1610 1611
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1612 1613 1614 1615
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1616
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1617 1618
		return;
	spin_lock(&ip->i_flags_lock);
1619
	ip->i_flags |= xfs_iflag_for_tag(tag);
1620 1621
	spin_unlock(&ip->i_flags_lock);

1622 1623 1624
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1625
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1626
	radix_tree_tag_set(&pag->pag_ici_root,
1627
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1628 1629 1630 1631 1632
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1633
				   tag);
1634
		spin_unlock(&ip->i_mount->m_perag_lock);
1635 1636

		/* kick off background trimming */
1637
		execute(ip->i_mount);
1638

1639
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1640 1641 1642 1643 1644 1645 1646
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1647
xfs_inode_set_eofblocks_tag(
1648
	xfs_inode_t	*ip)
1649 1650
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1651
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1652 1653 1654 1655 1656
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1657
__xfs_inode_clear_blocks_tag(
1658 1659 1660 1661
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1662 1663 1664 1665
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1666
	spin_lock(&ip->i_flags_lock);
1667
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1668 1669
	spin_unlock(&ip->i_flags_lock);

1670 1671 1672 1673
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1674 1675
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1676 1677 1678 1679
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1680
				     tag);
1681
		spin_unlock(&ip->i_mount->m_perag_lock);
1682
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1683 1684 1685 1686 1687 1688
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1689 1690 1691 1692 1693
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1694
	return __xfs_inode_clear_blocks_tag(ip,
1695 1696 1697 1698
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1699 1700 1701
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1702
 */
1703 1704
static bool
xfs_prep_free_cowblocks(
1705
	struct xfs_inode	*ip)
1706
{
1707 1708 1709 1710
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
1711
	if (!xfs_inode_has_cow_data(ip)) {
1712 1713
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1714
		return false;
1715 1716 1717 1718 1719 1720
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1721 1722
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1723 1724
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	int			match;
	int			ret = 0;

1752
	if (!xfs_prep_free_cowblocks(ip))
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1770 1771
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1772

1773 1774 1775 1776
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
1777
	if (xfs_prep_free_cowblocks(ip))
1778
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1779

1780 1781
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1806
	trace_xfs_inode_set_cowblocks_tag(ip);
1807
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1808
			trace_xfs_perag_set_cowblocks,
1809 1810 1811 1812 1813 1814 1815
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1816
	trace_xfs_inode_clear_cowblocks_tag(ip);
1817
	return __xfs_inode_clear_blocks_tag(ip,
1818
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1819
}
1820 1821 1822

/* Disable post-EOF and CoW block auto-reclamation. */
void
1823
xfs_stop_block_reaping(
1824 1825 1826 1827 1828 1829 1830 1831
	struct xfs_mount	*mp)
{
	cancel_delayed_work_sync(&mp->m_eofblocks_work);
	cancel_delayed_work_sync(&mp->m_cowblocks_work);
}

/* Enable post-EOF and CoW block auto-reclamation. */
void
1832
xfs_start_block_reaping(
1833 1834 1835 1836 1837
	struct xfs_mount	*mp)
{
	xfs_queue_eofblocks(mp);
	xfs_queue_cowblocks(mp);
}