xfs_icache.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
22
#include "xfs_log_priv.h"
23 24
#include "xfs_inum.h"
#include "xfs_trans.h"
25
#include "xfs_trans_priv.h"
26 27 28 29 30 31 32 33 34 35
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
36
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
37
#include "xfs_trace.h"
38
#include "xfs_fsops.h"
39
#include "xfs_icache.h"
40

41 42 43
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
				struct xfs_perag *pag, struct xfs_inode *ip);

/*
 * Allocate and initialise an xfs_inode.
 */
STATIC struct xfs_inode *
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

	kmem_zone_free(xfs_inode_zone, ip);
}

STATIC void
xfs_inode_free(
	struct xfs_inode	*ip)
{
	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));

	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

		error = -inode_init_always(mp->m_super, inode);
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
			error = EAGAIN;
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
	XFS_STATS_INC(xs_ig_found);

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
		return ENOMEM;

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
		error = EAGAIN;
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
	ip->i_udquot = ip->i_gdquot = NULL;
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
		XFS_STATS_INC(xs_ig_dup);
		error = EAGAIN;
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
		return EINVAL;

	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
		XFS_STATS_INC(xs_ig_missed);

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
		xfs_setup_inode(ip);
	return 0;

out_error_or_again:
	if (error == EAGAIN) {
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

459 460 461 462 463 464 465 466
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

467 468 469 470 471 472
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return EFSCORRUPTED;

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		return ENOENT;

	if (is_bad_inode(inode)) {
		IRELE(ip);
		return ENOENT;
	}

	/* inode is valid */
	return 0;
508 509 510 511

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
	return ENOENT;
512 513
}

514 515 516
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
517
	struct xfs_perag	*pag,
518 519
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
520
	int			flags)
521 522 523 524
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
525
	int			done;
526
	int			nr_found;
527 528

restart:
529
	done = 0;
530 531
	skipped = 0;
	first_index = 0;
532
	nr_found = 0;
533
	do {
534
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
535
		int		error = 0;
536
		int		i;
537

538
		rcu_read_lock();
539
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
540 541
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
542
		if (!nr_found) {
543
			rcu_read_unlock();
544
			break;
545
		}
546

547
		/*
548 549
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
550
		 */
551 552 553 554 555 556 557
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
558 559 560 561 562 563 564 565 566 567
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
568
			 */
569 570
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
571 572 573
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
574
		}
575 576

		/* unlock now we've grabbed the inodes. */
577
		rcu_read_unlock();
578

579 580 581 582 583 584 585 586 587 588 589
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
			error = execute(batch[i], pag, flags);
			IRELE(batch[i]);
			if (error == EAGAIN) {
				skipped++;
				continue;
			}
			if (error && last_error != EFSCORRUPTED)
				last_error = error;
590
		}
591 592

		/* bail out if the filesystem is corrupted.  */
593 594 595
		if (error == EFSCORRUPTED)
			break;

596 597
		cond_resched();

598
	} while (nr_found && !done);
599 600 601 602 603 604 605 606

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

607
int
608 609 610 611
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
612
	int			flags)
613
{
614
	struct xfs_perag	*pag;
615 616 617 618
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

619
	ag = 0;
620 621 622
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags);
D
Dave Chinner 已提交
623
		xfs_perag_put(pag);
624 625 626 627 628 629 630 631 632
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

633 634 635
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
D
Dave Chinner 已提交
636
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
637 638 639 640
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
D
Dave Chinner 已提交
641
xfs_reclaim_work_queue(
642
	struct xfs_mount        *mp)
643 644
{

645 646
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
D
Dave Chinner 已提交
647
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
648
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
649
	}
650 651
	rcu_read_unlock();
}
652

653 654 655 656 657 658 659
/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
D
Dave Chinner 已提交
660
void
661 662 663 664 665 666 667
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
D
Dave Chinner 已提交
668
	xfs_reclaim_work_queue(mp);
669 670
}

D
Dave Chinner 已提交
671
static void
672 673 674 675 676 677 678
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
679 680 681 682 683 684 685 686

	if (!pag->pag_ici_reclaimable) {
		/* propagate the reclaim tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
687 688

		/* schedule periodic background inode reclaim */
D
Dave Chinner 已提交
689
		xfs_reclaim_work_queue(ip->i_mount);
690

691 692 693
		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
694
	pag->pag_ici_reclaimable++;
695 696
}

D
David Chinner 已提交
697 698 699 700 701
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
702 703 704 705
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
706 707
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
708

D
Dave Chinner 已提交
709
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
710
	spin_lock(&pag->pag_ici_lock);
711
	spin_lock(&ip->i_flags_lock);
712
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
713
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
714
	spin_unlock(&ip->i_flags_lock);
715
	spin_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
716
	xfs_perag_put(pag);
717 718
}

719 720
STATIC void
__xfs_inode_clear_reclaim(
721 722 723
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
724
	pag->pag_ici_reclaimable--;
725 726 727 728 729 730 731 732 733 734
	if (!pag->pag_ici_reclaimable) {
		/* clear the reclaim tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
735 736
}

D
Dave Chinner 已提交
737
STATIC void
738 739 740 741 742 743 744 745 746 747
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
	__xfs_inode_clear_reclaim(pag, ip);
}

D
Dave Chinner 已提交
748 749 750 751 752 753 754 755 756
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
757 758 759 760 761
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
762 763

	/*
764 765 766
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
767 768
	 */
	if ((flags & SYNC_TRYLOCK) &&
769
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
770 771 772 773 774 775
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
776 777 778 779 780
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
781 782
	 */
	spin_lock(&ip->i_flags_lock);
783 784 785
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
786 787 788 789 790 791 792 793
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

794
/*
795 796
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
797 798 799 800 801 802 803
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
804 805
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
806 807
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
808 809 810 811
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
812 813
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
814
 * the inode is clean.
815
 *
816 817 818 819 820 821
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
822
 *
823 824 825
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
826
 *	pinned, async	=> requeue
827
 *	pinned, sync	=> unpin
828 829
 *	stale		=> reclaim
 *	clean		=> reclaim
830
 *	dirty, async	=> requeue
831
 *	dirty, sync	=> flush, wait and reclaim
832
 */
833
STATIC int
834
xfs_reclaim_inode(
835 836
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
837
	int			sync_mode)
838
{
839 840
	struct xfs_buf		*bp = NULL;
	int			error;
841

842 843
restart:
	error = 0;
844
	xfs_ilock(ip, XFS_ILOCK_EXCL);
845 846 847 848 849
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
850

851 852 853 854
	if (is_bad_inode(VFS_I(ip)))
		goto reclaim;
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
855
		xfs_iflush_abort(ip, false);
856 857
		goto reclaim;
	}
858
	if (xfs_ipincount(ip)) {
859 860
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
861
		xfs_iunpin_wait(ip);
862
	}
863 864 865 866 867
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

868 869 870 871 872 873 874
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

875 876 877
	/*
	 * Now we have an inode that needs flushing.
	 *
878
	 * Note that xfs_iflush will never block on the inode buffer lock, as
879
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
880
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
881 882
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
883 884 885 886
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
887 888 889
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
890
	 */
891
	error = xfs_iflush(ip, &bp);
892 893 894 895 896
	if (error == EAGAIN) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
897 898
	}

899 900 901 902 903 904
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
905 906
reclaim:
	xfs_ifunlock(ip);
907
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
908 909 910 911 912 913 914 915 916

	XFS_STATS_INC(xs_ig_reclaims);
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
917
	spin_lock(&pag->pag_ici_lock);
918 919 920
	if (!radix_tree_delete(&pag->pag_ici_root,
				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
		ASSERT(0);
921
	__xfs_inode_clear_reclaim(pag, ip);
922
	spin_unlock(&pag->pag_ici_lock);
923 924 925 926 927 928 929

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
930
	 * unlocked after the lookup before we go ahead and free it.
931
	 */
932
	xfs_ilock(ip, XFS_ILOCK_EXCL);
933
	xfs_qm_dqdetach(ip);
934
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
935 936

	xfs_inode_free(ip);
937
	return error;
938 939 940 941 942 943 944 945 946

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
947 948 949
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
950 951
	 */
	return 0;
952 953
}

954 955 956 957 958 959
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
960
STATIC int
961 962 963 964 965 966 967 968 969
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
970 971
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
972

973
restart:
974
	ag = 0;
975
	skipped = 0;
976 977 978
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
979
		int		nr_found = 0;
980 981 982

		ag = pag->pag_agno + 1;

983 984 985
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
986
				xfs_perag_put(pag);
987 988 989 990 991 992
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

993
		do {
D
Dave Chinner 已提交
994 995
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
996

997
			rcu_read_lock();
D
Dave Chinner 已提交
998 999 1000 1001
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1002 1003
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1004
				done = 1;
1005
				rcu_read_unlock();
1006 1007 1008 1009
				break;
			}

			/*
D
Dave Chinner 已提交
1010 1011
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1012
			 */
D
Dave Chinner 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1025 1026 1027 1028 1029 1030 1031
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1032
				 */
1033 1034 1035
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1036 1037 1038 1039
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1040

D
Dave Chinner 已提交
1041
			/* unlock now we've grabbed the inodes. */
1042
			rcu_read_unlock();
D
Dave Chinner 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
				if (error && last_error != EFSCORRUPTED)
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1053

1054 1055
			cond_resched();

D
Dave Chinner 已提交
1056
		} while (nr_found && !done && *nr_to_scan > 0);
1057

1058 1059 1060 1061 1062
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1063 1064
		xfs_perag_put(pag);
	}
1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1073
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1074 1075 1076
		trylock = 0;
		goto restart;
	}
1077 1078 1079
	return XFS_ERROR(last_error);
}

1080 1081 1082 1083 1084
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1085 1086 1087
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1088 1089 1090
}

/*
1091
 * Scan a certain number of inodes for reclaim.
1092 1093
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1094
 * progress, while we will throttle the speed of reclaim via doing synchronous
1095 1096 1097
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1098
 */
1099 1100 1101 1102
void
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1103
{
1104
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1105
	xfs_reclaim_work_queue(mp);
1106
	xfs_ail_push_all(mp->m_ail);
1107

1108 1109
	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
}
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1122

1123 1124
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1125 1126
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1127 1128 1129 1130
	}
	return reclaimable;
}