xfs_icache.c 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39 40
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
41 42 43
/*
 * Allocate and initialise an xfs_inode.
 */
44
struct xfs_inode *
D
Dave Chinner 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
64 65 66
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

67
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
68 69 70 71 72 73 74 75 76 77
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
78 79 80
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
81 82 83
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
84
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
85 86 87 88 89 90 91 92 93 94 95

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
96
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
97 98 99 100 101 102 103 104 105
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
106 107
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
108 109 110 111 112 113 114

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

115 116 117
	kmem_zone_free(xfs_inode_zone, ip);
}

118 119 120 121 122 123 124 125 126 127 128
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

129 130 131 132
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
133 134
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
135 136 137 138 139 140 141 142 143 144 145
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

146
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

265 266 267 268
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
269
 * overwrite the values unconditionally. Hence we save the parameters we
270
 * need to retain across reinitialisation, and rewrite them into the VFS inode
271
 * after reinitialisation even if it fails.
272 273 274 275 276 277 278
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
279
	uint32_t	nlink = inode->i_nlink;
280
	uint32_t	generation = inode->i_generation;
281
	uint64_t	version = inode->i_version;
D
Dave Chinner 已提交
282
	umode_t		mode = inode->i_mode;
283 284 285

	error = inode_init_always(mp->m_super, inode);

286
	set_nlink(inode, nlink);
287
	inode->i_generation = generation;
288
	inode->i_version = version;
D
Dave Chinner 已提交
289
	inode->i_mode = mode;
290 291 292
	return error;
}

D
Dave Chinner 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
318
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
319
		error = -EAGAIN;
D
Dave Chinner 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
336
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
337
		error = -EAGAIN;
D
Dave Chinner 已提交
338 339 340 341 342 343
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
344
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
345
		error = -ENOENT;
D
Dave Chinner 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

367
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
392
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
393 394
		inode->i_state = I_NEW;

395 396
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
397 398 399 400 401 402 403

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
404
			error = -EAGAIN;
D
Dave Chinner 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
418
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
446
		return -ENOMEM;
D
Dave Chinner 已提交
447 448 449 450 451 452 453

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
454
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
455
		error = -ENOENT;
D
Dave Chinner 已提交
456 457 458 459 460 461 462 463 464 465
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
466
		error = -EAGAIN;
D
Dave Chinner 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
491 492
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
493
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
494 495 496 497 498 499 500
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
501
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
502
		error = -EAGAIN;
D
Dave Chinner 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
569
		return -EINVAL;
D
Dave Chinner 已提交
570

571
	XFS_STATS_INC(mp, xs_ig_attempts);
572

D
Dave Chinner 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
588
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
589 590 591 592 593 594 595 596 597 598 599

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
600
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
601 602
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
603
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
604
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
605 606 607
	return 0;

out_error_or_again:
D
Dave Chinner 已提交
608
	if (error == -EAGAIN) {
D
Dave Chinner 已提交
609 610 611 612 613 614 615
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

616 617 618 619 620 621 622 623
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

624 625 626 627 628 629
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

650 651
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
652
		return -EFSCORRUPTED;
653 654 655

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
656
		return -ENOENT;
657 658 659

	/* inode is valid */
	return 0;
660 661 662

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
663
	return -ENOENT;
664 665
}

666 667 668
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
669
	struct xfs_perag	*pag,
670
	int			(*execute)(struct xfs_inode *ip, int flags,
671 672 673 674
					   void *args),
	int			flags,
	void			*args,
	int			tag)
675 676 677 678
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
679
	int			done;
680
	int			nr_found;
681 682

restart:
683
	done = 0;
684 685
	skipped = 0;
	first_index = 0;
686
	nr_found = 0;
687
	do {
688
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
689
		int		error = 0;
690
		int		i;
691

692
		rcu_read_lock();
693 694 695

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
696 697
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
698 699 700 701 702 703
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

704
		if (!nr_found) {
705
			rcu_read_unlock();
706
			break;
707
		}
708

709
		/*
710 711
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
712
		 */
713 714 715 716 717 718 719
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
720 721 722 723 724 725 726 727 728 729
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
730
			 */
731 732
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
733 734 735
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
736
		}
737 738

		/* unlock now we've grabbed the inodes. */
739
		rcu_read_unlock();
740

741 742 743
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
744
			error = execute(batch[i], flags, args);
745
			IRELE(batch[i]);
D
Dave Chinner 已提交
746
			if (error == -EAGAIN) {
747 748 749
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
750
			if (error && last_error != -EFSCORRUPTED)
751
				last_error = error;
752
		}
753 754

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
755
		if (error == -EFSCORRUPTED)
756 757
			break;

758 759
		cond_resched();

760
	} while (nr_found && !done);
761 762 763 764 765 766 767 768

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

769 770
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
771
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
772
 */
773
void
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
STATIC void
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

822
int
823 824
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
825
	int			(*execute)(struct xfs_inode *ip, int flags,
826 827 828
					   void *args),
	int			flags,
	void			*args)
829
{
830
	struct xfs_perag	*pag;
831 832 833 834
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

835
	ag = 0;
836 837
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
838 839 840 841
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
842
			if (error == -EFSCORRUPTED)
843 844 845
				break;
		}
	}
E
Eric Sandeen 已提交
846
	return last_error;
847 848 849 850 851
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
852
	int			(*execute)(struct xfs_inode *ip, int flags,
853 854 855 856 857 858 859 860 861 862 863 864 865 866
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
867
		xfs_perag_put(pag);
868 869
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
870
			if (error == -EFSCORRUPTED)
871 872 873
				break;
		}
	}
E
Eric Sandeen 已提交
874
	return last_error;
875 876
}

D
Dave Chinner 已提交
877 878 879 880 881 882 883 884 885
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
886 887 888 889 890
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
891 892

	/*
893 894 895
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
896 897
	 */
	if ((flags & SYNC_TRYLOCK) &&
898
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
899 900 901 902 903 904
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
905 906 907 908 909
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
910 911
	 */
	spin_lock(&ip->i_flags_lock);
912 913 914
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
915 916 917 918 919 920 921 922
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

923
/*
924 925
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
926 927 928 929 930 931 932
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
933 934
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
935 936
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
937 938 939 940
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
941 942
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
943
 * the inode is clean.
944
 *
945 946 947 948 949 950
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
951
 *
952 953 954
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
955
 *	pinned, async	=> requeue
956
 *	pinned, sync	=> unpin
957 958
 *	stale		=> reclaim
 *	clean		=> reclaim
959
 *	dirty, async	=> requeue
960
 *	dirty, sync	=> flush, wait and reclaim
961
 */
962
STATIC int
963
xfs_reclaim_inode(
964 965
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
966
	int			sync_mode)
967
{
968
	struct xfs_buf		*bp = NULL;
969
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
970
	int			error;
971

972 973
restart:
	error = 0;
974
	xfs_ilock(ip, XFS_ILOCK_EXCL);
975 976 977 978 979
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
980

981 982
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
983
		/* xfs_iflush_abort() drops the flush lock */
984
		xfs_iflush_abort(ip, false);
985 986
		goto reclaim;
	}
987
	if (xfs_ipincount(ip)) {
988 989
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
990
		xfs_iunpin_wait(ip);
991
	}
992 993
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
994
		goto reclaim;
995
	}
996

997 998 999 1000 1001 1002 1003
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1004 1005 1006
	/*
	 * Now we have an inode that needs flushing.
	 *
1007
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1008
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1010 1011
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1012 1013 1014 1015
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1016 1017 1018
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1019
	 */
1020
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1021
	if (error == -EAGAIN) {
1022 1023 1024 1025
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1026 1027
	}

1028 1029 1030 1031 1032
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1033
reclaim:
1034 1035
	ASSERT(!xfs_isiflocked(ip));

1036 1037 1038
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1039 1040 1041 1042 1043 1044
	 * We do this as early as possible under the ILOCK so that
	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
	 * XFS_ILOCK that it will see either a valid, flushable inode that will
	 * serialise correctly, or it will see a clean (and invalid) inode that
	 * it can skip.
1045 1046 1047 1048 1049 1050
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1051
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1052

1053
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1054 1055 1056 1057 1058 1059 1060
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1061
	spin_lock(&pag->pag_ici_lock);
1062
	if (!radix_tree_delete(&pag->pag_ici_root,
1063
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1064
		ASSERT(0);
1065
	xfs_perag_clear_reclaim_tag(pag);
1066
	spin_unlock(&pag->pag_ici_lock);
1067 1068 1069 1070 1071 1072 1073

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1074
	 * unlocked after the lookup before we go ahead and free it.
1075
	 */
1076
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1077
	xfs_qm_dqdetach(ip);
1078
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1079

1080
	__xfs_inode_free(ip);
1081
	return error;
1082 1083 1084 1085 1086 1087 1088

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1089
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1090
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1091 1092 1093
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1094 1095
	 */
	return 0;
1096 1097
}

1098 1099 1100 1101 1102 1103
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1104
STATIC int
1105 1106 1107 1108 1109 1110 1111 1112 1113
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1114 1115
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1116

1117
restart:
1118
	ag = 0;
1119
	skipped = 0;
1120 1121 1122
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1123
		int		nr_found = 0;
1124 1125 1126

		ag = pag->pag_agno + 1;

1127 1128 1129
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1130
				xfs_perag_put(pag);
1131 1132 1133 1134 1135 1136
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1137
		do {
D
Dave Chinner 已提交
1138 1139
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1140

1141
			rcu_read_lock();
D
Dave Chinner 已提交
1142 1143 1144 1145
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1146 1147
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1148
				done = 1;
1149
				rcu_read_unlock();
1150 1151 1152 1153
				break;
			}

			/*
D
Dave Chinner 已提交
1154 1155
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1156
			 */
D
Dave Chinner 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1169 1170 1171 1172 1173 1174 1175
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1176
				 */
1177 1178 1179
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1180 1181 1182 1183
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1184

D
Dave Chinner 已提交
1185
			/* unlock now we've grabbed the inodes. */
1186
			rcu_read_unlock();
D
Dave Chinner 已提交
1187 1188 1189 1190 1191

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1192
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1193 1194 1195 1196
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1197

1198 1199
			cond_resched();

D
Dave Chinner 已提交
1200
		} while (nr_found && !done && *nr_to_scan > 0);
1201

1202 1203 1204 1205 1206
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1207 1208
		xfs_perag_put(pag);
	}
1209 1210 1211 1212 1213 1214 1215 1216

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1217
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1218 1219 1220
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1221
	return last_error;
1222 1223
}

1224 1225 1226 1227 1228
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1229 1230 1231
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1232 1233 1234
}

/*
1235
 * Scan a certain number of inodes for reclaim.
1236 1237
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1238
 * progress, while we will throttle the speed of reclaim via doing synchronous
1239 1240 1241
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1242
 */
1243
long
1244 1245 1246
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1247
{
1248
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1249
	xfs_reclaim_work_queue(mp);
1250
	xfs_ail_push_all(mp->m_ail);
1251

1252
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1253
}
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1266

1267 1268
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1269 1270
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1271 1272 1273 1274
	}
	return reclaimable;
}

1275 1276 1277 1278 1279
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1280 1281
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1282
		return 0;
1283

1284 1285
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1286 1287
		return 0;

1288
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1289 1290 1291 1292
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1293 1294
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1319 1320 1321 1322 1323 1324
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1325
	int ret = 0;
1326
	struct xfs_eofblocks *eofb = args;
1327
	int match;
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1344
	if (eofb) {
1345 1346 1347 1348 1349
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1350 1351 1352 1353 1354 1355 1356
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1357

1358 1359 1360 1361
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1362
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1363 1364 1365 1366 1367
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1368
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1369 1370 1371 1372

	return ret;
}

1373 1374
static int
__xfs_icache_free_eofblocks(
1375
	struct xfs_mount	*mp,
1376 1377 1378 1379
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1380
{
1381 1382 1383 1384 1385
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1397 1398
}

1399 1400 1401 1402 1403 1404
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1405 1406 1407 1408 1409
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1410 1411 1412 1413 1414 1415
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1416
	 * Run a sync scan to increase effectiveness and use the union filter to
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1440
		execute(ip->i_mount, &eofb);
1441 1442 1443 1444

	return scan;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

static void
__xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1459 1460 1461 1462 1463
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
	if (ip->i_flags & XFS_IEOFBLOCKS)
		return;
	spin_lock(&ip->i_flags_lock);
	ip->i_flags |= XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1474 1475 1476
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1477
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1478
	radix_tree_tag_set(&pag->pag_ici_root,
1479
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1480 1481 1482 1483 1484
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1485
				   tag);
1486
		spin_unlock(&ip->i_mount->m_perag_lock);
1487 1488

		/* kick off background trimming */
1489
		execute(ip->i_mount);
1490

1491
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1492 1493 1494 1495 1496 1497 1498
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1499
xfs_inode_set_eofblocks_tag(
1500
	xfs_inode_t	*ip)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	trace_xfs_inode_set_eofblocks_tag(ip);
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
__xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1514 1515 1516 1517
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1518 1519 1520 1521
	spin_lock(&ip->i_flags_lock);
	ip->i_flags &= ~XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1522 1523 1524 1525
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1526 1527
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1528 1529 1530 1531
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1532
				     tag);
1533
		spin_unlock(&ip->i_mount->m_perag_lock);
1534
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1535 1536 1537 1538 1539 1540
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
	return __xfs_inode_clear_eofblocks_tag(ip,
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
	struct xfs_eofblocks *eofb = args;
	int match;
1571
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1572

1573 1574 1575 1576 1577
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1578 1579 1580 1581 1582 1583 1584 1585 1586
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1587 1588
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1608 1609
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1610

1611
	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1612

1613 1614
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1639
	trace_xfs_inode_set_cowblocks_tag(ip);
1640
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1641
			trace_xfs_perag_set_cowblocks,
1642 1643 1644 1645 1646 1647 1648
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1649
	trace_xfs_inode_clear_cowblocks_tag(ip);
1650
	return __xfs_inode_clear_eofblocks_tag(ip,
1651
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1652
}