xfs_icache.c 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36

37 38 39
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
40 41 42 43 44 45
STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
				struct xfs_perag *pag, struct xfs_inode *ip);

/*
 * Allocate and initialise an xfs_inode.
 */
46
struct xfs_inode *
D
Dave Chinner 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
66
	XFS_STATS_INC(vn_active);
D
Dave Chinner 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

	kmem_zone_free(xfs_inode_zone, ip);
}

97
void
D
Dave Chinner 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
xfs_inode_free(
	struct xfs_inode	*ip)
{
	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

129 130 131
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
D
Dave Chinner 已提交
132
	XFS_STATS_DEC(vn_active);
133

D
Dave Chinner 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
D
Dave Chinner 已提交
163
		error = -EAGAIN;
D
Dave Chinner 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
D
Dave Chinner 已提交
181
		error = -EAGAIN;
D
Dave Chinner 已提交
182 183 184 185 186 187 188
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
189
		error = -ENOENT;
D
Dave Chinner 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

D
Dave Chinner 已提交
211
		error = inode_init_always(mp->m_super, inode);
D
Dave Chinner 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
248
			error = -EAGAIN;
D
Dave Chinner 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
	XFS_STATS_INC(xs_ig_found);

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
290
		return -ENOMEM;
D
Dave Chinner 已提交
291 292 293 294 295 296 297 298

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
299
		error = -ENOENT;
D
Dave Chinner 已提交
300 301 302 303 304 305 306 307 308 309
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
310
		error = -EAGAIN;
D
Dave Chinner 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
335 336
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
337
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
338 339 340 341 342 343 344 345
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
		XFS_STATS_INC(xs_ig_dup);
D
Dave Chinner 已提交
346
		error = -EAGAIN;
D
Dave Chinner 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
413
		return -EINVAL;
D
Dave Chinner 已提交
414

415 416
	XFS_STATS_INC(xs_ig_attempts);

D
Dave Chinner 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
		XFS_STATS_INC(xs_ig_missed);

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
444
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
445 446 447
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
448
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
449 450 451
	return 0;

out_error_or_again:
D
Dave Chinner 已提交
452
	if (error == -EAGAIN) {
D
Dave Chinner 已提交
453 454 455 456 457 458 459
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

460 461 462 463 464 465 466 467
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

468 469 470 471 472 473
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

494 495
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
496
		return -EFSCORRUPTED;
497 498 499

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
500
		return -ENOENT;
501 502 503

	/* inode is valid */
	return 0;
504 505 506

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
507
	return -ENOENT;
508 509
}

510 511 512
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
513
	struct xfs_perag	*pag,
514
	int			(*execute)(struct xfs_inode *ip, int flags,
515 516 517 518
					   void *args),
	int			flags,
	void			*args,
	int			tag)
519 520 521 522
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
523
	int			done;
524
	int			nr_found;
525 526

restart:
527
	done = 0;
528 529
	skipped = 0;
	first_index = 0;
530
	nr_found = 0;
531
	do {
532
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
533
		int		error = 0;
534
		int		i;
535

536
		rcu_read_lock();
537 538 539

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
540 541
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
542 543 544 545 546 547
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

548
		if (!nr_found) {
549
			rcu_read_unlock();
550
			break;
551
		}
552

553
		/*
554 555
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
556
		 */
557 558 559 560 561 562 563
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
564 565 566 567 568 569 570 571 572 573
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
574
			 */
575 576
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
577 578 579
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
580
		}
581 582

		/* unlock now we've grabbed the inodes. */
583
		rcu_read_unlock();
584

585 586 587
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
588
			error = execute(batch[i], flags, args);
589
			IRELE(batch[i]);
D
Dave Chinner 已提交
590
			if (error == -EAGAIN) {
591 592 593
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
594
			if (error && last_error != -EFSCORRUPTED)
595
				last_error = error;
596
		}
597 598

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
599
		if (error == -EFSCORRUPTED)
600 601
			break;

602 603
		cond_resched();

604
	} while (nr_found && !done);
605 606 607 608 609 610 611 612

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

613 614
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
615
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
 */
STATIC void
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

639
int
640 641
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
642
	int			(*execute)(struct xfs_inode *ip, int flags,
643 644 645
					   void *args),
	int			flags,
	void			*args)
646
{
647
	struct xfs_perag	*pag;
648 649 650 651
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

652
	ag = 0;
653 654
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
655 656 657 658
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
659
			if (error == -EFSCORRUPTED)
660 661 662
				break;
		}
	}
E
Eric Sandeen 已提交
663
	return last_error;
664 665 666 667 668
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
669
	int			(*execute)(struct xfs_inode *ip, int flags,
670 671 672 673 674 675 676 677 678 679 680 681 682 683
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
684
		xfs_perag_put(pag);
685 686
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
687
			if (error == -EFSCORRUPTED)
688 689 690
				break;
		}
	}
E
Eric Sandeen 已提交
691
	return last_error;
692 693
}

694 695 696
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
D
Dave Chinner 已提交
697
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
698 699 700 701
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
D
Dave Chinner 已提交
702
xfs_reclaim_work_queue(
703
	struct xfs_mount        *mp)
704 705
{

706 707
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
D
Dave Chinner 已提交
708
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
709
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
710
	}
711 712
	rcu_read_unlock();
}
713

714 715 716 717 718 719 720
/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
D
Dave Chinner 已提交
721
void
722 723 724 725 726 727 728
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
D
Dave Chinner 已提交
729
	xfs_reclaim_work_queue(mp);
730 731
}

D
Dave Chinner 已提交
732
static void
733 734 735 736 737 738 739
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
740 741 742 743 744 745 746 747

	if (!pag->pag_ici_reclaimable) {
		/* propagate the reclaim tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
748 749

		/* schedule periodic background inode reclaim */
D
Dave Chinner 已提交
750
		xfs_reclaim_work_queue(ip->i_mount);
751

752 753 754
		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
755
	pag->pag_ici_reclaimable++;
756 757
}

D
David Chinner 已提交
758 759 760 761 762
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
763 764 765 766
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
767 768
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
769

D
Dave Chinner 已提交
770
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
771
	spin_lock(&pag->pag_ici_lock);
772
	spin_lock(&ip->i_flags_lock);
773
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
774
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
775
	spin_unlock(&ip->i_flags_lock);
776
	spin_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
777
	xfs_perag_put(pag);
778 779
}

780 781
STATIC void
__xfs_inode_clear_reclaim(
782 783 784
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
785
	pag->pag_ici_reclaimable--;
786 787 788 789 790 791 792 793 794 795
	if (!pag->pag_ici_reclaimable) {
		/* clear the reclaim tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
796 797
}

D
Dave Chinner 已提交
798
STATIC void
799 800 801 802 803 804 805 806 807 808
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
	__xfs_inode_clear_reclaim(pag, ip);
}

D
Dave Chinner 已提交
809 810 811 812 813 814 815 816 817
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
818 819 820 821 822
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
823 824

	/*
825 826 827
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
828 829
	 */
	if ((flags & SYNC_TRYLOCK) &&
830
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
831 832 833 834 835 836
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
837 838 839 840 841
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
842 843
	 */
	spin_lock(&ip->i_flags_lock);
844 845 846
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
847 848 849 850 851 852 853 854
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

855
/*
856 857
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
858 859 860 861 862 863 864
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
865 866
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
867 868
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
869 870 871 872
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
873 874
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
875
 * the inode is clean.
876
 *
877 878 879 880 881 882
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
883
 *
884 885 886
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
887
 *	pinned, async	=> requeue
888
 *	pinned, sync	=> unpin
889 890
 *	stale		=> reclaim
 *	clean		=> reclaim
891
 *	dirty, async	=> requeue
892
 *	dirty, sync	=> flush, wait and reclaim
893
 */
894
STATIC int
895
xfs_reclaim_inode(
896 897
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
898
	int			sync_mode)
899
{
900 901
	struct xfs_buf		*bp = NULL;
	int			error;
902

903 904
restart:
	error = 0;
905
	xfs_ilock(ip, XFS_ILOCK_EXCL);
906 907 908 909 910
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
911

912 913
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
914
		xfs_iflush_abort(ip, false);
915 916
		goto reclaim;
	}
917
	if (xfs_ipincount(ip)) {
918 919
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
920
		xfs_iunpin_wait(ip);
921
	}
922 923 924 925 926
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

927 928 929 930 931 932 933
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

934 935 936
	/*
	 * Now we have an inode that needs flushing.
	 *
937
	 * Note that xfs_iflush will never block on the inode buffer lock, as
938
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
939
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
940 941
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
942 943 944 945
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
946 947 948
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
949
	 */
950
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
951
	if (error == -EAGAIN) {
952 953 954 955
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
956 957
	}

958 959 960 961 962 963
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
964 965
reclaim:
	xfs_ifunlock(ip);
966
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
967 968 969 970 971 972 973 974 975

	XFS_STATS_INC(xs_ig_reclaims);
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
976
	spin_lock(&pag->pag_ici_lock);
977 978 979
	if (!radix_tree_delete(&pag->pag_ici_root,
				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
		ASSERT(0);
980
	__xfs_inode_clear_reclaim(pag, ip);
981
	spin_unlock(&pag->pag_ici_lock);
982 983 984 985 986 987 988

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
989
	 * unlocked after the lookup before we go ahead and free it.
990
	 */
991
	xfs_ilock(ip, XFS_ILOCK_EXCL);
992
	xfs_qm_dqdetach(ip);
993
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
994 995

	xfs_inode_free(ip);
996
	return error;
997 998 999 1000 1001 1002 1003

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1004
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1005
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1006 1007 1008
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1009 1010
	 */
	return 0;
1011 1012
}

1013 1014 1015 1016 1017 1018
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1019
STATIC int
1020 1021 1022 1023 1024 1025 1026 1027 1028
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1029 1030
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1031

1032
restart:
1033
	ag = 0;
1034
	skipped = 0;
1035 1036 1037
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1038
		int		nr_found = 0;
1039 1040 1041

		ag = pag->pag_agno + 1;

1042 1043 1044
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1045
				xfs_perag_put(pag);
1046 1047 1048 1049 1050 1051
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1052
		do {
D
Dave Chinner 已提交
1053 1054
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1055

1056
			rcu_read_lock();
D
Dave Chinner 已提交
1057 1058 1059 1060
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1061 1062
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1063
				done = 1;
1064
				rcu_read_unlock();
1065 1066 1067 1068
				break;
			}

			/*
D
Dave Chinner 已提交
1069 1070
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1071
			 */
D
Dave Chinner 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1084 1085 1086 1087 1088 1089 1090
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1091
				 */
1092 1093 1094
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1095 1096 1097 1098
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1099

D
Dave Chinner 已提交
1100
			/* unlock now we've grabbed the inodes. */
1101
			rcu_read_unlock();
D
Dave Chinner 已提交
1102 1103 1104 1105 1106

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1107
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1108 1109 1110 1111
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1112

1113 1114
			cond_resched();

D
Dave Chinner 已提交
1115
		} while (nr_found && !done && *nr_to_scan > 0);
1116

1117 1118 1119 1120 1121
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1122 1123
		xfs_perag_put(pag);
	}
1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1132
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1133 1134 1135
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1136
	return last_error;
1137 1138
}

1139 1140 1141 1142 1143
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1144 1145 1146
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1147 1148 1149
}

/*
1150
 * Scan a certain number of inodes for reclaim.
1151 1152
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1153
 * progress, while we will throttle the speed of reclaim via doing synchronous
1154 1155 1156
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1157
 */
1158
long
1159 1160 1161
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1162
{
1163
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1164
	xfs_reclaim_work_queue(mp);
1165
	xfs_ail_push_all(mp->m_ail);
1166

1167
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1168
}
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1181

1182 1183
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1184 1185
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1186 1187 1188 1189
	}
	return reclaimable;
}

1190 1191 1192 1193 1194
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1195 1196
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1197
		return 0;
1198

1199 1200
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1201 1202
		return 0;

1203
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1204 1205 1206 1207
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1234 1235 1236 1237 1238 1239 1240
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
1241
	struct xfs_eofblocks *eofb = args;
1242
	bool need_iolock = true;
1243
	int match;
1244 1245

	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1262
	if (eofb) {
1263 1264 1265 1266 1267
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1268 1269 1270 1271 1272 1273
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
1274 1275 1276 1277 1278 1279 1280 1281

		/*
		 * A scan owner implies we already hold the iolock. Skip it in
		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
		 * the possibility of EAGAIN being returned.
		 */
		if (eofb->eof_scan_owner == ip->i_ino)
			need_iolock = false;
1282
	}
1283

1284
	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1285 1286

	/* don't revisit the inode if we're not waiting */
D
Dave Chinner 已提交
1287
	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1288 1289 1290 1291 1292 1293 1294 1295
		ret = 0;

	return ret;
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
1296
	struct xfs_eofblocks	*eofb)
1297
{
1298 1299 1300 1301 1302
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1303
	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1304
					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1305 1306
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));

	/*
	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
	 * can repeatedly trylock on the inode we're currently processing. We
	 * run a sync scan to increase effectiveness and use the union filter to
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_scan_owner = ip->i_ino;
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);

	return scan;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
void
xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_set_eofblocks_tag(ip);

	tagged = radix_tree_tagged(&pag->pag_ici_root,
				   XFS_ICI_EOFBLOCKS_TAG);
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_EOFBLOCKS_TAG);
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				   XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
1380 1381 1382

		/* kick off background trimming */
		xfs_queue_eofblocks(ip->i_mount);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
					      -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_clear_eofblocks_tag(ip);

	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			     XFS_ICI_EOFBLOCKS_TAG);
	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				     XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
					       -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}