xfs_icache.c 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39
#include <linux/kthread.h>
#include <linux/freezer.h>
J
Jeff Layton 已提交
40
#include <linux/iversion.h>
41

D
Dave Chinner 已提交
42 43 44
/*
 * Allocate and initialise an xfs_inode.
 */
45
struct xfs_inode *
D
Dave Chinner 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
65 66 67
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

68
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
69 70 71 72 73 74 75 76 77
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
78 79 80
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
81 82 83
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
84
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
85 86 87 88 89 90 91 92 93 94 95

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
96
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
97 98 99 100 101 102 103 104 105
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
106 107
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
108 109 110 111 112 113 114

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

115 116 117
	kmem_zone_free(xfs_inode_zone, ip);
}

118 119 120 121 122 123 124 125 126 127 128
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

129 130 131 132
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
133 134
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
135 136 137 138 139 140 141 142 143 144 145
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

146
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

193
	lockdep_assert_held(&pag->pag_ici_lock);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

215
	lockdep_assert_held(&pag->pag_ici_lock);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

265 266 267 268 269 270 271 272
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
273
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
274 275 276 277
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
278
	finish_wait(wq, &wait.wq_entry);
279 280
}

281 282 283 284
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
285
 * overwrite the values unconditionally. Hence we save the parameters we
286
 * need to retain across reinitialisation, and rewrite them into the VFS inode
287
 * after reinitialisation even if it fails.
288 289 290 291 292 293 294
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
295
	uint32_t	nlink = inode->i_nlink;
296
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
297
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
298
	umode_t		mode = inode->i_mode;
299
	dev_t		dev = inode->i_rdev;
300 301 302

	error = inode_init_always(mp->m_super, inode);

303
	set_nlink(inode, nlink);
304
	inode->i_generation = generation;
J
Jeff Layton 已提交
305
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
306
	inode->i_mode = mode;
307
	inode->i_rdev = dev;
308 309 310
	return error;
}

D
Dave Chinner 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
336
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
337
		error = -EAGAIN;
D
Dave Chinner 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
354
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
355
		error = -EAGAIN;
D
Dave Chinner 已提交
356 357 358 359 360 361
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
362
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
363
		error = -ENOENT;
D
Dave Chinner 已提交
364 365 366 367 368 369 370 371 372 373
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

374 375 376 377 378
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
379 380 381 382 383 384 385 386 387 388 389
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

390
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
391
		if (error) {
392
			bool wake;
D
Dave Chinner 已提交
393 394 395 396 397 398
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
399
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
400
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
401 402
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
418
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
419 420
		inode->i_state = I_NEW;

421 422
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
423 424 425 426 427 428 429

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
430
			error = -EAGAIN;
D
Dave Chinner 已提交
431 432 433 434 435 436 437 438 439 440 441 442
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

443 444
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
445
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
473
		return -ENOMEM;
D
Dave Chinner 已提交
474 475 476 477 478

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

479 480 481 482 483
	if (!xfs_inode_verify_forks(ip)) {
		error = -EFSCORRUPTED;
		goto out_destroy;
	}

D
Dave Chinner 已提交
484 485
	trace_xfs_iget_miss(ip);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	/*
	 * If we are allocating a new inode, then check what was returned is
	 * actually a free, empty inode. If we are not allocating an inode,
	 * the check we didn't find a free inode.
	 */
	if (flags & XFS_IGET_CREATE) {
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(mp,
"Corruption detected! Free inode 0x%llx not marked free on disk",
				ino);
			error = -EFSCORRUPTED;
			goto out_destroy;
		}
		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(mp,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ino);
			error = -EFSCORRUPTED;
			goto out_destroy;
		}
	} else if (VFS_I(ip)->i_mode == 0) {
D
Dave Chinner 已提交
508
		error = -ENOENT;
D
Dave Chinner 已提交
509 510 511 512 513 514 515 516 517 518
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
519
		error = -EAGAIN;
D
Dave Chinner 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
544 545
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
546
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
547 548 549 550 551 552 553
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
554
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
555
		error = -EAGAIN;
D
Dave Chinner 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
622
		return -EINVAL;
D
Dave Chinner 已提交
623

624
	XFS_STATS_INC(mp, xs_ig_attempts);
625

D
Dave Chinner 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
641
		if (flags & XFS_IGET_INCORE) {
642
			error = -ENODATA;
643 644
			goto out_error_or_again;
		}
645
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
646 647 648 649 650 651 652 653 654 655 656

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
657
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
658 659
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
660
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
661
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
662 663 664
	return 0;

out_error_or_again:
665
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
666 667 668 669 670 671 672
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
	IRELE(ip);
	return 0;
}

711 712 713 714 715 716 717 718
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

719 720
STATIC int
xfs_inode_ag_walk_grab(
721 722
	struct xfs_inode	*ip,
	int			flags)
723 724
{
	struct inode		*inode = VFS_I(ip);
725
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
743 744
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
745 746 747
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

748 749
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
750
		return -EFSCORRUPTED;
751 752 753

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
754
		return -ENOENT;
755 756 757

	/* inode is valid */
	return 0;
758 759 760

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
761
	return -ENOENT;
762 763
}

764 765 766
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
767
	struct xfs_perag	*pag,
768
	int			(*execute)(struct xfs_inode *ip, int flags,
769 770 771
					   void *args),
	int			flags,
	void			*args,
772 773
	int			tag,
	int			iter_flags)
774 775 776 777
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
778
	int			done;
779
	int			nr_found;
780 781

restart:
782
	done = 0;
783 784
	skipped = 0;
	first_index = 0;
785
	nr_found = 0;
786
	do {
787
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
788
		int		error = 0;
789
		int		i;
790

791
		rcu_read_lock();
792 793 794

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
795 796
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
797 798 799 800 801 802
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

803
		if (!nr_found) {
804
			rcu_read_unlock();
805
			break;
806
		}
807

808
		/*
809 810
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
811
		 */
812 813 814
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

815
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
816 817 818
				batch[i] = NULL;

			/*
819 820 821 822 823 824 825 826 827 828
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
829
			 */
830 831
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
832 833 834
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
835
		}
836 837

		/* unlock now we've grabbed the inodes. */
838
		rcu_read_unlock();
839

840 841 842
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
843 844 845
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
846
			error = execute(batch[i], flags, args);
847
			IRELE(batch[i]);
D
Dave Chinner 已提交
848
			if (error == -EAGAIN) {
849 850 851
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
852
			if (error && last_error != -EFSCORRUPTED)
853
				last_error = error;
854
		}
855 856

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
857
		if (error == -EFSCORRUPTED)
858 859
			break;

860 861
		cond_resched();

862
	} while (nr_found && !done);
863 864 865 866 867 868 869 870

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

871 872
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
873
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
874
 */
875
void
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

897 898 899 900 901
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
902
void
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

924
int
925
xfs_inode_ag_iterator_flags(
926
	struct xfs_mount	*mp,
927
	int			(*execute)(struct xfs_inode *ip, int flags,
928 929
					   void *args),
	int			flags,
930 931
	void			*args,
	int			iter_flags)
932
{
933
	struct xfs_perag	*pag;
934 935 936 937
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

938
	ag = 0;
939 940
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
941 942
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
943 944 945
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
946
			if (error == -EFSCORRUPTED)
947 948 949
				break;
		}
	}
E
Eric Sandeen 已提交
950
	return last_error;
951 952
}

953 954 955 956 957 958 959 960 961 962 963
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

964 965 966
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
967
	int			(*execute)(struct xfs_inode *ip, int flags,
968 969 970 971 972 973 974 975 976 977 978 979 980
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
981 982
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
983
		xfs_perag_put(pag);
984 985
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
986
			if (error == -EFSCORRUPTED)
987 988 989
				break;
		}
	}
E
Eric Sandeen 已提交
990
	return last_error;
991 992
}

D
Dave Chinner 已提交
993 994 995 996 997 998 999 1000 1001
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1002 1003 1004 1005 1006
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1007 1008

	/*
1009 1010 1011
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1012 1013
	 */
	if ((flags & SYNC_TRYLOCK) &&
1014
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1015 1016 1017 1018 1019 1020
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1021 1022 1023 1024 1025
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1026 1027
	 */
	spin_lock(&ip->i_flags_lock);
1028 1029 1030
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1031 1032 1033 1034 1035 1036 1037 1038
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1039
/*
1040 1041
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1042 1043 1044 1045 1046 1047 1048
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1049 1050
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1051 1052
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1053 1054 1055 1056
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1057 1058
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1059
 * the inode is clean.
1060
 *
1061 1062 1063 1064 1065 1066
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1067
 *
1068 1069 1070
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1071
 *	pinned, async	=> requeue
1072
 *	pinned, sync	=> unpin
1073 1074
 *	stale		=> reclaim
 *	clean		=> reclaim
1075
 *	dirty, async	=> requeue
1076
 *	dirty, sync	=> flush, wait and reclaim
1077
 */
1078
STATIC int
1079
xfs_reclaim_inode(
1080 1081
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1082
	int			sync_mode)
1083
{
1084
	struct xfs_buf		*bp = NULL;
1085
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1086
	int			error;
1087

1088 1089
restart:
	error = 0;
1090
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1091 1092 1093 1094 1095
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1096

1097 1098
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1099
		/* xfs_iflush_abort() drops the flush lock */
1100
		xfs_iflush_abort(ip, false);
1101 1102
		goto reclaim;
	}
1103
	if (xfs_ipincount(ip)) {
1104 1105
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1106
		xfs_iunpin_wait(ip);
1107
	}
1108 1109
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1110
		goto reclaim;
1111
	}
1112

1113 1114 1115 1116 1117 1118 1119
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1120 1121 1122
	/*
	 * Now we have an inode that needs flushing.
	 *
1123
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1124
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1125
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1126 1127
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1128 1129 1130 1131
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1132 1133 1134
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1135
	 */
1136
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1137
	if (error == -EAGAIN) {
1138 1139 1140 1141
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1142 1143
	}

1144 1145 1146 1147 1148
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1149
reclaim:
1150 1151
	ASSERT(!xfs_isiflocked(ip));

1152 1153 1154
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1155
	 * We do this as early as possible under the ILOCK so that
1156 1157 1158 1159 1160
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1161 1162 1163 1164 1165 1166
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1167
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1168

1169
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1170 1171 1172 1173 1174 1175 1176
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1177
	spin_lock(&pag->pag_ici_lock);
1178
	if (!radix_tree_delete(&pag->pag_ici_root,
1179
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1180
		ASSERT(0);
1181
	xfs_perag_clear_reclaim_tag(pag);
1182
	spin_unlock(&pag->pag_ici_lock);
1183 1184 1185 1186 1187 1188 1189

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1190
	 * unlocked after the lookup before we go ahead and free it.
1191
	 */
1192
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1193
	xfs_qm_dqdetach(ip);
1194
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1195

1196
	__xfs_inode_free(ip);
1197
	return error;
1198 1199 1200 1201 1202 1203 1204

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1205
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1206
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1207 1208 1209
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1210 1211
	 */
	return 0;
1212 1213
}

1214 1215 1216 1217 1218 1219
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1220
STATIC int
1221 1222 1223 1224 1225 1226 1227 1228 1229
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1230 1231
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1232

1233
restart:
1234
	ag = 0;
1235
	skipped = 0;
1236 1237 1238
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1239
		int		nr_found = 0;
1240 1241 1242

		ag = pag->pag_agno + 1;

1243 1244 1245
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1246
				xfs_perag_put(pag);
1247 1248 1249 1250 1251 1252
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1253
		do {
D
Dave Chinner 已提交
1254 1255
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1256

1257
			rcu_read_lock();
D
Dave Chinner 已提交
1258 1259 1260 1261
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1262 1263
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1264
				done = 1;
1265
				rcu_read_unlock();
1266 1267 1268 1269
				break;
			}

			/*
D
Dave Chinner 已提交
1270 1271
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1272
			 */
D
Dave Chinner 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1285 1286 1287 1288 1289 1290 1291
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1292
				 */
1293 1294 1295
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1296 1297 1298 1299
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1300

D
Dave Chinner 已提交
1301
			/* unlock now we've grabbed the inodes. */
1302
			rcu_read_unlock();
D
Dave Chinner 已提交
1303 1304 1305 1306 1307

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1308
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1309 1310 1311 1312
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1313

1314 1315
			cond_resched();

D
Dave Chinner 已提交
1316
		} while (nr_found && !done && *nr_to_scan > 0);
1317

1318 1319 1320 1321 1322
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1323 1324
		xfs_perag_put(pag);
	}
1325 1326 1327 1328 1329 1330 1331 1332

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1333
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1334 1335 1336
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1337
	return last_error;
1338 1339
}

1340 1341 1342 1343 1344
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1345 1346 1347
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1348 1349 1350
}

/*
1351
 * Scan a certain number of inodes for reclaim.
1352 1353
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1354
 * progress, while we will throttle the speed of reclaim via doing synchronous
1355 1356 1357
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1358
 */
1359
long
1360 1361 1362
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1363
{
1364
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1365
	xfs_reclaim_work_queue(mp);
1366
	xfs_ail_push_all(mp->m_ail);
1367

1368
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1369
}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1382

1383 1384
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1385 1386
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1387 1388 1389 1390
	}
	return reclaimable;
}

1391 1392 1393 1394 1395
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1396 1397
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1398
		return 0;
1399

1400 1401
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1402 1403
		return 0;

1404
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1405 1406 1407 1408
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1435 1436 1437 1438 1439 1440
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1441
	int ret = 0;
1442
	struct xfs_eofblocks *eofb = args;
1443
	int match;
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1460
	if (eofb) {
1461 1462 1463 1464 1465
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1466 1467 1468 1469 1470 1471 1472
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1473

1474 1475 1476 1477
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1478
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1479 1480 1481 1482 1483
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1484
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1485 1486 1487 1488

	return ret;
}

1489 1490
static int
__xfs_icache_free_eofblocks(
1491
	struct xfs_mount	*mp,
1492 1493 1494 1495
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1496
{
1497 1498 1499 1500 1501
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1513 1514
}

1515 1516 1517 1518 1519 1520
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1521 1522 1523 1524 1525
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1526 1527 1528 1529 1530 1531
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1532
	 * Run a sync scan to increase effectiveness and use the union filter to
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1556
		execute(ip->i_mount, &eofb);
1557 1558 1559 1560

	return scan;
}

1561 1562 1563 1564 1565 1566 1567
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1583
static void
1584
__xfs_inode_set_blocks_tag(
1585 1586 1587 1588 1589
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1590 1591 1592 1593 1594
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1595 1596 1597 1598
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1599
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1600 1601
		return;
	spin_lock(&ip->i_flags_lock);
1602
	ip->i_flags |= xfs_iflag_for_tag(tag);
1603 1604
	spin_unlock(&ip->i_flags_lock);

1605 1606 1607
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1608
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1609
	radix_tree_tag_set(&pag->pag_ici_root,
1610
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1611 1612 1613 1614 1615
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1616
				   tag);
1617
		spin_unlock(&ip->i_mount->m_perag_lock);
1618 1619

		/* kick off background trimming */
1620
		execute(ip->i_mount);
1621

1622
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1623 1624 1625 1626 1627 1628 1629
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1630
xfs_inode_set_eofblocks_tag(
1631
	xfs_inode_t	*ip)
1632 1633
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1634
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1635 1636 1637 1638 1639
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1640
__xfs_inode_clear_blocks_tag(
1641 1642 1643 1644
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1645 1646 1647 1648
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1649
	spin_lock(&ip->i_flags_lock);
1650
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1651 1652
	spin_unlock(&ip->i_flags_lock);

1653 1654 1655 1656
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1657 1658
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1659 1660 1661 1662
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1663
				     tag);
1664
		spin_unlock(&ip->i_mount->m_perag_lock);
1665
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1666 1667 1668 1669 1670 1671
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1672 1673 1674 1675 1676
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1677
	return __xfs_inode_clear_blocks_tag(ip,
1678 1679 1680 1681
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1682 1683 1684
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1685
 */
1686 1687
static bool
xfs_prep_free_cowblocks(
1688
	struct xfs_inode	*ip,
1689
	struct xfs_ifork	*ifp)
1690
{
1691 1692 1693 1694 1695
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1696 1697
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1698
		return false;
1699 1700 1701 1702 1703 1704
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1705 1706
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1707 1708
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	int			match;
	int			ret = 0;

	if (!xfs_prep_free_cowblocks(ip, ifp))
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1755 1756
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1757

1758 1759 1760 1761 1762 1763
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
	if (xfs_prep_free_cowblocks(ip, ifp))
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1764

1765 1766
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1791
	trace_xfs_inode_set_cowblocks_tag(ip);
1792
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1793
			trace_xfs_perag_set_cowblocks,
1794 1795 1796 1797 1798 1799 1800
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1801
	trace_xfs_inode_clear_cowblocks_tag(ip);
1802
	return __xfs_inode_clear_blocks_tag(ip,
1803
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1804
}