intel_lrc.c 56.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32

206 207 208
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

209 210 211 212 213 214
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
215
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 217 218
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
219 220
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
221 222
	WARN_ON(i915.enable_ppgtt == -1);

223 224 225
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

226 227 228
	if (enable_execlists == 0)
		return 0;

229 230
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
231 232 233 234
		return 1;

	return 0;
}
235

236 237 238 239 240 241 242 243 244 245 246 247
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
248 249 250 251 252 253 254 255 256 257 258 259 260
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
{
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261 262

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
	desc |= GEN8_CTX_L3LLC_COHERENT;
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
282 283
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
		temp = execlists_ctx_descriptor(ctx_obj1);
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

	temp = execlists_ctx_descriptor(ctx_obj0);
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

299
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
300 301 302
	I915_WRITE(RING_ELSP(ring), desc[1]);
	I915_WRITE(RING_ELSP(ring), desc[0]);
	I915_WRITE(RING_ELSP(ring), desc[3]);
303

304 305 306 307 308
	/* The context is automatically loaded after the following */
	I915_WRITE(RING_ELSP(ring), desc[2]);

	/* ELSP is a wo register, so use another nearby reg for posting instead */
	POSTING_READ(RING_EXECLIST_STATUS(ring));
309
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
310 311
}

312 313 314
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
				    u32 tail)
315 316 317 318 319 320 321 322
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
323
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
324 325 326 327 328 329

	kunmap_atomic(reg_state);

	return 0;
}

330 331 332
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
333
{
334 335
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
336
	struct drm_i915_gem_object *ctx_obj1 = NULL;
337
	struct intel_ringbuffer *ringbuf1 = NULL;
338 339

	BUG_ON(!ctx_obj0);
340
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
341
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
342

343
	execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
344

345
	if (to1) {
346
		ringbuf1 = to1->engine[ring->id].ringbuf;
347 348
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
349
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
350
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
351

352
		execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
353 354 355 356 357
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

358 359
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
360 361
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
362 363

	assert_spin_locked(&ring->execlist_lock);
364 365 366 367 368 369 370 371 372

	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
373
		} else if (req0->ctx == cursor->ctx) {
374 375
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
376
			cursor->elsp_submitted = req0->elsp_submitted;
377
			list_del(&req0->execlist_link);
378 379
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
380 381 382 383 384 385 386
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

387 388
	WARN_ON(req1 && req1->elsp_submitted);

389 390 391
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
392 393 394 395

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
396 397
}

398 399 400
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
401
	struct drm_i915_gem_request *head_req;
402 403 404 405

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
406
					    struct drm_i915_gem_request,
407 408 409 410
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
411
				head_req->ctx->engine[ring->id].state;
412
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
413 414 415 416 417
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
418 419
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
420 421
				return true;
			}
422 423 424 425 426 427
		}
	}

	return false;
}

428
/**
429
 * intel_lrc_irq_handler() - handle Context Switch interrupts
430 431 432 433 434
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
435
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

461 462 463 464 465 466 467 468 469 470
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

488 489
static int execlists_context_queue(struct intel_engine_cs *ring,
				   struct intel_context *to,
490 491
				   u32 tail,
				   struct drm_i915_gem_request *request)
492
{
493
	struct drm_i915_gem_request *cursor;
494
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
495
	unsigned long flags;
496
	int num_elements = 0;
497

498 499 500
	if (to != ring->default_context)
		intel_lr_context_pin(ring, to);

501 502 503 504 505 506 507 508 509 510
	if (!request) {
		/*
		 * If there isn't a request associated with this submission,
		 * create one as a temporary holder.
		 */
		WARN(1, "execlist context submission without request");
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
		request->ring = ring;
511
		request->ctx = to;
512 513
	} else {
		WARN_ON(to != request->ctx);
514
	}
515
	request->tail = tail;
516
	i915_gem_request_reference(request);
517
	i915_gem_context_reference(request->ctx);
518

519
	intel_runtime_pm_get(dev_priv);
520 521 522

	spin_lock_irqsave(&ring->execlist_lock, flags);

523 524 525 526 527
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
528
		struct drm_i915_gem_request *tail_req;
529 530

		tail_req = list_last_entry(&ring->execlist_queue,
531
					   struct drm_i915_gem_request,
532 533
					   execlist_link);

534
		if (to == tail_req->ctx) {
535
			WARN(tail_req->elsp_submitted != 0,
536
				"More than 2 already-submitted reqs queued\n");
537
			list_del(&tail_req->execlist_link);
538 539
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
540 541 542
		}
	}

543
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
544
	if (num_elements == 0)
545 546 547 548 549 550 551
		execlists_context_unqueue(ring);

	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	return 0;
}

552 553
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
					      struct intel_context *ctx)
554 555 556 557 558 559 560 561 562
{
	struct intel_engine_cs *ring = ringbuf->ring;
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

563 564
	ret = ring->emit_flush(ringbuf, ctx,
			       I915_GEM_GPU_DOMAINS, flush_domains);
565 566 567 568 569 570 571 572
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
573
				 struct intel_context *ctx,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
				 struct list_head *vmas)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

		ret = i915_gem_object_sync(obj, ring);
		if (ret)
			return ret;

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
601
	return logical_ring_invalidate_all_caches(ringbuf, ctx);
602 603
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
 * @flags: translated execbuffer call flags.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
621 622 623 624 625 626 627 628
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
			       struct intel_engine_cs *ring,
			       struct intel_context *ctx,
			       struct drm_i915_gem_execbuffer2 *args,
			       struct list_head *vmas,
			       struct drm_i915_gem_object *batch_obj,
			       u64 exec_start, u32 flags)
{
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

681
	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
682 683 684 685 686
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
687
		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
688 689 690 691 692 693 694 695 696 697 698 699
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

700
	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, flags);
701 702 703 704 705 706
	if (ret)
		return ret;

	i915_gem_execbuffer_move_to_active(vmas, ring);
	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);

707 708 709
	return 0;
}

710 711
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
712
	struct drm_i915_gem_request *req, *tmp;
713 714 715 716 717 718 719 720 721 722 723 724 725 726
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	unsigned long flags;
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
	spin_lock_irqsave(&ring->execlist_lock, flags);
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
727
		struct intel_context *ctx = req->ctx;
728 729 730 731 732
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
733
		intel_runtime_pm_put(dev_priv);
734
		i915_gem_context_unreference(ctx);
735
		i915_gem_request_unreference(req);
736 737 738 739
		list_del(&req->execlist_link);
	}
}

740 741
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
760 761
}

762 763
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
				  struct intel_context *ctx)
764 765 766 767 768 769 770
{
	struct intel_engine_cs *ring = ringbuf->ring;
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

771
	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
772 773 774 775 776 777 778
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

779 780 781 782 783 784 785 786 787
/**
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 * @ringbuf: Logical Ringbuffer to advance.
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
788
void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
789
					   struct intel_context *ctx,
790
					   struct drm_i915_gem_request *request)
791
{
792 793
	struct intel_engine_cs *ring = ringbuf->ring;

794 795
	intel_logical_ring_advance(ringbuf);

796
	if (intel_ring_stopped(ring))
797 798
		return;

799
	execlists_context_queue(ring, ctx, ringbuf->tail, request);
800 801
}

802 803 804 805
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
806
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
807 808 809 810 811 812 813
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (ctx->engine[ring->id].unpin_count++ == 0) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
814 815 816 817 818
			goto reset_unpin_count;

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
819 820
	}

821 822 823 824 825 826 827
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
reset_unpin_count:
	ctx->engine[ring->id].unpin_count = 0;

828 829 830 831 832 833 834
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
835
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
836 837 838

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
839 840
		if (--ctx->engine[ring->id].unpin_count == 0) {
			intel_unpin_ringbuffer_obj(ringbuf);
841
			i915_gem_object_ggtt_unpin(ctx_obj);
842
		}
843 844 845
	}
}

846 847
static int logical_ring_alloc_request(struct intel_engine_cs *ring,
				      struct intel_context *ctx)
848
{
849
	struct drm_i915_gem_request *request;
850
	struct drm_i915_private *dev_private = ring->dev->dev_private;
851 852
	int ret;

853
	if (ring->outstanding_lazy_request)
854
		return 0;
855

856
	request = kzalloc(sizeof(*request), GFP_KERNEL);
857 858
	if (request == NULL)
		return -ENOMEM;
859

860 861 862 863 864
	if (ctx != ring->default_context) {
		ret = intel_lr_context_pin(ring, ctx);
		if (ret) {
			kfree(request);
			return ret;
865
		}
866
	}
867

868
	kref_init(&request->ref);
869
	request->ring = ring;
870
	request->uniq = dev_private->request_uniq++;
871

872
	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
873 874 875 876
	if (ret) {
		intel_lr_context_unpin(ring, ctx);
		kfree(request);
		return ret;
877 878
	}

879 880 881 882 883 884 885
	/* Hold a reference to the context this request belongs to
	 * (we will need it when the time comes to emit/retire the
	 * request).
	 */
	request->ctx = ctx;
	i915_gem_context_reference(request->ctx);

886
	ring->outstanding_lazy_request = request;
887
	return 0;
888 889 890 891 892 893 894 895 896
}

static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
				     int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
	int ret;

897 898
	if (intel_ring_space(ringbuf) >= bytes)
		return 0;
899 900

	list_for_each_entry(request, &ring->request_list, list) {
901 902 903 904 905 906 907 908 909 910
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
		struct intel_context *ctx = request->ctx;
		if (ctx->engine[ring->id].ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
911 912 913 914 915 916
		if (__intel_ring_space(request->tail, ringbuf->tail,
				       ringbuf->size) >= bytes) {
			break;
		}
	}

917
	if (&request->list == &ring->request_list)
918 919
		return -ENOSPC;

920
	ret = i915_wait_request(request);
921 922 923 924 925
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

926
	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
927 928 929
}

static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
930
				       struct intel_context *ctx,
931 932 933 934 935 936 937 938 939 940 941 942 943
				       int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long end;
	int ret;

	ret = logical_ring_wait_request(ringbuf, bytes);
	if (ret != -ENOSPC)
		return ret;

	/* Force the context submission in case we have been skipping it */
944
	intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
945 946 947 948 949 950 951 952

	/* With GEM the hangcheck timer should kick us out of the loop,
	 * leaving it early runs the risk of corrupting GEM state (due
	 * to running on almost untested codepaths). But on resume
	 * timers don't work yet, so prevent a complete hang in that
	 * case by choosing an insanely large timeout. */
	end = jiffies + 60 * HZ;

953
	ret = 0;
954
	do {
955
		if (intel_ring_space(ringbuf) >= bytes)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
			break;

		msleep(1);

		if (dev_priv->mm.interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
					   dev_priv->mm.interruptible);
		if (ret)
			break;

		if (time_after(jiffies, end)) {
			ret = -EBUSY;
			break;
		}
	} while (1);

	return ret;
}

979 980
static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx)
981 982 983 984 985
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	if (ringbuf->space < rem) {
986
		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
987 988 989 990 991 992 993 994 995 996 997

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
998
	intel_ring_update_space(ringbuf);
999 1000 1001 1002

	return 0;
}

1003 1004
static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
				struct intel_context *ctx, int bytes)
1005 1006 1007 1008
{
	int ret;

	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1009
		ret = logical_ring_wrap_buffer(ringbuf, ctx);
1010 1011 1012 1013 1014
		if (unlikely(ret))
			return ret;
	}

	if (unlikely(ringbuf->space < bytes)) {
1015
		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1016 1017 1018 1019 1020 1021 1022
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
 * @ringbuf: Logical ringbuffer.
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
1036 1037
int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
			     struct intel_context *ctx, int num_dwords)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

1049
	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1050 1051 1052 1053
	if (ret)
		return ret;

	/* Preallocate the olr before touching the ring */
1054
	ret = logical_ring_alloc_request(ring, ctx);
1055 1056 1057 1058 1059 1060 1061
	if (ret)
		return ret;

	ringbuf->space -= num_dwords * sizeof(uint32_t);
	return 0;
}

1062 1063 1064 1065 1066 1067 1068 1069 1070
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
					       struct intel_context *ctx)
{
	int ret, i;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1071
	if (WARN_ON_ONCE(w->count == 0))
1072 1073 1074
		return 0;

	ring->gpu_caches_dirty = true;
1075
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1076 1077 1078
	if (ret)
		return ret;

1079
	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1093
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1094 1095 1096 1097 1098 1099
	if (ret)
		return ret;

	return 0;
}

1100 1101 1102 1103 1104
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1105 1106 1107
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1108 1109 1110 1111
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1112
	ring->next_context_status_buffer = 0;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1140
	return init_workarounds_ring(ring);
1141 1142
}

1143
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1144
			      struct intel_context *ctx,
1145 1146 1147 1148 1149
			      u64 offset, unsigned flags)
{
	bool ppgtt = !(flags & I915_DISPATCH_SECURE);
	int ret;

1150
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1164 1165 1166 1167 1168 1169
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1170
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1197
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1198
			   struct intel_context *ctx,
1199 1200 1201 1202 1203 1204 1205 1206 1207
			   u32 invalidate_domains,
			   u32 unused)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1208
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

	if (ring == &dev_priv->ring[VCS]) {
		if (invalidate_domains & I915_GEM_GPU_DOMAINS)
			cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
				MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	} else {
		if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
			cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
				MI_FLUSH_DW_OP_STOREDW;
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1237
				  struct intel_context *ctx,
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
				  u32 invalidate_domains,
				  u32 flush_domains)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1264
	ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1289 1290
static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
			     struct drm_i915_gem_request *request)
1291 1292 1293 1294 1295
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1296
	ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1297 1298 1299
	if (ret)
		return ret;

1300
	cmd = MI_STORE_DWORD_IMM_GEN4;
1301 1302 1303 1304 1305 1306 1307
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1308 1309
	intel_logical_ring_emit(ringbuf,
		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1310 1311
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1312
	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1313 1314 1315 1316

	return 0;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
		       struct intel_context *ctx)
{
	int ret;

	ret = intel_logical_ring_workarounds_emit(ring, ctx);
	if (ret)
		return ret;

	return intel_lr_context_render_state_init(ring, ctx);
}

1329 1330 1331 1332 1333 1334
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1335 1336
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1337
	struct drm_i915_private *dev_priv;
1338

1339 1340 1341
	if (!intel_ring_initialized(ring))
		return;

1342 1343
	dev_priv = ring->dev->dev_private;

1344 1345
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1346
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1357 1358 1359 1360
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	init_waitqueue_head(&ring->irq_queue);

1371
	INIT_LIST_HEAD(&ring->execlist_queue);
1372
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1373 1374
	spin_lock_init(&ring->execlist_lock);

1375 1376 1377 1378
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1379 1380 1381
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1382 1383 1384 1385 1386 1387
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1388
	int ret;
1389 1390 1391 1392 1393 1394

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1395 1396 1397 1398
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1399

1400
	ring->init_hw = gen8_init_render_ring;
1401
	ring->init_context = gen8_init_rcs_context;
1402
	ring->cleanup = intel_fini_pipe_control;
1403 1404
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1405
	ring->emit_request = gen8_emit_request;
1406
	ring->emit_flush = gen8_emit_flush_render;
1407 1408
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1409
	ring->emit_bb_start = gen8_emit_bb_start;
1410

1411 1412 1413 1414 1415 1416
	ring->dev = dev;
	ret = logical_ring_init(dev, ring);
	if (ret)
		return ret;

	return intel_init_pipe_control(ring);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1429 1430
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1431

1432
	ring->init_hw = gen8_init_common_ring;
1433 1434
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1435
	ring->emit_request = gen8_emit_request;
1436
	ring->emit_flush = gen8_emit_flush;
1437 1438
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1439
	ring->emit_bb_start = gen8_emit_bb_start;
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1454 1455
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1456

1457
	ring->init_hw = gen8_init_common_ring;
1458 1459
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1460
	ring->emit_request = gen8_emit_request;
1461
	ring->emit_flush = gen8_emit_flush;
1462 1463
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1464
	ring->emit_bb_start = gen8_emit_bb_start;
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1479 1480
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1481

1482
	ring->init_hw = gen8_init_common_ring;
1483 1484
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1485
	ring->emit_request = gen8_emit_request;
1486
	ring->emit_flush = gen8_emit_flush;
1487 1488
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1489
	ring->emit_bb_start = gen8_emit_bb_start;
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1504 1505
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1506

1507
	ring->init_hw = gen8_init_common_ring;
1508 1509
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1510
	ring->emit_request = gen8_emit_request;
1511
	ring->emit_flush = gen8_emit_flush;
1512 1513
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1514
	ring->emit_bb_start = gen8_emit_bb_start;
1515

1516 1517 1518
	return logical_ring_init(dev, ring);
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
				       struct intel_context *ctx)
{
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct render_state so;
	struct drm_i915_file_private *file_priv = ctx->file_priv;
	struct drm_file *file = file_priv ? file_priv->file : NULL;
	int ret;

	ret = i915_gem_render_state_prepare(ring, &so);
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

	ret = ring->emit_bb_start(ringbuf,
1599
			ctx,
1600 1601 1602 1603 1604 1605 1606
			so.ggtt_offset,
			I915_DISPATCH_SECURE);
	if (ret)
		goto out;

	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);

1607
	ret = __i915_add_request(ring, file, so.obj);
1608 1609 1610 1611 1612 1613 1614
	/* intel_logical_ring_add_request moves object to inactive if it
	 * fails */
out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1615 1616 1617 1618
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1619 1620
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1621
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1622 1623 1624 1625
	struct page *page;
	uint32_t *reg_state;
	int ret;

1626 1627 1628
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
			_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1666 1667 1668
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		/* TODO: according to BSpec, the register state context
		 * for CHV does not have these. OTOH, these registers do
		 * exist in CHV. I'm waiting for a clarification */
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
		reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

1730 1731 1732 1733 1734 1735 1736 1737
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
1738 1739
void intel_lr_context_free(struct intel_context *ctx)
{
1740 1741 1742 1743
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1744

1745
		if (ctx_obj) {
1746 1747 1748 1749
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

1750 1751 1752 1753
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
1754
			WARN_ON(ctx->engine[ring->id].unpin_count);
1755 1756
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
1757 1758 1759 1760 1761 1762 1763 1764 1765
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

1766
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1767 1768 1769

	switch (ring->id) {
	case RCS:
1770 1771 1772 1773
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1784 1785
}

1786
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
1814
 * Return: non-zero on error.
1815
 */
1816 1817 1818
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
1819
	const bool is_global_default_ctx = (ctx == ring->default_context);
1820 1821 1822
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
1823
	struct intel_ringbuffer *ringbuf;
1824 1825
	int ret;

1826
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1827
	WARN_ON(ctx->engine[ring->id].state);
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837
	context_size = round_up(get_lr_context_size(ring), 4096);

	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
	if (IS_ERR(ctx_obj)) {
		ret = PTR_ERR(ctx_obj);
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
		return ret;
	}

1838 1839 1840 1841 1842 1843 1844 1845
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
1846 1847
	}

1848 1849 1850 1851 1852
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
1853
		goto error_unpin_ctx;
1854 1855
	}

1856
	ringbuf->ring = ring;
1857

1858 1859 1860 1861 1862
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
1863
	intel_ring_update_space(ringbuf);
1864

1865 1866 1867 1868 1869
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
1870
				ring->name, ret);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

1884 1885 1886 1887 1888 1889
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
1890 1891 1892
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
1893
	ctx->engine[ring->id].state = ctx_obj;
1894

1895 1896
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
1897
	else if (ring->id == RCS && !ctx->rcs_initialized) {
1898 1899
		if (ring->init_context) {
			ret = ring->init_context(ring, ctx);
1900
			if (ret) {
1901
				DRM_ERROR("ring init context: %d\n", ret);
1902 1903 1904 1905
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
1906 1907
		}

1908 1909 1910
		ctx->rcs_initialized = true;
	}

1911
	return 0;
1912 1913

error:
1914 1915 1916 1917 1918
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
1919
	kfree(ringbuf);
1920
error_unpin_ctx:
1921 1922
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
1923 1924
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
1925
}