arm.c 37.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
50
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
51

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
116
	if (ret)
117
		return ret;
118

119
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
120 121 122
	if (ret)
		goto out_free_stage2_pgd;

123
	kvm_vgic_early_init(kvm);
124

125
	/* The maximum number of VCPUs is limited by the host's GIC model */
126
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
127

128 129
	return ret;
out_free_stage2_pgd:
130
	kvm_free_stage2_pgd(&kvm->arch.mmu);
131
	return ret;
132 133
}

134
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
135 136 137 138 139
{
	return VM_FAULT_SIGBUS;
}


140 141 142 143
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
144 145 146 147
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

148 149
	kvm_vgic_destroy(kvm);

150 151
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
152
			kvm_vcpu_destroy(kvm->vcpus[i]);
153 154 155
			kvm->vcpus[i] = NULL;
		}
	}
156
	atomic_set(&kvm->online_vcpus, 0);
157 158
}

159
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
160 161 162
{
	int r;
	switch (ext) {
163
	case KVM_CAP_IRQCHIP:
164 165
		r = vgic_present;
		break;
166
	case KVM_CAP_IOEVENTFD:
167
	case KVM_CAP_DEVICE_CTRL:
168 169 170 171
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
172
	case KVM_CAP_ARM_PSCI:
173
	case KVM_CAP_ARM_PSCI_0_2:
174
	case KVM_CAP_READONLY_MEM:
175
	case KVM_CAP_MP_STATE:
176
	case KVM_CAP_IMMEDIATE_EXIT:
177
	case KVM_CAP_VCPU_EVENTS:
178
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
179
	case KVM_CAP_ARM_NISV_TO_USER:
180
	case KVM_CAP_ARM_INJECT_EXT_DABT:
181 182
		r = 1;
		break;
183 184
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
185
		break;
186 187 188 189
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
190
	case KVM_CAP_MAX_VCPU_ID:
191 192 193 194
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
195
		break;
V
Vladimir Murzin 已提交
196 197 198 199 200 201
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
202 203 204 205 206 207 208
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
209
	default:
210
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
211 212 213 214 215 216 217 218 219 220 221
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
237

238 239 240 241 242 243 244 245 246 247 248
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

249
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
250
{
251 252 253 254 255 256
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

257 258
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

259 260 261 262 263 264 265 266 267
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

268 269
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

270 271 272 273
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

274
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
275 276
}

277
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
278 279 280
{
}

281
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
282
{
283 284 285
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

286
	kvm_mmu_free_memory_caches(vcpu);
287
	kvm_timer_vcpu_terminate(vcpu);
288
	kvm_pmu_vcpu_destroy(vcpu);
289 290

	kvm_arm_vcpu_destroy(vcpu);
291 292 293 294
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
295
	return kvm_timer_is_pending(vcpu);
296 297
}

298 299
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
300 301 302
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
303
	 * so that we have the latest PMR and group enables. This ensures
304 305
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
306 307 308
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
309 310 311
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
312
	vgic_v4_put(vcpu, true);
313
	preempt_enable();
314 315 316 317
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
318 319 320
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
321 322
}

323 324
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
325
	struct kvm_s2_mmu *mmu;
326 327
	int *last_ran;

328 329
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
330 331 332 333 334 335

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
336
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
337 338 339
		*last_ran = vcpu->vcpu_id;
	}

340
	vcpu->cpu = cpu;
341

342
	kvm_vgic_load(vcpu);
343
	kvm_timer_vcpu_load(vcpu);
344 345
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
346
	kvm_arch_vcpu_load_fp(vcpu);
347
	kvm_vcpu_pmu_restore_guest(vcpu);
348 349
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
350 351

	if (single_task_running())
352
		vcpu_clear_wfx_traps(vcpu);
353
	else
354
		vcpu_set_wfx_traps(vcpu);
355

356
	if (vcpu_has_ptrauth(vcpu))
357
		vcpu_ptrauth_disable(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
362
	kvm_arch_vcpu_put_fp(vcpu);
363 364
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
365
	kvm_timer_vcpu_put(vcpu);
366
	kvm_vgic_put(vcpu);
367
	kvm_vcpu_pmu_restore_host(vcpu);
368

369
	vcpu->cpu = -1;
370 371
}

A
Andrew Jones 已提交
372 373 374
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
375
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
376 377 378
	kvm_vcpu_kick(vcpu);
}

379 380 381
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
382
	if (vcpu->arch.power_off)
383 384 385 386 387
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
388 389 390 391 392
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
393 394
	int ret = 0;

395 396
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
397
		vcpu->arch.power_off = false;
398 399
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
400
		vcpu_power_off(vcpu);
401 402
		break;
	default:
403
		ret = -EINVAL;
404 405
	}

406
	return ret;
407 408
}

409 410 411 412 413 414 415
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
416 417
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
418 419
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
420
		&& !v->arch.power_off && !v->arch.pause);
421 422
}

423 424
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
425
	return vcpu_mode_priv(vcpu);
426 427
}

428 429 430 431 432 433 434
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
435
	preempt_disable();
436
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
437
	preempt_enable();
438 439 440 441
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
442
 * @vmid: The VMID to check
443 444 445
 *
 * return true if there is a new generation of VMIDs being used
 *
446 447
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
448 449 450
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
451
 */
452
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
453
{
454 455
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
456
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
457 458 459
}

/**
460 461
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
462
 */
463
static void update_vmid(struct kvm_vmid *vmid)
464
{
465
	if (!need_new_vmid_gen(vmid))
466 467
		return;

468
	spin_lock(&kvm_vmid_lock);
469 470 471 472 473 474

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
475
	if (!need_new_vmid_gen(vmid)) {
476
		spin_unlock(&kvm_vmid_lock);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

499
	vmid->vmid = kvm_next_vmid;
500
	kvm_next_vmid++;
501
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
502

503
	smp_wmb();
504
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
505 506

	spin_unlock(&kvm_vmid_lock);
507 508 509 510
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
511
	struct kvm *kvm = vcpu->kvm;
512
	int ret = 0;
513

514 515 516
	if (likely(vcpu->arch.has_run_once))
		return 0;

517 518 519
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

520
	vcpu->arch.has_run_once = true;
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
538 539
	}

540
	ret = kvm_timer_enable(vcpu);
541 542 543 544
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
545

546
	return ret;
547 548
}

549 550 551 552 553
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

554
void kvm_arm_halt_guest(struct kvm *kvm)
555 556 557 558 559 560
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
561
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
562 563
}

564
void kvm_arm_resume_guest(struct kvm *kvm)
565 566 567 568
{
	int i;
	struct kvm_vcpu *vcpu;

569 570
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
571
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
572
	}
573 574
}

575
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
576
{
577
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
578

579 580 581
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
582

A
Andrew Jones 已提交
583
	if (vcpu->arch.power_off || vcpu->arch.pause) {
584
		/* Awaken to handle a signal, request we sleep again later. */
585
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
586
	}
587 588 589 590 591 592 593

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
594 595
}

596 597 598 599 600
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

601 602 603
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
604 605
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
606

607 608 609
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

610 611 612 613 614
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615 616 617

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
618 619 620 621 622 623 624 625

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
626 627 628
	}
}

629 630 631 632 633 634 635 636 637 638
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
639
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
640
{
641
	struct kvm_run *run = vcpu->run;
642 643
	int ret;

644
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
645 646 647 648
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
649
		return ret;
650

C
Christoffer Dall 已提交
651
	if (run->exit_reason == KVM_EXIT_MMIO) {
652
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
653
		if (ret)
654
			return ret;
C
Christoffer Dall 已提交
655 656
	}

657 658 659 660
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
661

662
	kvm_sigset_activate(vcpu);
663 664 665 666 667 668 669 670 671

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

672
		update_vmid(&vcpu->arch.hw_mmu->vmid);
673

674 675
		check_vcpu_requests(vcpu);

676 677 678 679 680
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
681
		preempt_disable();
682

683
		kvm_pmu_flush_hwstate(vcpu);
684

685 686
		local_irq_disable();

687 688
		kvm_vgic_flush_hwstate(vcpu);

689
		/*
690 691
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
692
		 */
693
		if (signal_pending(current)) {
694 695 696 697
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

713 714 715 716
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
717
		 * Documentation/virt/kvm/vcpu-requests.rst
718 719 720
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

721
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
722
		    kvm_request_pending(vcpu)) {
723
			vcpu->mode = OUTSIDE_GUEST_MODE;
724
			isb(); /* Ensure work in x_flush_hwstate is committed */
725
			kvm_pmu_sync_hwstate(vcpu);
726
			if (static_branch_unlikely(&userspace_irqchip_in_use))
727
				kvm_timer_sync_user(vcpu);
728
			kvm_vgic_sync_hwstate(vcpu);
729
			local_irq_enable();
730
			preempt_enable();
731 732 733
			continue;
		}

734 735
		kvm_arm_setup_debug(vcpu);

736 737 738 739
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
740
		guest_enter_irqoff();
741

742
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
743

744
		vcpu->mode = OUTSIDE_GUEST_MODE;
745
		vcpu->stat.exits++;
746 747 748 749
		/*
		 * Back from guest
		 *************************************************************/

750 751
		kvm_arm_clear_debug(vcpu);

752
		/*
753
		 * We must sync the PMU state before the vgic state so
754 755 756 757 758
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

759 760 761 762 763
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
764 765
		kvm_vgic_sync_hwstate(vcpu);

766 767 768 769 770
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
771
		if (static_branch_unlikely(&userspace_irqchip_in_use))
772
			kvm_timer_sync_user(vcpu);
773

774 775
		kvm_arch_vcpu_ctxsync_fp(vcpu);

776 777 778 779 780 781 782 783 784 785 786 787 788
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
789
		 * We do local_irq_enable() before calling guest_exit() so
790 791
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
792
		 * preemption after calling guest_exit() so that if we get
793 794 795
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
796
		guest_exit();
797
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
798

799
		/* Exit types that need handling before we can be preempted */
800
		handle_exit_early(vcpu, ret);
801

802 803
		preempt_enable();

804
		ret = handle_exit(vcpu, ret);
805 806
	}

807
	/* Tell userspace about in-kernel device output levels */
808 809 810 811
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
812

813 814
	kvm_sigset_deactivate(vcpu);

815
	vcpu_put(vcpu);
816
	return ret;
817 818
}

819 820 821 822
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
823
	unsigned long *hcr;
824 825 826 827 828 829

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

830
	hcr = vcpu_hcr(vcpu);
831
	if (level)
832
		set = test_and_set_bit(bit_index, hcr);
833
	else
834
		set = test_and_clear_bit(bit_index, hcr);
835 836 837 838 839 840 841 842 843 844 845 846

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
847
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
848 849 850 851 852
	kvm_vcpu_kick(vcpu);

	return 0;
}

853 854
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
855 856 857 858 859 860 861 862 863
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
864
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
865 866 867 868
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

869 870 871 872
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
873

874 875
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
876

877 878 879
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
898

899
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
900 901 902 903
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

904
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
905 906
			return -EINVAL;

907
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
908 909 910
	}

	return -EINVAL;
911 912
}

913 914 915
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
916
	unsigned int i, ret;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
951 952 953 954 955
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
956

957 958
	return ret;
}
959

960 961 962 963 964 965 966 967 968
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

969 970 971
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
972
	 *
973 974 975 976
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
977
	 */
978 979 980 981 982 983
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
984

985 986
	vcpu_reset_hcr(vcpu);

987
	/*
988
	 * Handle the "start in power-off" case.
989
	 */
990
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
991
		vcpu_power_off(vcpu);
992
	else
993
		vcpu->arch.power_off = false;
994 995 996 997

	return 0;
}

998 999 1000 1001 1002 1003 1004
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1005
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1019
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1033
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1034 1035 1036 1037 1038 1039
		break;
	}

	return ret;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1066 1067 1068 1069 1070
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1071
	struct kvm_device_attr attr;
1072 1073
	long r;

1074 1075 1076 1077
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1078
		r = -EFAULT;
1079
		if (copy_from_user(&init, argp, sizeof(init)))
1080
			break;
1081

1082 1083
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1084 1085 1086 1087
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1088

1089
		r = -ENOEXEC;
1090
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091
			break;
1092

1093
		r = -EFAULT;
1094
		if (copy_from_user(&reg, argp, sizeof(reg)))
1095 1096
			break;

1097
		if (ioctl == KVM_SET_ONE_REG)
1098
			r = kvm_arm_set_reg(vcpu, &reg);
1099
		else
1100 1101
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1102 1103 1104 1105 1106 1107
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1108
		r = -ENOEXEC;
1109
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110
			break;
1111

1112 1113 1114 1115
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1116
		r = -EFAULT;
1117
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1118
			break;
1119 1120 1121
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1122 1123
			break;
		r = -E2BIG;
1124
		if (n < reg_list.n)
1125 1126 1127
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1128
	}
1129
	case KVM_SET_DEVICE_ATTR: {
1130
		r = -EFAULT;
1131
		if (copy_from_user(&attr, argp, sizeof(attr)))
1132 1133 1134
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1135 1136
	}
	case KVM_GET_DEVICE_ATTR: {
1137
		r = -EFAULT;
1138
		if (copy_from_user(&attr, argp, sizeof(attr)))
1139 1140 1141
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1142 1143
	}
	case KVM_HAS_DEVICE_ATTR: {
1144
		r = -EFAULT;
1145
		if (copy_from_user(&attr, argp, sizeof(attr)))
1146 1147 1148
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1149
	}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1180
	default:
1181
		r = -EINVAL;
1182
	}
1183 1184

	return r;
1185 1186
}

1187
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1188
{
1189

1190 1191
}

1192 1193
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1194
{
1195
	kvm_flush_remote_tlbs(kvm);
1196 1197
}

1198 1199 1200
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1201 1202 1203 1204 1205 1206 1207 1208 1209
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1210 1211
		if (!vgic_present)
			return -ENXIO;
1212
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1213 1214 1215
	default:
		return -ENODEV;
	}
1216 1217
}

1218 1219 1220
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1221 1222 1223 1224
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1225
	case KVM_CREATE_IRQCHIP: {
1226
		int ret;
1227 1228
		if (!vgic_present)
			return -ENXIO;
1229 1230 1231 1232
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1233
	}
1234 1235 1236 1237 1238 1239 1240
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1254 1255 1256
	default:
		return -EINVAL;
	}
1257 1258
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1272
static void cpu_init_hyp_mode(void)
1273
{
1274
	phys_addr_t pgd_ptr;
1275 1276
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1277
	unsigned long tpidr_el2;
1278 1279

	/* Switch from the HYP stub to our own HYP init vector */
1280
	__hyp_set_vectors(kvm_get_idmap_vector());
1281

1282 1283 1284 1285 1286
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1287 1288
	tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
		    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1289

1290
	pgd_ptr = kvm_mmu_get_httbr();
1291
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1292
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1309
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1310
	}
1311 1312 1313

	/* Copy information whether SSBD callback is required to hyp. */
	hyp_init_aux_data();
1314 1315
}

1316 1317 1318 1319 1320 1321
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1322 1323
static void cpu_hyp_reinit(void)
{
1324
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1325

1326 1327
	cpu_hyp_reset();

1328
	if (is_kernel_in_hyp_mode())
1329
		kvm_timer_init_vhe();
1330
	else
1331
		cpu_init_hyp_mode();
1332

1333
	kvm_arm_init_debug();
1334 1335 1336

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1337 1338
}

1339 1340 1341
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1342
		cpu_hyp_reinit();
1343
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1344
	}
1345
}
1346

1347 1348 1349 1350
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1365

1366 1367 1368 1369 1370
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1386
		return NOTIFY_OK;
1387
	case CPU_PM_ENTER_FAILED:
1388 1389 1390 1391
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1392

1393 1394 1395 1396 1397
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1408 1409 1410 1411
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1412 1413 1414 1415
#else
static inline void hyp_cpu_pm_init(void)
{
}
1416 1417 1418
static inline void hyp_cpu_pm_exit(void)
{
}
1419 1420
#endif

1421 1422
static int init_common_resources(void)
{
1423
	return kvm_set_ipa_limit();
1424 1425 1426 1427
}

static int init_subsystems(void)
{
1428
	int err = 0;
1429

1430
	/*
1431
	 * Enable hardware so that subsystem initialisation can access EL2.
1432
	 */
1433
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1434 1435 1436 1437 1438 1439

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1451
		err = 0;
1452 1453
		break;
	default:
1454
		goto out;
1455 1456 1457 1458 1459
	}

	/*
	 * Init HYP architected timer support
	 */
1460
	err = kvm_timer_hyp_init(vgic_present);
1461
	if (err)
1462
		goto out;
1463 1464 1465 1466

	kvm_perf_init();
	kvm_coproc_table_init();

1467 1468 1469 1470
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1471 1472 1473 1474 1475 1476 1477
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1478
	for_each_possible_cpu(cpu) {
1479
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1480 1481
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1508
			goto out_err;
1509 1510 1511 1512 1513
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1532 1533 1534
	/*
	 * Map the Hyp-code called directly from the host
	 */
1535
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1536
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1537 1538
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1539
		goto out_err;
1540 1541
	}

1542
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1543
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1544 1545
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1546 1547 1548 1549 1550 1551 1552
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1553
		goto out_err;
1554 1555
	}

1556 1557 1558 1559 1560 1561
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1562 1563 1564 1565 1566
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1567 1568
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1569 1570 1571

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1572
			goto out_err;
1573 1574 1575
		}
	}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * Map Hyp percpu pages
	 */
	for_each_possible_cpu(cpu) {
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();

		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);

		if (err) {
			kvm_err("Cannot map hyp percpu region\n");
			goto out_err;
		}
	}

1591
	return 0;
1592

1593
out_err:
1594
	teardown_hyp_mode();
1595 1596 1597 1598
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1599 1600 1601 1602 1603
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1628 1629
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1630 1631 1632 1633 1634 1635 1636
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1637 1638
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1657 1658 1659
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1660 1661
int kvm_arch_init(void *opaque)
{
1662
	int err;
1663
	int ret, cpu;
1664
	bool in_hyp_mode;
1665 1666

	if (!is_hyp_mode_available()) {
1667
		kvm_info("HYP mode not available\n");
1668 1669 1670
		return -ENODEV;
	}

1671 1672 1673 1674
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1675 1676 1677
		return -ENODEV;
	}

1678 1679 1680 1681
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1682 1683 1684 1685 1686 1687
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1688 1689
	}

1690
	err = init_common_resources();
1691
	if (err)
1692
		return err;
1693

1694
	err = kvm_arm_init_sve();
1695 1696 1697
	if (err)
		return err;

1698
	if (!in_hyp_mode) {
1699
		err = init_hyp_mode();
1700 1701 1702
		if (err)
			goto out_err;
	}
1703

1704 1705 1706
	err = init_subsystems();
	if (err)
		goto out_hyp;
1707

1708 1709 1710 1711 1712
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1713
	return 0;
1714 1715

out_hyp:
1716
	hyp_cpu_pm_exit();
1717 1718
	if (!in_hyp_mode)
		teardown_hyp_mode();
1719 1720
out_err:
	return err;
1721 1722 1723 1724 1725
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1726
	kvm_perf_teardown();
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);