regmap.c 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95 96 97 98
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

99 100 101
	if (map->format.format_write)
		return false;

102 103 104
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

105
	if (map->rd_table)
106
		return regmap_check_range_table(map, reg, map->rd_table);
107

108 109 110 111 112
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
113
	if (!regmap_readable(map, reg))
114 115 116 117 118
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

119
	if (map->volatile_table)
120
		return regmap_check_range_table(map, reg, map->volatile_table);
121

122 123 124 125
	if (map->cache_ops)
		return false;
	else
		return true;
126 127 128 129
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
130
	if (!regmap_readable(map, reg))
131 132 133 134 135
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

136
	if (map->precious_table)
137
		return regmap_check_range_table(map, reg, map->precious_table);
138

139 140 141
	return false;
}

142
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
143
	size_t num)
144 145 146 147 148 149 150 151 152 153
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

154 155 156 157 158 159 160 161
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

176 177 178 179 180 181 182 183 184 185
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

186
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 188 189
{
	u8 *b = buf;

190
	b[0] = val << shift;
191 192
}

193
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 195 196
{
	__be16 *b = buf;

197
	b[0] = cpu_to_be16(val << shift);
198 199
}

200 201 202 203 204 205 206
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

207 208 209 210 211 212
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

213
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 215 216
{
	u8 *b = buf;

217 218
	val <<= shift;

219 220 221 222 223
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

224
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 226 227
{
	__be32 *b = buf;

228
	b[0] = cpu_to_be32(val << shift);
229 230
}

231 232 233 234 235 236 237
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

238 239 240 241 242 243
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

244
static void regmap_parse_inplace_noop(void *buf)
245
{
246 247 248 249 250
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
251 252 253 254

	return b[0];
}

255 256 257 258 259 260 261
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

262 263 264 265 266 267 268
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

269
static void regmap_parse_16_be_inplace(void *buf)
270 271 272 273 274 275
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

276 277 278 279 280 281 282
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

283
static unsigned int regmap_parse_16_native(const void *buf)
284 285 286 287
{
	return *(u16 *)buf;
}

288
static unsigned int regmap_parse_24(const void *buf)
289
{
290
	const u8 *b = buf;
291 292 293 294 295 296 297
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

298 299 300 301 302 303 304
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

305 306 307 308 309 310 311
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

312
static void regmap_parse_32_be_inplace(void *buf)
313 314 315 316 317 318
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

319 320 321 322 323 324 325
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

326
static unsigned int regmap_parse_32_native(const void *buf)
327 328 329 330
{
	return *(u32 *)buf;
}

331
static void regmap_lock_mutex(void *__map)
332
{
333
	struct regmap *map = __map;
334 335 336
	mutex_lock(&map->mutex);
}

337
static void regmap_unlock_mutex(void *__map)
338
{
339
	struct regmap *map = __map;
340 341 342
	mutex_unlock(&map->mutex);
}

343
static void regmap_lock_spinlock(void *__map)
344
__acquires(&map->spinlock)
345
{
346
	struct regmap *map = __map;
347 348 349 350
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
351 352
}

353
static void regmap_unlock_spinlock(void *__map)
354
__releases(&map->spinlock)
355
{
356
	struct regmap *map = __map;
357
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 359
}

M
Mark Brown 已提交
360 361 362 363 364 365 366 367 368
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
467

468 469 470 471 472 473 474 475 476 477 478
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

static enum regmap_endian regmap_get_val_endian(struct device *dev,
					const struct regmap_bus *bus,
					const struct regmap_config *config)
479 480
{
	struct device_node *np = dev->of_node;
481
	enum regmap_endian endian;
482

483
	/* Retrieve the endianness specification from the regmap config */
484
	endian = config->val_format_endian;
485

486
	/* If the regmap config specified a non-default value, use that */
487 488
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
489

490
	/* Parse the device's DT node for an endianness specification */
491 492 493 494
	if (of_property_read_bool(np, "big-endian"))
		endian = REGMAP_ENDIAN_BIG;
	else if (of_property_read_bool(np, "little-endian"))
		endian = REGMAP_ENDIAN_LITTLE;
495

496
	/* If the endianness was specified in DT, use that */
497 498
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
499 500

	/* Retrieve the endianness specification from the bus config */
501 502
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
503

504
	/* If the bus specified a non-default value, use that */
505 506
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
507 508

	/* Use this if no other value was found */
509
	return REGMAP_ENDIAN_BIG;
510 511
}

512 513 514 515 516
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
517
 * @bus_context: Data passed to bus-specific callbacks
518 519 520 521 522 523 524 525
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
526
			   void *bus_context,
527 528
			   const struct regmap_config *config)
{
529
	struct regmap *map;
530
	int ret = -EINVAL;
531
	enum regmap_endian reg_endian, val_endian;
532
	int i, j;
533

534
	if (!config)
535
		goto err;
536 537 538 539 540 541 542

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

543 544 545 546
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
547
	} else {
548 549
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
550 551 552 553 554 555 556 557 558
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
559
	}
560
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
561
	map->format.pad_bytes = config->pad_bits / 8;
562
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
563 564
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
565
	map->reg_shift = config->pad_bits % 8;
566 567 568 569
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
570
	map->use_single_rw = config->use_single_rw;
571
	map->can_multi_write = config->can_multi_write;
572 573
	map->dev = dev;
	map->bus = bus;
574
	map->bus_context = bus_context;
575
	map->max_register = config->max_register;
576 577 578 579
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
580 581 582
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
583
	map->precious_reg = config->precious_reg;
584
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
585
	map->name = config->name;
586

587 588
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
589
	INIT_LIST_HEAD(&map->async_free);
590 591
	init_waitqueue_head(&map->async_waitq);

592 593 594
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
595
	} else if (bus) {
596 597 598
		map->read_flag_mask = bus->read_flag_mask;
	}

599 600 601 602
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

603 604 605 606 607 608
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

609 610 611 612 613
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
614

615 616
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
617

618
	switch (config->reg_bits + map->reg_shift) {
619 620 621 622 623 624 625 626 627 628
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

649 650 651 652 653 654 655 656 657 658
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

659 660 661 662 663
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
664 665 666 667 668 669 670 671 672 673
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
674 675
		break;

676 677 678 679 680 681
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

682
	case 32:
683 684 685 686 687 688 689 690 691 692
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
693 694
		break;

695 696 697 698
	default:
		goto err_map;
	}

699 700 701
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

702 703 704 705
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
706
		map->format.parse_inplace = regmap_parse_inplace_noop;
707 708
		break;
	case 16:
709 710 711 712
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
713
			map->format.parse_inplace = regmap_parse_16_be_inplace;
714
			break;
715 716 717 718 719
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
720 721 722 723 724 725 726
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
727
		break;
728
	case 24:
729 730
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
731 732 733
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
734
	case 32:
735 736 737 738
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
739
			map->format.parse_inplace = regmap_parse_32_be_inplace;
740
			break;
741 742 743 744 745
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
746 747 748 749 750 751 752
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
753
		break;
754 755
	}

756 757 758 759
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
760
		map->use_single_rw = true;
761
	}
762

763 764 765 766
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

767
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
768 769
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
770
		goto err_map;
771 772
	}

773 774
	if (map->format.format_write) {
		map->defer_caching = false;
775
		map->reg_write = _regmap_bus_formatted_write;
776 777
	} else if (map->format.format_val) {
		map->defer_caching = true;
778
		map->reg_write = _regmap_bus_raw_write;
779 780 781
	}

skip_format_initialization:
782

783
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
784
	for (i = 0; i < config->num_ranges; i++) {
785 786 787 788
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
789 790 791
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
792
			goto err_range;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
812 813 814

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
815
		for (j = 0; j < config->num_ranges; j++) {
816 817 818 819 820
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

821 822 823 824
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

825 826
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
827 828 829
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
830 831 832 833 834
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
835 836 837
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
838 839 840 841 842 843 844 845 846 847
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

848
		new->map = map;
M
Mark Brown 已提交
849
		new->name = range_cfg->name;
850 851 852 853 854 855 856 857
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
858
		if (!_regmap_range_add(map, new)) {
859
			dev_err(map->dev, "Failed to add range %d\n", i);
860 861 862 863 864 865 866 867 868 869 870 871 872
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
873

874
	ret = regcache_init(map, config);
875
	if (ret != 0)
876 877
		goto err_range;

878
	if (dev) {
879 880 881
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
882
	}
M
Mark Brown 已提交
883

884 885
	return map;

886
err_regcache:
M
Mark Brown 已提交
887
	regcache_exit(map);
888 889
err_range:
	regmap_range_exit(map);
890
	kfree(map->work_buf);
891 892 893 894 895 896 897
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

898 899 900 901 902 903 904 905 906 907
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
908
 * @bus_context: Data passed to bus-specific callbacks
909 910 911 912 913 914 915 916 917
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
918
				void *bus_context,
919 920 921 922 923 924 925 926
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

927
	regmap = regmap_init(dev, bus, bus_context, config);
928 929 930 931 932 933 934 935 936 937 938
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

939 940 941 942 943 944 945 946
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
947 948
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1040 1041 1042
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1043 1044 1045 1046
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1047
	regmap_debugfs_exit(map);
1048 1049 1050 1051 1052 1053 1054 1055

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1056
	regmap_debugfs_init(map, config->name);
1057

1058 1059 1060
	map->cache_bypass = false;
	map->cache_only = false;

1061
	return regcache_init(map, config);
1062
}
1063
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1064

1065 1066 1067 1068 1069
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1070 1071
	struct regmap_async *async;

1072
	regcache_exit(map);
1073
	regmap_debugfs_exit(map);
1074
	regmap_range_exit(map);
1075
	if (map->bus && map->bus->free_context)
1076
		map->bus->free_context(map->bus_context);
1077
	kfree(map->work_buf);
M
Mark Brown 已提交
1078 1079 1080 1081 1082 1083 1084 1085
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1086 1087 1088 1089
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1139
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1140

1141
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1142
			       struct regmap_range_node *range,
1143 1144 1145 1146 1147 1148 1149 1150
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1151 1152
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1153

1154 1155 1156 1157
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1158

1159 1160 1161 1162
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1163

1164 1165 1166 1167 1168 1169 1170 1171
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1172

1173 1174 1175 1176
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1177

1178
		map->work_buf = orig_work_buf;
1179

1180
		if (ret != 0)
1181
			return ret;
1182 1183
	}

1184 1185
	*reg = range->window_start + win_offset;

1186 1187 1188
	return 0;
}

1189
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1190
		      const void *val, size_t val_len)
1191
{
1192
	struct regmap_range_node *range;
1193
	unsigned long flags;
1194
	u8 *u8 = map->work_buf;
1195 1196
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1197 1198 1199
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1200 1201
	int i;

1202
	WARN_ON(!map->bus);
1203

1204 1205 1206
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1207 1208
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1209
				return -EINVAL;
1210

1211 1212 1213 1214
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1215
			ival = map->format.parse_val(val + (i * val_bytes));
1216 1217
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1218 1219
			if (ret) {
				dev_err(map->dev,
1220
					"Error in caching of register: %x ret: %d\n",
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1231 1232
	range = _regmap_range_lookup(map, reg);
	if (range) {
1233 1234 1235 1236 1237 1238
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1239
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1240 1241
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1242
						map->format.val_bytes);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1257
		if (ret != 0)
1258 1259
			return ret;
	}
1260

1261
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1262

1263 1264
	u8[0] |= map->write_flag_mask;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1275
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1276
		struct regmap_async *async;
1277

1278 1279
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1323 1324 1325 1326 1327 1328

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1329
			list_move(&async->list, &map->async_free);
1330 1331
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1332 1333

		return ret;
1334 1335
	}

M
Mark Brown 已提交
1336 1337 1338
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1339 1340 1341 1342
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1343
	if (val == work_val)
1344
		ret = map->bus->write(map->bus_context, map->work_buf,
1345 1346 1347
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1348
	else if (map->bus->gather_write)
1349
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1350 1351
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1352 1353
					     val, val_len);

1354
	/* If that didn't work fall back on linearising by hand. */
1355
	if (ret == -ENOTSUPP) {
1356 1357
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1358 1359 1360 1361
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1362 1363
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1364
		ret = map->bus->write(map->bus_context, buf, len);
1365 1366 1367 1368

		kfree(buf);
	}

M
Mark Brown 已提交
1369 1370 1371
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1372 1373 1374
	return ret;
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1386 1387 1388 1389 1390 1391 1392
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1393
	WARN_ON(!map->bus || !map->format.format_write);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1414 1415 1416 1417 1418 1419 1420 1421
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1422 1423 1424 1425 1426
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1427
	WARN_ON(!map->bus || !map->format.format_val);
1428 1429 1430 1431 1432 1433 1434

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1435
				 map->format.val_bytes);
1436 1437
}

1438 1439 1440 1441 1442
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1443 1444
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1445
{
M
Mark Brown 已提交
1446
	int ret;
1447
	void *context = _regmap_map_get_context(map);
1448

1449 1450 1451
	if (!regmap_writeable(map, reg))
		return -EIO;

1452
	if (!map->cache_bypass && !map->defer_caching) {
1453 1454 1455
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1456 1457
		if (map->cache_only) {
			map->cache_dirty = true;
1458
			return 0;
1459
		}
1460 1461
	}

1462 1463 1464 1465 1466
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1467 1468
	trace_regmap_reg_write(map->dev, reg, val);

1469
	return map->reg_write(context, reg, val);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1486 1487 1488
	if (reg % map->reg_stride)
		return -EINVAL;

1489
	map->lock(map->lock_arg);
1490 1491 1492

	ret = _regmap_write(map, reg, val);

1493
	map->unlock(map->lock_arg);
1494 1495 1496 1497 1498

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1551
	if (!regmap_can_raw_write(map))
1552
		return -EINVAL;
1553 1554 1555
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1556
	map->lock(map->lock_arg);
1557

1558
	ret = _regmap_raw_write(map, reg, val, val_len);
1559

1560
	map->unlock(map->lock_arg);
1561 1562 1563 1564 1565

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1659
 * data to the device either in single transfer or multiple transfer.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1670
	if (map->bus && !map->format.parse_inplace)
1671
		return -EINVAL;
1672 1673
	if (reg % map->reg_stride)
		return -EINVAL;
1674

1675 1676 1677 1678 1679
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1680
		map->lock(map->lock_arg);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1703

1704 1705 1706 1707 1708
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1709 1710
out:
		map->unlock(map->lock_arg);
1711
	} else {
1712 1713
		void *wval;

1714 1715 1716
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1717
			return -ENOMEM;
1718 1719
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1720
			map->format.parse_inplace(wval + i);
1721

1722
		map->lock(map->lock_arg);
1723
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1724
		map->unlock(map->lock_arg);
1725 1726

		kfree(wval);
1727
	}
1728 1729 1730 1731
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1753 1754 1755
	if (!len)
		return -EINVAL;

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1803
	unsigned int this_page = 0;
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1839 1840
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1841
				   size_t num_regs)
1842
{
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1886 1887

	for (i = 0; i < num_regs; i++) {
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1901 1902 1903
			return ret;
		}
	}
1904
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1905 1906
}

1907 1908 1909
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1910 1911
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1912 1913 1914 1915 1916
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1917 1918 1919 1920 1921
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1922
 *
1923 1924
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1925
 */
1926 1927
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1928
{
1929
	int ret;
1930 1931 1932

	map->lock(map->lock_arg);

1933 1934
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1935 1936 1937 1938 1939 1940
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1941 1942 1943 1944
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1958 1959 1960
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1961
{
1962 1963
	int ret;
	bool bypass;
1964 1965 1966

	map->lock(map->lock_arg);

1967 1968 1969 1970 1971 1972 1973
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1974 1975 1976 1977
	map->unlock(map->lock_arg);

	return ret;
}
1978
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2014 2015 2016 2017 2018
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2019 2020 2021 2022 2023 2024 2025

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2026 2027 2028
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2029
	struct regmap_range_node *range;
2030 2031 2032
	u8 *u8 = map->work_buf;
	int ret;

2033
	WARN_ON(!map->bus);
2034

2035 2036 2037 2038
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2039
		if (ret != 0)
2040 2041
			return ret;
	}
2042

2043
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2044 2045

	/*
2046
	 * Some buses or devices flag reads by setting the high bits in the
2047 2048 2049 2050
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2051
	u8[0] |= map->read_flag_mask;
2052

M
Mark Brown 已提交
2053 2054 2055
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2056
	ret = map->bus->read(map->bus_context, map->work_buf,
2057
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2058
			     val, val_len);
2059

M
Mark Brown 已提交
2060 2061 2062 2063
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2090 2091 2092 2093
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2094 2095
	void *context = _regmap_map_get_context(map);

2096
	WARN_ON(!map->reg_read);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2107 2108 2109
	if (!regmap_readable(map, reg))
		return -EIO;

2110
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2111
	if (ret == 0) {
2112 2113 2114 2115 2116
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2117
		trace_regmap_reg_read(map->dev, reg, *val);
2118

2119 2120 2121
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2122

2123 2124 2125 2126 2127 2128
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2129
 * @map: Register map to read from
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2140 2141 2142
	if (reg % map->reg_stride)
		return -EINVAL;

2143
	map->lock(map->lock_arg);
2144 2145 2146

	ret = _regmap_read(map, reg, val);

2147
	map->unlock(map->lock_arg);
2148 2149 2150 2151 2152 2153 2154 2155

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2156
 * @map: Register map to read from
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2167 2168 2169 2170
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2171

2172 2173
	if (!map->bus)
		return -EINVAL;
2174 2175
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2176 2177
	if (reg % map->reg_stride)
		return -EINVAL;
2178

2179
	map->lock(map->lock_arg);
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2191 2192
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2193 2194 2195
			if (ret != 0)
				goto out;

2196
			map->format.format_val(val + (i * val_bytes), v, 0);
2197 2198
		}
	}
2199

2200
 out:
2201
	map->unlock(map->lock_arg);
2202 2203 2204 2205 2206

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2265 2266 2267
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2268
 * @map: Register map to read from
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2281
	bool vol = regmap_volatile_range(map, reg, val_count);
2282

2283 2284
	if (reg % map->reg_stride)
		return -EINVAL;
2285

2286
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2306 2307

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2308
			map->format.parse_inplace(val + i);
2309 2310
	} else {
		for (i = 0; i < val_count; i++) {
2311
			unsigned int ival;
2312
			ret = regmap_read(map, reg + (i * map->reg_stride),
2313
					  &ival);
2314 2315
			if (ret != 0)
				return ret;
2316
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2317 2318
		}
	}
2319 2320 2321 2322 2323

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2324 2325 2326
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2327 2328
{
	int ret;
2329
	unsigned int tmp, orig;
2330

2331
	ret = _regmap_read(map, reg, &orig);
2332
	if (ret != 0)
2333
		return ret;
2334

2335
	tmp = orig & ~mask;
2336 2337
	tmp |= val & mask;

2338
	if (tmp != orig) {
2339
		ret = _regmap_write(map, reg, tmp);
2340 2341
		if (change)
			*change = true;
2342
	} else {
2343 2344
		if (change)
			*change = false;
2345
	}
2346 2347 2348

	return ret;
}
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2363 2364
	int ret;

2365
	map->lock(map->lock_arg);
2366
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2367
	map->unlock(map->lock_arg);
2368 2369

	return ret;
2370
}
2371
EXPORT_SYMBOL_GPL(regmap_update_bits);
2372

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2397
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2398 2399 2400 2401 2402 2403 2404 2405 2406

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2423 2424
	int ret;

2425
	map->lock(map->lock_arg);
2426
	ret = _regmap_update_bits(map, reg, mask, val, change);
2427
	map->unlock(map->lock_arg);
2428
	return ret;
2429 2430 2431
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2469 2470 2471 2472 2473
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2474 2475
	trace_regmap_async_io_complete(map->dev);

2476
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2477
	list_move(&async->list, &map->async_free);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2488
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2516
	if (!map->bus || !map->bus->async_write)
2517 2518
		return 0;

2519 2520
	trace_regmap_async_complete_start(map->dev);

2521 2522 2523 2524 2525 2526 2527
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2528 2529
	trace_regmap_async_complete_done(map->dev);

2530 2531
	return ret;
}
2532
EXPORT_SYMBOL_GPL(regmap_async_complete);
2533

M
Mark Brown 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2547 2548 2549
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2550 2551 2552 2553
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2554
	struct reg_default *p;
2555
	int ret;
M
Mark Brown 已提交
2556 2557
	bool bypass;

2558 2559 2560 2561
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2562 2563 2564 2565 2566 2567 2568
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2569
	} else {
2570
		return -ENOMEM;
M
Mark Brown 已提交
2571 2572
	}

2573
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2574 2575 2576 2577

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2578
	map->async = true;
M
Mark Brown 已提交
2579

2580 2581 2582
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2583 2584

out:
2585
	map->async = false;
M
Mark Brown 已提交
2586 2587
	map->cache_bypass = bypass;

2588
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2589

2590 2591
	regmap_async_complete(map);

M
Mark Brown 已提交
2592 2593 2594 2595
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2596
/*
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2623 2624 2625 2626 2627 2628 2629
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);