regmap.c 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
40 41
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
44 45
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
46 47
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

63 64
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
65 66 67 68 69 70 71 72 73 74 75 76
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
77
EXPORT_SYMBOL_GPL(regmap_check_range_table);
78

79 80 81 82 83 84 85 86
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

87
	if (map->wr_table)
88
		return regmap_check_range_table(map, reg, map->wr_table);
89

90 91 92 93 94 95 96 97
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

98 99 100
	if (map->format.format_write)
		return false;

101 102 103
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

104
	if (map->rd_table)
105
		return regmap_check_range_table(map, reg, map->rd_table);
106

107 108 109 110 111
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
112
	if (!regmap_readable(map, reg))
113 114 115 116 117
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

118
	if (map->volatile_table)
119
		return regmap_check_range_table(map, reg, map->volatile_table);
120

121 122 123 124
	if (map->cache_ops)
		return false;
	else
		return true;
125 126 127 128
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
129
	if (!regmap_readable(map, reg))
130 131 132 133 134
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

135
	if (map->precious_table)
136
		return regmap_check_range_table(map, reg, map->precious_table);
137

138 139 140
	return false;
}

141
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
142
	size_t num)
143 144 145 146 147 148 149 150 151 152
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

153 154 155 156 157 158 159 160
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

175 176 177 178 179 180 181 182 183 184
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

185
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
186 187 188
{
	u8 *b = buf;

189
	b[0] = val << shift;
190 191
}

192
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
193 194 195
{
	__be16 *b = buf;

196
	b[0] = cpu_to_be16(val << shift);
197 198
}

199 200 201 202 203 204 205
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

206 207 208 209 210 211
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

212
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
213 214 215
{
	u8 *b = buf;

216 217
	val <<= shift;

218 219 220 221 222
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

223
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
224 225 226
{
	__be32 *b = buf;

227
	b[0] = cpu_to_be32(val << shift);
228 229
}

230 231 232 233 234 235 236
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

237 238 239 240 241 242
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

243
static void regmap_parse_inplace_noop(void *buf)
244
{
245 246 247 248 249
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
250 251 252 253

	return b[0];
}

254 255 256 257 258 259 260
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

261 262 263 264 265 266 267
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

268
static void regmap_parse_16_be_inplace(void *buf)
269 270 271 272 273 274
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

275 276 277 278 279 280 281
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

282
static unsigned int regmap_parse_16_native(const void *buf)
283 284 285 286
{
	return *(u16 *)buf;
}

287
static unsigned int regmap_parse_24(const void *buf)
288
{
289
	const u8 *b = buf;
290 291 292 293 294 295 296
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

297 298 299 300 301 302 303
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

304 305 306 307 308 309 310
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

311
static void regmap_parse_32_be_inplace(void *buf)
312 313 314 315 316 317
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

318 319 320 321 322 323 324
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

325
static unsigned int regmap_parse_32_native(const void *buf)
326 327 328 329
{
	return *(u32 *)buf;
}

330
static void regmap_lock_mutex(void *__map)
331
{
332
	struct regmap *map = __map;
333 334 335
	mutex_lock(&map->mutex);
}

336
static void regmap_unlock_mutex(void *__map)
337
{
338
	struct regmap *map = __map;
339 340 341
	mutex_unlock(&map->mutex);
}

342
static void regmap_lock_spinlock(void *__map)
343
__acquires(&map->spinlock)
344
{
345
	struct regmap *map = __map;
346 347 348 349
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
350 351
}

352
static void regmap_unlock_spinlock(void *__map)
353
__releases(&map->spinlock)
354
{
355
	struct regmap *map = __map;
356
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
357 358
}

M
Mark Brown 已提交
359 360 361 362 363 364 365 366 367
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

451 452 453 454 455
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
456
 * @bus_context: Data passed to bus-specific callbacks
457 458 459 460 461 462 463 464
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
465
			   void *bus_context,
466 467
			   const struct regmap_config *config)
{
468
	struct regmap *map;
469
	int ret = -EINVAL;
470
	enum regmap_endian reg_endian, val_endian;
471
	int i, j;
472

473
	if (!config)
474
		goto err;
475 476 477 478 479 480 481

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

482 483 484 485
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
486
	} else {
487 488
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
489 490 491 492 493 494 495 496 497
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
498
	}
499
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
500
	map->format.pad_bytes = config->pad_bits / 8;
501
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
502 503
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
504
	map->reg_shift = config->pad_bits % 8;
505 506 507 508
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
509
	map->use_single_rw = config->use_single_rw;
510
	map->can_multi_write = config->can_multi_write;
511 512
	map->dev = dev;
	map->bus = bus;
513
	map->bus_context = bus_context;
514
	map->max_register = config->max_register;
515 516 517 518
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
519 520 521
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
522
	map->precious_reg = config->precious_reg;
523
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
524
	map->name = config->name;
525

526 527
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
528
	INIT_LIST_HEAD(&map->async_free);
529 530
	init_waitqueue_head(&map->async_waitq);

531 532 533
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
534
	} else if (bus) {
535 536 537
		map->read_flag_mask = bus->read_flag_mask;
	}

538 539 540 541
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

542 543 544 545 546 547
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

548 549 550 551 552
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
553

554 555 556 557 558 559 560 561 562 563 564 565
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

566
	switch (config->reg_bits + map->reg_shift) {
567 568 569 570 571 572 573 574 575 576
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

597 598 599 600 601 602 603 604 605 606
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

607 608 609 610 611
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
612 613 614 615 616 617 618 619 620 621
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
622 623
		break;

624 625 626 627 628 629
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

630
	case 32:
631 632 633 634 635 636 637 638 639 640
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
641 642
		break;

643 644 645 646
	default:
		goto err_map;
	}

647 648 649
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

650 651 652 653
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
654
		map->format.parse_inplace = regmap_parse_inplace_noop;
655 656
		break;
	case 16:
657 658 659 660
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
661
			map->format.parse_inplace = regmap_parse_16_be_inplace;
662
			break;
663 664 665 666 667
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
668 669 670 671 672 673 674
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
675
		break;
676
	case 24:
677 678
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
679 680 681
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
682
	case 32:
683 684 685 686
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
687
			map->format.parse_inplace = regmap_parse_32_be_inplace;
688
			break;
689 690 691 692 693
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
694 695 696 697 698 699 700
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
701
		break;
702 703
	}

704 705 706 707
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
708
		map->use_single_rw = true;
709
	}
710

711 712 713 714
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

715
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
716 717
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
718
		goto err_map;
719 720
	}

721 722
	if (map->format.format_write) {
		map->defer_caching = false;
723
		map->reg_write = _regmap_bus_formatted_write;
724 725
	} else if (map->format.format_val) {
		map->defer_caching = true;
726
		map->reg_write = _regmap_bus_raw_write;
727 728 729
	}

skip_format_initialization:
730

731
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
732
	for (i = 0; i < config->num_ranges; i++) {
733 734 735 736
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
737 738 739
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
740
			goto err_range;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
760 761 762

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
763
		for (j = 0; j < config->num_ranges; j++) {
764 765 766 767 768
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

769 770 771 772
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

773 774
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
775 776 777
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
778 779 780 781 782
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
783 784 785
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
786 787 788 789 790 791 792 793 794 795
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

796
		new->map = map;
M
Mark Brown 已提交
797
		new->name = range_cfg->name;
798 799 800 801 802 803 804 805
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
806
		if (!_regmap_range_add(map, new)) {
807
			dev_err(map->dev, "Failed to add range %d\n", i);
808 809 810 811 812 813 814 815 816 817 818 819 820
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
821

822
	ret = regcache_init(map, config);
823
	if (ret != 0)
824 825
		goto err_range;

826
	if (dev) {
827 828 829
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
830
	}
M
Mark Brown 已提交
831

832 833
	return map;

834
err_regcache:
M
Mark Brown 已提交
835
	regcache_exit(map);
836 837
err_range:
	regmap_range_exit(map);
838
	kfree(map->work_buf);
839 840 841 842 843 844 845
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

846 847 848 849 850 851 852 853 854 855
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
856
 * @bus_context: Data passed to bus-specific callbacks
857 858 859 860 861 862 863 864 865
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
866
				void *bus_context,
867 868 869 870 871 872 873 874
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

875
	regmap = regmap_init(dev, bus, bus_context, config);
876 877 878 879 880 881 882 883 884 885 886
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

887 888 889 890 891 892 893 894
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
895 896
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

978 979 980 981 982 983 984 985 986 987
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
988 989 990
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
991 992 993 994
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
995
	regmap_debugfs_exit(map);
996 997 998 999 1000 1001 1002 1003

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1004
	regmap_debugfs_init(map, config->name);
1005

1006 1007 1008
	map->cache_bypass = false;
	map->cache_only = false;

1009
	return regcache_init(map, config);
1010
}
1011
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1012

1013 1014 1015 1016 1017
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1018 1019
	struct regmap_async *async;

1020
	regcache_exit(map);
1021
	regmap_debugfs_exit(map);
1022
	regmap_range_exit(map);
1023
	if (map->bus && map->bus->free_context)
1024
		map->bus->free_context(map->bus_context);
1025
	kfree(map->work_buf);
M
Mark Brown 已提交
1026 1027 1028 1029 1030 1031 1032 1033
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1034 1035 1036 1037
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1087
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1088

1089
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1090
			       struct regmap_range_node *range,
1091 1092 1093 1094 1095 1096 1097 1098
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1099 1100
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1101

1102 1103 1104 1105
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1106

1107 1108 1109 1110
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1111

1112 1113 1114 1115 1116 1117 1118 1119
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1120

1121 1122 1123 1124
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1125

1126
		map->work_buf = orig_work_buf;
1127

1128
		if (ret != 0)
1129
			return ret;
1130 1131
	}

1132 1133
	*reg = range->window_start + win_offset;

1134 1135 1136
	return 0;
}

1137
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1138
		      const void *val, size_t val_len)
1139
{
1140
	struct regmap_range_node *range;
1141
	unsigned long flags;
1142
	u8 *u8 = map->work_buf;
1143 1144
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1145 1146 1147
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1148 1149
	int i;

1150
	WARN_ON(!map->bus);
1151

1152 1153 1154
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1155 1156
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1157
				return -EINVAL;
1158

1159 1160 1161 1162
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1163
			ival = map->format.parse_val(val + (i * val_bytes));
1164 1165
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1166 1167
			if (ret) {
				dev_err(map->dev,
1168
					"Error in caching of register: %x ret: %d\n",
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1179 1180
	range = _regmap_range_lookup(map, reg);
	if (range) {
1181 1182 1183 1184 1185 1186
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1187
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1188 1189
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1190
						map->format.val_bytes);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1205
		if (ret != 0)
1206 1207
			return ret;
	}
1208

1209
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1210

1211 1212
	u8[0] |= map->write_flag_mask;

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1223
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1224
		struct regmap_async *async;
1225

1226 1227
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1271 1272 1273 1274 1275 1276

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1277
			list_move(&async->list, &map->async_free);
1278 1279
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1280 1281

		return ret;
1282 1283
	}

M
Mark Brown 已提交
1284 1285 1286
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1287 1288 1289 1290
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1291
	if (val == work_val)
1292
		ret = map->bus->write(map->bus_context, map->work_buf,
1293 1294 1295
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1296
	else if (map->bus->gather_write)
1297
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1298 1299
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1300 1301
					     val, val_len);

1302
	/* If that didn't work fall back on linearising by hand. */
1303
	if (ret == -ENOTSUPP) {
1304 1305
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1306 1307 1308 1309
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1310 1311
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1312
		ret = map->bus->write(map->bus_context, buf, len);
1313 1314 1315 1316

		kfree(buf);
	}

M
Mark Brown 已提交
1317 1318 1319
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1320 1321 1322
	return ret;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1334 1335 1336 1337 1338 1339 1340
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1341
	WARN_ON(!map->bus || !map->format.format_write);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1362 1363 1364 1365 1366 1367 1368 1369
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1370 1371 1372 1373 1374
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1375
	WARN_ON(!map->bus || !map->format.format_val);
1376 1377 1378 1379 1380 1381 1382

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1383
				 map->format.val_bytes);
1384 1385
}

1386 1387 1388 1389 1390
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1391 1392
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1393
{
M
Mark Brown 已提交
1394
	int ret;
1395
	void *context = _regmap_map_get_context(map);
1396

1397 1398 1399
	if (!regmap_writeable(map, reg))
		return -EIO;

1400
	if (!map->cache_bypass && !map->defer_caching) {
1401 1402 1403
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1404 1405
		if (map->cache_only) {
			map->cache_dirty = true;
1406
			return 0;
1407
		}
1408 1409
	}

1410
#ifdef LOG_DEVICE
1411
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1412 1413 1414
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1415 1416
	trace_regmap_reg_write(map->dev, reg, val);

1417
	return map->reg_write(context, reg, val);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1434 1435 1436
	if (reg % map->reg_stride)
		return -EINVAL;

1437
	map->lock(map->lock_arg);
1438 1439 1440

	ret = _regmap_write(map, reg, val);

1441
	map->unlock(map->lock_arg);
1442 1443 1444 1445 1446

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1499
	if (!regmap_can_raw_write(map))
1500
		return -EINVAL;
1501 1502 1503
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1504
	map->lock(map->lock_arg);
1505

1506
	ret = _regmap_raw_write(map, reg, val, val_len);
1507

1508
	map->unlock(map->lock_arg);
1509 1510 1511 1512 1513

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1607
 * data to the device either in single transfer or multiple transfer.
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1618
	if (map->bus && !map->format.parse_inplace)
1619
		return -EINVAL;
1620 1621
	if (reg % map->reg_stride)
		return -EINVAL;
1622

1623 1624 1625 1626 1627
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1628
		map->lock(map->lock_arg);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1651

1652 1653 1654 1655 1656
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1657 1658
out:
		map->unlock(map->lock_arg);
1659
	} else {
1660 1661
		void *wval;

1662 1663 1664
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1665
			return -ENOMEM;
1666 1667
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1668
			map->format.parse_inplace(wval + i);
1669

1670
		map->lock(map->lock_arg);
1671
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1672
		map->unlock(map->lock_arg);
1673 1674

		kfree(wval);
1675
	}
1676 1677 1678 1679
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1701 1702 1703
	if (!len)
		return -EINVAL;

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1751
	unsigned int this_page = 0;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1787 1788
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1789
				   size_t num_regs)
1790
{
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1834 1835

	for (i = 0; i < num_regs; i++) {
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1849 1850 1851
			return ret;
		}
	}
1852
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1853 1854
}

1855 1856 1857
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1858 1859
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1860 1861 1862 1863 1864
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1865 1866 1867 1868 1869
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1870
 *
1871 1872
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1873
 */
1874 1875
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1876
{
1877
	int ret;
1878 1879 1880

	map->lock(map->lock_arg);

1881 1882
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1883 1884 1885 1886 1887 1888
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1889 1890 1891 1892
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1906 1907 1908
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1909
{
1910 1911
	int ret;
	bool bypass;
1912 1913 1914

	map->lock(map->lock_arg);

1915 1916 1917 1918 1919 1920 1921
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1922 1923 1924 1925
	map->unlock(map->lock_arg);

	return ret;
}
1926
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

1962 1963 1964 1965 1966
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
1967 1968 1969 1970 1971 1972 1973

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1974 1975 1976
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1977
	struct regmap_range_node *range;
1978 1979 1980
	u8 *u8 = map->work_buf;
	int ret;

1981
	WARN_ON(!map->bus);
1982

1983 1984 1985 1986
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1987
		if (ret != 0)
1988 1989
			return ret;
	}
1990

1991
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1992 1993

	/*
1994
	 * Some buses or devices flag reads by setting the high bits in the
1995 1996 1997 1998
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1999
	u8[0] |= map->read_flag_mask;
2000

M
Mark Brown 已提交
2001 2002 2003
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2004
	ret = map->bus->read(map->bus_context, map->work_buf,
2005
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2006
			     val, val_len);
2007

M
Mark Brown 已提交
2008 2009 2010 2011
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2012 2013
}

2014 2015 2016 2017 2018 2019 2020 2021
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2038 2039 2040 2041
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2042 2043
	void *context = _regmap_map_get_context(map);

2044
	WARN_ON(!map->reg_read);
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2055 2056 2057
	if (!regmap_readable(map, reg))
		return -EIO;

2058
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2059
	if (ret == 0) {
2060
#ifdef LOG_DEVICE
2061
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2062 2063 2064
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2065
		trace_regmap_reg_read(map->dev, reg, *val);
2066

2067 2068 2069
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2070

2071 2072 2073 2074 2075 2076
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2077
 * @map: Register map to read from
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2088 2089 2090
	if (reg % map->reg_stride)
		return -EINVAL;

2091
	map->lock(map->lock_arg);
2092 2093 2094

	ret = _regmap_read(map, reg, val);

2095
	map->unlock(map->lock_arg);
2096 2097 2098 2099 2100 2101 2102 2103

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2104
 * @map: Register map to read from
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2115 2116 2117 2118
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2119

2120 2121
	if (!map->bus)
		return -EINVAL;
2122 2123
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2124 2125
	if (reg % map->reg_stride)
		return -EINVAL;
2126

2127
	map->lock(map->lock_arg);
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2139 2140
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2141 2142 2143
			if (ret != 0)
				goto out;

2144
			map->format.format_val(val + (i * val_bytes), v, 0);
2145 2146
		}
	}
2147

2148
 out:
2149
	map->unlock(map->lock_arg);
2150 2151 2152 2153 2154

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2213 2214 2215
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2216
 * @map: Register map to read from
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2229
	bool vol = regmap_volatile_range(map, reg, val_count);
2230

2231 2232
	if (reg % map->reg_stride)
		return -EINVAL;
2233

2234
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2254 2255

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2256
			map->format.parse_inplace(val + i);
2257 2258
	} else {
		for (i = 0; i < val_count; i++) {
2259
			unsigned int ival;
2260
			ret = regmap_read(map, reg + (i * map->reg_stride),
2261
					  &ival);
2262 2263
			if (ret != 0)
				return ret;
2264
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2265 2266
		}
	}
2267 2268 2269 2270 2271

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2272 2273 2274
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2275 2276
{
	int ret;
2277
	unsigned int tmp, orig;
2278

2279
	ret = _regmap_read(map, reg, &orig);
2280
	if (ret != 0)
2281
		return ret;
2282

2283
	tmp = orig & ~mask;
2284 2285
	tmp |= val & mask;

2286
	if (tmp != orig) {
2287
		ret = _regmap_write(map, reg, tmp);
2288 2289
		if (change)
			*change = true;
2290
	} else {
2291 2292
		if (change)
			*change = false;
2293
	}
2294 2295 2296

	return ret;
}
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2311 2312
	int ret;

2313
	map->lock(map->lock_arg);
2314
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2315
	map->unlock(map->lock_arg);
2316 2317

	return ret;
2318
}
2319
EXPORT_SYMBOL_GPL(regmap_update_bits);
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2345
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2346 2347 2348 2349 2350 2351 2352 2353 2354

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2371 2372
	int ret;

2373
	map->lock(map->lock_arg);
2374
	ret = _regmap_update_bits(map, reg, mask, val, change);
2375
	map->unlock(map->lock_arg);
2376
	return ret;
2377 2378 2379
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2417 2418 2419 2420 2421
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2422 2423
	trace_regmap_async_io_complete(map->dev);

2424
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2425
	list_move(&async->list, &map->async_free);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2436
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2464
	if (!map->bus || !map->bus->async_write)
2465 2466
		return 0;

2467 2468
	trace_regmap_async_complete_start(map->dev);

2469 2470 2471 2472 2473 2474 2475
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2476 2477
	trace_regmap_async_complete_done(map->dev);

2478 2479
	return ret;
}
2480
EXPORT_SYMBOL_GPL(regmap_async_complete);
2481

M
Mark Brown 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2495 2496 2497
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2498 2499 2500 2501
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2502
	struct reg_default *p;
2503
	int ret;
M
Mark Brown 已提交
2504 2505
	bool bypass;

2506 2507 2508 2509
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2510 2511 2512 2513 2514 2515 2516
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2517
	} else {
2518
		return -ENOMEM;
M
Mark Brown 已提交
2519 2520
	}

2521
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2522 2523 2524 2525

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2526
	map->async = true;
M
Mark Brown 已提交
2527

2528 2529 2530
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2531 2532

out:
2533
	map->async = false;
M
Mark Brown 已提交
2534 2535
	map->cache_bypass = bypass;

2536
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2537

2538 2539
	regmap_async_complete(map);

M
Mark Brown 已提交
2540 2541 2542 2543
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2544
/*
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2571 2572 2573 2574 2575 2576 2577
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);