amd_iommu.c 101.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107 108 109 110 111 112
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
113
	u16 alias;			  /* Alias Device ID */
114
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
115
	bool passthrough;		  /* Device is identity mapped */
116 117 118 119 120 121 122
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
123
	bool use_vapic;			  /* Enable device to use vapic mode */
124 125

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
126 127
};

128 129 130
/*
 * general struct to manage commands send to an IOMMU
 */
131
struct iommu_cmd {
132 133 134
	u32 data[4];
};

135 136
struct kmem_cache *amd_iommu_irq_cache;

137
static void update_domain(struct protection_domain *domain);
138
static int protection_domain_init(struct protection_domain *domain);
139
static void detach_device(struct device *dev);
140
static void iova_domain_flush_tlb(struct iova_domain *iovad);
141

142 143 144 145 146 147 148
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

149 150
	/* IOVA RB-Tree */
	struct iova_domain iovad;
151 152
};

153 154 155
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

156 157 158 159 160 161
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

162 163
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
164
{
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
180 181
}

182
static inline u16 get_pci_device_id(struct device *dev)
183 184 185 186 187 188
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

216 217 218 219 220
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

221 222 223 224 225 226
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

227
static struct iommu_dev_data *alloc_dev_data(u16 devid)
228 229 230 231 232 233 234 235
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

236
	dev_data->devid = devid;
237 238 239 240 241

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

242 243
	ratelimit_default_init(&dev_data->rs);

244 245 246
	return dev_data;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

266 267 268 269 270 271 272 273 274 275 276
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

277
	/* The callers make sure that get_device_id() does not fail here */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
319
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
320 321 322 323 324 325 326 327
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

328 329 330 331 332 333 334 335 336 337 338 339
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

340 341 342 343 344
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

345 346 347 348
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
349
{
350
	struct acpihid_map_entry *p, *entry = NULL;
351
	int devid;
352 353 354 355 356 357 358 359 360 361 362 363

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
364 365
	else
		iommu_group_ref_get(entry->group);
366 367

	return entry->group;
368 369
}

370 371 372 373
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
374 375
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
376 377 378 379 380 381 382 383 384 385 386 387
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

388 389 390 391 392 393 394 395 396
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

397 398 399 400 401 402
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
403
	int devid;
404 405 406 407 408

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
409
	if (devid < 0)
410
		return false;
411 412 413 414 415 416 417 418 419 420 421

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

422
static void init_iommu_group(struct device *dev)
423 424 425
{
	struct iommu_group *group;

426
	group = iommu_group_get_for_dev(dev);
427 428 429 430
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
431 432 433 434 435
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
436
	struct amd_iommu *iommu;
437
	int devid;
438 439 440 441

	if (dev->archdata.iommu)
		return 0;

442
	devid = get_device_id(dev);
443
	if (devid < 0)
444 445
		return devid;

446 447
	iommu = amd_iommu_rlookup_table[devid];

448
	dev_data = find_dev_data(devid);
449 450 451
	if (!dev_data)
		return -ENOMEM;

452 453
	dev_data->alias = get_alias(dev);

454
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
455 456
		struct amd_iommu *iommu;

457
		iommu = amd_iommu_rlookup_table[dev_data->devid];
458 459 460
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

461 462
	dev->archdata.iommu = dev_data;

463
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
464

465 466 467
	return 0;
}

468 469
static void iommu_ignore_device(struct device *dev)
{
470 471
	u16 alias;
	int devid;
472 473

	devid = get_device_id(dev);
474
	if (devid < 0)
475 476
		return;

477
	alias = get_alias(dev);
478 479 480 481 482 483 484 485

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

486 487
static void iommu_uninit_device(struct device *dev)
{
488
	struct iommu_dev_data *dev_data;
489 490
	struct amd_iommu *iommu;
	int devid;
491

492
	devid = get_device_id(dev);
493
	if (devid < 0)
494
		return;
495

496 497
	iommu = amd_iommu_rlookup_table[devid];

498
	dev_data = search_dev_data(devid);
499 500 501
	if (!dev_data)
		return;

502 503 504
	if (dev_data->domain)
		detach_device(dev);

505
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
506

507 508
	iommu_group_remove_device(dev);

509
	/* Remove dma-ops */
510
	dev->dma_ops = NULL;
511

512
	/*
513 514
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
515
	 */
516
}
J
Joerg Roedel 已提交
517

518 519 520 521 522 523
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

524 525 526 527
static void dump_dte_entry(u16 devid)
{
	int i;

528 529
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
530 531 532
			amd_iommu_dev_table[devid].data[i]);
}

533 534 535 536 537 538 539 540 541
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

565
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
566
{
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
588

589 590 591 592 593 594
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
595 596 597 598 599

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
600
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601
		       address, flags);
602
		dump_dte_entry(devid);
603 604 605 606
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
607
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 609 610 611 612
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
613
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 615 616 617
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
618
		dump_command(address);
619 620 621 622 623 624 625 626
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631 632
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
633
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 635 636 637 638
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
639 640

	memset(__evt, 0, 4 * sizeof(u32));
641 642 643 644 645 646 647 648 649 650
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
651
		iommu_print_event(iommu, iommu->evt_buf + head);
652
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
653 654 655 656 657
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

658
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
703

704 705 706
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
707

708 709 710 711 712 713 714
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
715 716
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 718 719 720 721 722

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
723 724 725 726
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

787
irqreturn_t amd_iommu_int_thread(int irq, void *data)
788
{
789 790
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
791

792 793 794
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
795
			iommu->mmio_base + MMIO_STATUS_OFFSET);
796

797 798 799 800
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
801

802 803 804 805
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
806

807 808 809 810 811 812 813
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
829
	return IRQ_HANDLED;
830 831
}

832 833 834 835 836
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

837 838 839 840 841 842
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
861
			       struct iommu_cmd *cmd)
862 863 864
{
	u8 *target;

865 866 867 868
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
869 870 871 872 873

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
874
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
875
}
876

877
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
878
{
879 880
	WARN_ON(address & 0x7ULL);

881
	memset(cmd, 0, sizeof(*cmd));
882 883 884
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
885 886 887
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

888 889 890 891 892 893 894
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

895 896 897 898
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
899
	bool s;
900 901

	pages = iommu_num_pages(address, size, PAGE_SIZE);
902
	s     = false;
903 904 905 906 907 908 909

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
910
		s = true;
911 912 913 914 915 916 917 918 919 920 921
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
922
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
923 924 925
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

926 927 928 929
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
930
	bool s;
931 932

	pages = iommu_num_pages(address, size, PAGE_SIZE);
933
	s     = false;
934 935 936 937 938 939 940

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
941
		s = true;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

957 958 959 960 961 962 963
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

964
	cmd->data[0]  = pasid;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
983
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
984 985
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
986
	cmd->data[1] |= (pasid & 0xff) << 16;
987 988 989 990 991 992 993 994
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

995 996 997 998 999 1000 1001
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1002
		cmd->data[1]  = pasid;
1003 1004 1005 1006 1007 1008 1009 1010
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1011 1012 1013 1014
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1024 1025
/*
 * Writes the command to the IOMMUs command buffer and informs the
1026
 * hardware about the new command.
1027
 */
1028 1029 1030
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1031
{
1032
	unsigned int count = 0;
1033
	u32 left, next_tail;
1034

1035
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1036
again:
1037
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1038

1039
	if (left <= 0x20) {
1040 1041 1042 1043 1044 1045
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1046

1047 1048
			udelay(1);
		}
1049

1050 1051 1052
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1053 1054

		goto again;
1055 1056
	}

1057
	copy_cmd_to_buffer(iommu, cmd);
1058

1059
	/* Do we need to make sure all commands are processed? */
1060
	iommu->need_sync = sync;
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1074
	spin_unlock_irqrestore(&iommu->lock, flags);
1075

1076
	return ret;
1077 1078
}

1079 1080 1081 1082 1083
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1084 1085 1086 1087
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1088
static int iommu_completion_wait(struct amd_iommu *iommu)
1089 1090
{
	struct iommu_cmd cmd;
1091
	unsigned long flags;
1092
	int ret;
1093

1094
	if (!iommu->need_sync)
1095
		return 0;
1096

1097

1098 1099 1100 1101 1102 1103 1104
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1105
	if (ret)
1106 1107 1108 1109 1110 1111
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1112

1113
	return ret;
1114 1115
}

1116
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1117
{
1118
	struct iommu_cmd cmd;
1119

1120
	build_inv_dte(&cmd, devid);
1121

1122 1123
	return iommu_queue_command(iommu, &cmd);
}
1124

1125 1126 1127
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1128

1129 1130
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1131

1132 1133
	iommu_completion_wait(iommu);
}
1134

1135 1136 1137 1138 1139 1140 1141
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1142

1143 1144 1145 1146 1147 1148
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1149

1150
	iommu_completion_wait(iommu);
1151 1152
}

1153
static void iommu_flush_all(struct amd_iommu *iommu)
1154
{
1155
	struct iommu_cmd cmd;
1156

1157
	build_inv_all(&cmd);
1158

1159 1160 1161 1162
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1182 1183
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1184 1185 1186 1187
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1188
		iommu_flush_irt_all(iommu);
1189
		iommu_flush_tlb_all(iommu);
1190 1191 1192
	}
}

1193
/*
1194
 * Command send function for flushing on-device TLB
1195
 */
1196 1197
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1198 1199
{
	struct amd_iommu *iommu;
1200
	struct iommu_cmd cmd;
1201
	int qdep;
1202

1203 1204
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1205

1206
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1207 1208

	return iommu_queue_command(iommu, &cmd);
1209 1210
}

1211 1212 1213
/*
 * Command send function for invalidating a device table entry
 */
1214
static int device_flush_dte(struct iommu_dev_data *dev_data)
1215
{
1216
	struct amd_iommu *iommu;
1217
	u16 alias;
1218
	int ret;
1219

1220
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1221
	alias = dev_data->alias;
1222

1223
	ret = iommu_flush_dte(iommu, dev_data->devid);
1224 1225
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1226 1227 1228
	if (ret)
		return ret;

1229
	if (dev_data->ats.enabled)
1230
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1231 1232

	return ret;
1233 1234
}

1235 1236 1237 1238 1239
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1240 1241
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1242
{
1243
	struct iommu_dev_data *dev_data;
1244 1245
	struct iommu_cmd cmd;
	int ret = 0, i;
1246

1247
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1248

1249
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1250 1251 1252 1253 1254 1255 1256
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1257
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1258 1259
	}

1260 1261
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1262
		if (!dev_data->ats.enabled)
1263 1264
			continue;

1265
		ret |= device_flush_iotlb(dev_data, address, size);
1266 1267
	}

1268
	WARN_ON(ret);
1269 1270
}

1271 1272
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1273
{
1274
	__domain_flush_pages(domain, address, size, 0);
1275
}
1276

1277
/* Flush the whole IO/TLB for a given protection domain */
1278
static void domain_flush_tlb(struct protection_domain *domain)
1279
{
1280
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1281 1282
}

1283
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1284
static void domain_flush_tlb_pde(struct protection_domain *domain)
1285
{
1286
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1287 1288
}

1289
static void domain_flush_complete(struct protection_domain *domain)
1290
{
1291
	int i;
1292

1293
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1294
		if (domain && !domain->dev_iommu[i])
1295
			continue;
1296

1297 1298 1299 1300 1301
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1302
	}
1303 1304
}

1305

1306
/*
1307
 * This function flushes the DTEs for all devices in domain
1308
 */
1309
static void domain_flush_devices(struct protection_domain *domain)
1310
{
1311
	struct iommu_dev_data *dev_data;
1312

1313
	list_for_each_entry(dev_data, &domain->dev_list, list)
1314
		device_flush_dte(dev_data);
1315 1316
}

1317 1318 1319 1320 1321 1322 1323
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1353
		      unsigned long page_size,
1354 1355 1356
		      u64 **pte_page,
		      gfp_t gfp)
{
1357
	int level, end_lvl;
1358
	u64 *pte, *page;
1359 1360

	BUG_ON(!is_power_of_2(page_size));
1361 1362 1363 1364

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1365 1366 1367 1368
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1369 1370

	while (level > end_lvl) {
1371 1372 1373 1374 1375
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1376 1377 1378
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1379 1380 1381

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1382 1383
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1384 1385 1386
				free_page((unsigned long)page);
				continue;
			}
1387 1388
		}

1389 1390 1391 1392
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1410 1411 1412
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1413 1414 1415 1416
{
	int level;
	u64 *pte;

1417 1418 1419
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1420 1421 1422
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1423

1424 1425 1426
	while (level > 0) {

		/* Not Present */
1427 1428 1429
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1430
		/* Large PTE */
1431 1432 1433
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1434 1435 1436 1437 1438

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1439 1440
		level -= 1;

1441
		/* Walk to the next level */
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1457 1458 1459 1460 1461
	}

	return pte;
}

1462 1463 1464 1465 1466 1467 1468
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1469 1470 1471
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1472
			  unsigned long page_size,
1473
			  int prot,
1474
			  gfp_t gfp)
1475
{
1476
	u64 __pte, *pte;
1477
	int i, count;
1478

1479 1480 1481
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1482
	if (!(prot & IOMMU_PROT_MASK))
1483 1484
		return -EINVAL;

1485
	count = PAGE_SIZE_PTE_COUNT(page_size);
1486
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1487

1488 1489 1490
	if (!pte)
		return -ENOMEM;

1491 1492 1493
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1494

1495
	if (count > 1) {
1496 1497 1498 1499
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1500 1501 1502 1503 1504 1505

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1506 1507
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1508

1509 1510
	update_domain(dom);

1511 1512 1513
	return 0;
}

1514 1515 1516
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1517
{
1518 1519
	unsigned long long unmapped;
	unsigned long unmap_size;
1520 1521 1522 1523 1524
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1525

1526 1527
	while (unmapped < page_size) {

1528 1529 1530 1531 1532 1533
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1534 1535 1536 1537 1538 1539 1540 1541
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1542
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1543

1544
	return unmapped;
1545 1546
}

1547 1548 1549
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1550
 * interface functions.
1551 1552
 *
 ****************************************************************************/
1553

1554

1555 1556 1557
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1558
{
1559
	unsigned long pfn = 0;
1560

1561
	pages = __roundup_pow_of_two(pages);
1562

1563 1564 1565
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1566

1567 1568
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1569

1570
	return (pfn << PAGE_SHIFT);
1571 1572
}

1573 1574 1575
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1576
{
1577 1578
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1579

1580
	free_iova_fast(&dma_dom->iovad, address, pages);
1581 1582
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1655
		/* PTE present? */				\
1656 1657 1658
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1659 1660 1661 1662 1663
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1676
static void free_pagetable(struct protection_domain *domain)
1677
{
1678
	unsigned long root = (unsigned long)domain->pt_root;
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1703 1704 1705
	}
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1736 1737
static void free_gcr3_table(struct protection_domain *domain)
{
1738 1739 1740 1741
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1742 1743
	else
		BUG_ON(domain->glx != 0);
1744

1745 1746 1747
	free_page((unsigned long)domain->gcr3_tbl);
}

1748 1749 1750 1751 1752 1753
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
}

1754
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1755
{
1756
	struct dma_ops_domain *dom;
1757

1758
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1759 1760 1761 1762

	dma_ops_domain_flush_tlb(dom);
}

1763 1764 1765 1766
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1767 1768 1769 1770 1771
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1772 1773
	del_domain_from_list(&dom->domain);

1774
	put_iova_domain(&dom->iovad);
1775

1776
	free_pagetable(&dom->domain);
1777

1778 1779 1780
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1781 1782 1783
	kfree(dom);
}

1784 1785
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1786
 * It also initializes the page table and the address allocator data
1787 1788
 * structures required for the dma_ops interface
 */
1789
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1790 1791 1792 1793 1794 1795 1796
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1797
	if (protection_domain_init(&dma_dom->domain))
1798
		goto free_dma_dom;
1799

1800
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1801
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1802
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1803 1804 1805
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1806 1807 1808
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1809
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1810 1811
		goto free_dma_dom;

1812 1813
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1814

1815 1816
	add_domain_to_list(&dma_dom->domain);

1817 1818 1819 1820 1821 1822 1823 1824
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1834
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1835
{
1836
	u64 pte_root = 0;
1837
	u64 flags = 0;
1838

1839 1840 1841
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1842 1843 1844
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1845

1846 1847
	flags = amd_iommu_dev_table[devid].data[1];

1848 1849 1850
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1877 1878

	flags &= ~(DTE_FLAG_SA | 0xffffULL);
1879 1880 1881 1882
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1883 1884 1885 1886 1887
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1888 1889
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1890 1891

	amd_iommu_apply_erratum_63(devid);
1892 1893
}

1894 1895
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1896 1897
{
	struct amd_iommu *iommu;
1898
	u16 alias;
1899
	bool ats;
1900

1901
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1902
	alias = dev_data->alias;
1903
	ats   = dev_data->ats.enabled;
1904 1905 1906 1907 1908 1909 1910 1911 1912

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1913 1914 1915
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1916
		set_dte_entry(alias, domain, ats);
1917

1918
	device_flush_dte(dev_data);
1919 1920
}

1921
static void do_detach(struct iommu_dev_data *dev_data)
1922 1923
{
	struct amd_iommu *iommu;
1924
	u16 alias;
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1935
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1936
	alias = dev_data->alias;
1937 1938

	/* decrease reference counters */
1939 1940 1941 1942 1943 1944
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1945
	clear_dte_entry(dev_data->devid);
1946 1947
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1948

1949
	/* Flush the DTE entry */
1950
	device_flush_dte(dev_data);
1951 1952 1953 1954 1955 1956
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1957
static int __attach_device(struct iommu_dev_data *dev_data,
1958
			   struct protection_domain *domain)
1959
{
1960
	int ret;
1961

1962 1963 1964 1965 1966 1967
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1968 1969 1970
	/* lock domain */
	spin_lock(&domain->lock);

1971
	ret = -EBUSY;
1972
	if (dev_data->domain != NULL)
1973
		goto out_unlock;
1974

1975
	/* Attach alias group root */
1976
	do_attach(dev_data, domain);
1977

1978 1979 1980 1981
	ret = 0;

out_unlock:

1982 1983
	/* ready */
	spin_unlock(&domain->lock);
1984

1985
	return ret;
1986
}
1987

1988 1989 1990 1991 1992 1993 1994 1995

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1996 1997 1998 1999 2000 2001
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2002
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2003 2004 2005
	if (!pos)
		return -EINVAL;

2006 2007 2008
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2009 2010 2011 2012

	return 0;
}

2013 2014
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2015 2016 2017 2018 2019 2020 2021 2022
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2034 2035
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2036 2037 2038
	if (ret)
		goto out_err;

2039 2040 2041 2042 2043 2044
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2058
/* FIXME: Move this to PCI code */
2059
#define PCI_PRI_TLP_OFF		(1 << 15)
2060

J
Joerg Roedel 已提交
2061
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2062
{
2063
	u16 status;
2064 2065
	int pos;

2066
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2067 2068 2069
	if (!pos)
		return false;

2070
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2071

2072
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2073 2074
}

2075
/*
F
Frank Arnold 已提交
2076
 * If a device is not yet associated with a domain, this function
2077 2078
 * assigns it visible for the hardware
 */
2079 2080
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2081
{
2082
	struct pci_dev *pdev;
2083
	struct iommu_dev_data *dev_data;
2084
	unsigned long flags;
2085
	int ret;
2086

2087 2088
	dev_data = get_dev_data(dev);

2089 2090 2091 2092
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2093
	if (domain->flags & PD_IOMMUV2_MASK) {
2094
		if (!dev_data->passthrough)
2095 2096
			return -EINVAL;

2097 2098 2099
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2100

2101 2102 2103 2104
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2105 2106
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2107 2108 2109
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2110

2111
skip_ats_check:
2112
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2113
	ret = __attach_device(dev_data, domain);
2114 2115
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2116 2117 2118 2119 2120
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2121
	domain_flush_tlb_pde(domain);
2122 2123

	return ret;
2124 2125
}

2126 2127 2128
/*
 * Removes a device from a protection domain (unlocked)
 */
2129
static void __detach_device(struct iommu_dev_data *dev_data)
2130
{
2131
	struct protection_domain *domain;
2132

2133 2134 2135 2136 2137
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2138

2139 2140
	if (WARN_ON(!dev_data->domain))
		return;
2141

2142
	domain = dev_data->domain;
2143

2144
	spin_lock(&domain->lock);
2145

2146
	do_detach(dev_data);
2147

2148
	spin_unlock(&domain->lock);
2149 2150 2151 2152 2153
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2154
static void detach_device(struct device *dev)
2155
{
2156
	struct protection_domain *domain;
2157
	struct iommu_dev_data *dev_data;
2158 2159
	unsigned long flags;

2160
	dev_data = get_dev_data(dev);
2161
	domain   = dev_data->domain;
2162

2163 2164
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2165
	__detach_device(dev_data);
2166
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2167

2168 2169 2170
	if (!dev_is_pci(dev))
		return;

2171
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2172 2173
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2174
		pci_disable_ats(to_pci_dev(dev));
2175 2176

	dev_data->ats.enabled = false;
2177
}
2178

2179
static int amd_iommu_add_device(struct device *dev)
2180
{
2181
	struct iommu_dev_data *dev_data;
2182
	struct iommu_domain *domain;
2183
	struct amd_iommu *iommu;
2184
	int ret, devid;
2185

2186
	if (!check_device(dev) || get_dev_data(dev))
2187
		return 0;
2188

2189
	devid = get_device_id(dev);
2190
	if (devid < 0)
2191 2192
		return devid;

2193
	iommu = amd_iommu_rlookup_table[devid];
2194

2195
	ret = iommu_init_device(dev);
2196 2197 2198 2199
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2200

2201
		iommu_ignore_device(dev);
2202
		dev->dma_ops = &nommu_dma_ops;
2203 2204 2205
		goto out;
	}
	init_iommu_group(dev);
2206

2207
	dev_data = get_dev_data(dev);
2208

2209
	BUG_ON(!dev_data);
2210

2211
	if (iommu_pass_through || dev_data->iommu_v2)
2212
		iommu_request_dm_for_dev(dev);
2213

2214 2215
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2216
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2217
		dev_data->passthrough = true;
2218
	else
2219
		dev->dma_ops = &amd_iommu_dma_ops;
2220

2221
out:
2222 2223 2224 2225 2226
	iommu_completion_wait(iommu);

	return 0;
}

2227
static void amd_iommu_remove_device(struct device *dev)
2228
{
2229
	struct amd_iommu *iommu;
2230
	int devid;
2231 2232 2233 2234 2235

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2236
	if (devid < 0)
2237 2238
		return;

2239 2240 2241 2242
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2243 2244
}

2245 2246 2247 2248 2249 2250 2251 2252
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2266
static struct protection_domain *get_domain(struct device *dev)
2267
{
2268
	struct protection_domain *domain;
2269

2270
	if (!check_device(dev))
2271
		return ERR_PTR(-EINVAL);
2272

2273
	domain = get_dev_data(dev)->domain;
2274
	if (!dma_ops_domain(domain))
2275
		return ERR_PTR(-EBUSY);
2276

2277
	return domain;
2278 2279
}

2280 2281
static void update_device_table(struct protection_domain *domain)
{
2282
	struct iommu_dev_data *dev_data;
2283

2284
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2285
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2286 2287 2288 2289 2290 2291 2292

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2293 2294 2295 2296 2297 2298 2299 2300
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2301 2302 2303

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2304 2305 2306 2307

	domain->updated = false;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2319 2320
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2321 2322
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2323 2324
 * Must be called with the domain lock held.
 */
2325 2326 2327 2328
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2329
			       enum dma_data_direction direction,
2330
			       u64 dma_mask)
2331 2332
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2333
	dma_addr_t address, start, ret;
2334
	unsigned int pages;
2335
	int prot = 0;
2336 2337
	int i;

2338
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2339 2340
	paddr &= PAGE_MASK;

2341
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2342
	if (address == AMD_IOMMU_MAPPING_ERROR)
2343
		goto out;
2344

2345
	prot = dir2prot(direction);
2346

2347 2348
	start = address;
	for (i = 0; i < pages; ++i) {
2349 2350 2351
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2352 2353
			goto out_unmap;

2354 2355 2356 2357 2358
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2359
	if (unlikely(amd_iommu_np_cache)) {
2360
		domain_flush_pages(&dma_dom->domain, address, size);
2361 2362
		domain_flush_complete(&dma_dom->domain);
	}
2363

2364 2365
out:
	return address;
2366 2367 2368 2369 2370

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2371
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2372 2373
	}

2374 2375 2376 2377
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2378

2379
	return AMD_IOMMU_MAPPING_ERROR;
2380 2381
}

2382 2383 2384 2385
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2386
static void __unmap_single(struct dma_ops_domain *dma_dom,
2387 2388 2389 2390
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2391
	dma_addr_t flush_addr;
2392 2393 2394
	dma_addr_t i, start;
	unsigned int pages;

2395
	flush_addr = dma_addr;
2396
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2397 2398 2399 2400
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2401
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2402 2403 2404
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2405 2406 2407 2408 2409
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2410 2411
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2412
	}
2413 2414
}

2415 2416 2417
/*
 * The exported map_single function for dma_ops.
 */
2418 2419 2420
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2421
			   unsigned long attrs)
2422
{
2423
	phys_addr_t paddr = page_to_phys(page) + offset;
2424
	struct protection_domain *domain;
2425
	struct dma_ops_domain *dma_dom;
2426
	u64 dma_mask;
2427

2428 2429
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2430
		return (dma_addr_t)paddr;
2431
	else if (IS_ERR(domain))
2432
		return AMD_IOMMU_MAPPING_ERROR;
2433

2434
	dma_mask = *dev->dma_mask;
2435
	dma_dom = to_dma_ops_domain(domain);
2436

2437
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2438 2439
}

2440 2441 2442
/*
 * The exported unmap_single function for dma_ops.
 */
2443
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2444
		       enum dma_data_direction dir, unsigned long attrs)
2445 2446
{
	struct protection_domain *domain;
2447
	struct dma_ops_domain *dma_dom;
2448

2449 2450
	domain = get_domain(dev);
	if (IS_ERR(domain))
2451 2452
		return;

2453 2454 2455
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2484 2485 2486 2487
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2488
static int map_sg(struct device *dev, struct scatterlist *sglist,
2489
		  int nelems, enum dma_data_direction direction,
2490
		  unsigned long attrs)
2491
{
2492
	int mapped_pages = 0, npages = 0, prot = 0, i;
2493
	struct protection_domain *domain;
2494
	struct dma_ops_domain *dma_dom;
2495
	struct scatterlist *s;
2496
	unsigned long address;
2497
	u64 dma_mask;
2498

2499
	domain = get_domain(dev);
2500
	if (IS_ERR(domain))
2501
		return 0;
2502

2503
	dma_dom  = to_dma_ops_domain(domain);
2504
	dma_mask = *dev->dma_mask;
2505

2506 2507 2508
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2509
	if (address == AMD_IOMMU_MAPPING_ERROR)
2510 2511 2512 2513 2514
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2515
	for_each_sg(sglist, s, nelems, i) {
2516 2517 2518 2519 2520
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2521

2522 2523 2524 2525 2526
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2527

2528 2529
			mapped_pages += 1;
		}
2530 2531
	}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2549

2550 2551 2552 2553 2554 2555
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2556 2557
	}

2558 2559 2560 2561
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2562
	return 0;
2563 2564
}

2565 2566 2567 2568
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2569
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2570
		     int nelems, enum dma_data_direction dir,
2571
		     unsigned long attrs)
2572 2573
{
	struct protection_domain *domain;
2574
	struct dma_ops_domain *dma_dom;
2575 2576
	unsigned long startaddr;
	int npages = 2;
2577

2578 2579
	domain = get_domain(dev);
	if (IS_ERR(domain))
2580 2581
		return;

2582
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2583
	dma_dom   = to_dma_ops_domain(domain);
2584 2585
	npages    = sg_num_pages(dev, sglist, nelems);

2586
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2587 2588
}

2589 2590 2591
/*
 * The exported alloc_coherent function for dma_ops.
 */
2592
static void *alloc_coherent(struct device *dev, size_t size,
2593
			    dma_addr_t *dma_addr, gfp_t flag,
2594
			    unsigned long attrs)
2595
{
2596
	u64 dma_mask = dev->coherent_dma_mask;
2597
	struct protection_domain *domain;
2598
	struct dma_ops_domain *dma_dom;
2599
	struct page *page;
2600

2601 2602
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2603 2604 2605
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2606 2607
	} else if (IS_ERR(domain))
		return NULL;
2608

2609
	dma_dom   = to_dma_ops_domain(domain);
2610
	size	  = PAGE_ALIGN(size);
2611 2612
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2613
	flag     |= __GFP_ZERO;
2614

2615 2616
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2617
		if (!gfpflags_allow_blocking(flag))
2618
			return NULL;
2619

2620
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2621
						 get_order(size), flag);
2622 2623 2624
		if (!page)
			return NULL;
	}
2625

2626 2627 2628
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2629
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2630
				 size, DMA_BIDIRECTIONAL, dma_mask);
2631

2632
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2633
		goto out_free;
2634

2635
	return page_address(page);
2636 2637 2638

out_free:

2639 2640
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2641 2642

	return NULL;
2643 2644
}

2645 2646 2647
/*
 * The exported free_coherent function for dma_ops.
 */
2648
static void free_coherent(struct device *dev, size_t size,
2649
			  void *virt_addr, dma_addr_t dma_addr,
2650
			  unsigned long attrs)
2651 2652
{
	struct protection_domain *domain;
2653
	struct dma_ops_domain *dma_dom;
2654
	struct page *page;
2655

2656 2657 2658
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2659 2660
	domain = get_domain(dev);
	if (IS_ERR(domain))
2661 2662
		goto free_mem;

2663 2664 2665
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2666 2667

free_mem:
2668 2669
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2670 2671
}

2672 2673 2674 2675 2676 2677
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2678 2679
	if (!x86_dma_supported(dev, mask))
		return 0;
2680
	return check_device(dev);
2681 2682
}

2683 2684 2685 2686 2687
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2688
static const struct dma_map_ops amd_iommu_dma_ops = {
2689 2690 2691 2692 2693 2694 2695
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2696
	.mapping_error	= amd_iommu_mapping_error,
2697 2698
};

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2752
int __init amd_iommu_init_api(void)
2753
{
2754
	int ret, err = 0;
2755 2756 2757 2758

	ret = iova_cache_get();
	if (ret)
		return ret;
2759

2760 2761 2762 2763
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2764 2765 2766 2767 2768 2769 2770 2771
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2772 2773 2774
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2775

2776
	return 0;
2777 2778
}

2779 2780
int __init amd_iommu_init_dma_ops(void)
{
2781
	swiotlb        = iommu_pass_through ? 1 : 0;
2782 2783
	iommu_detected = 1;

2784 2785 2786 2787 2788 2789 2790 2791 2792
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2793 2794 2795 2796 2797
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2798
	return 0;
2799

2800
}
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2814
	struct iommu_dev_data *entry;
2815 2816 2817 2818
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2819 2820 2821 2822
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2823
	}
2824 2825 2826 2827

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2828 2829 2830 2831 2832
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2833 2834
	del_domain_from_list(domain);

2835 2836 2837 2838 2839 2840
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2853
static struct protection_domain *protection_domain_alloc(void)
2854 2855 2856 2857 2858
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2859
		return NULL;
2860

2861
	if (protection_domain_init(domain))
2862 2863
		goto out_err;

2864 2865
	add_domain_to_list(domain);

2866 2867 2868 2869 2870 2871 2872 2873
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2874
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2875
{
2876
	struct protection_domain *pdomain;
2877
	struct dma_ops_domain *dma_domain;
2878

2879 2880 2881 2882 2883
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2884

2885 2886 2887 2888 2889 2890
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2891

2892 2893 2894
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2905 2906 2907 2908
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2909

2910 2911
		pdomain->mode = PAGE_MODE_NONE;
		break;
2912 2913 2914
	default:
		return NULL;
	}
2915

2916
	return &pdomain->domain;
2917 2918
}

2919
static void amd_iommu_domain_free(struct iommu_domain *dom)
2920
{
2921
	struct protection_domain *domain;
2922
	struct dma_ops_domain *dma_dom;
2923

2924 2925
	domain = to_pdomain(dom);

2926 2927 2928 2929 2930
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2931 2932
	if (!dom)
		return;
2933

2934 2935
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2936
		/* Now release the domain */
2937
		dma_dom = to_dma_ops_domain(domain);
2938 2939 2940 2941 2942
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2943

2944 2945 2946 2947 2948 2949
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2950 2951
}

2952 2953 2954
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2955
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2956
	struct amd_iommu *iommu;
2957
	int devid;
2958

2959
	if (!check_device(dev))
2960 2961
		return;

2962
	devid = get_device_id(dev);
2963
	if (devid < 0)
2964
		return;
2965

2966
	if (dev_data->domain != NULL)
2967
		detach_device(dev);
2968 2969 2970 2971 2972

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2973 2974 2975 2976 2977 2978
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2979 2980 2981
	iommu_completion_wait(iommu);
}

2982 2983 2984
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2985
	struct protection_domain *domain = to_pdomain(dom);
2986
	struct iommu_dev_data *dev_data;
2987
	struct amd_iommu *iommu;
2988
	int ret;
2989

2990
	if (!check_device(dev))
2991 2992
		return -EINVAL;

2993 2994
	dev_data = dev->archdata.iommu;

2995
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2996 2997 2998
	if (!iommu)
		return -EINVAL;

2999
	if (dev_data->domain)
3000
		detach_device(dev);
3001

3002
	ret = attach_device(dev, domain);
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3013 3014
	iommu_completion_wait(iommu);

3015
	return ret;
3016 3017
}

3018
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3019
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3020
{
3021
	struct protection_domain *domain = to_pdomain(dom);
3022 3023 3024
	int prot = 0;
	int ret;

3025 3026 3027
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3028 3029 3030 3031 3032
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3033
	mutex_lock(&domain->api_lock);
3034
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3035 3036
	mutex_unlock(&domain->api_lock);

3037
	return ret;
3038 3039
}

3040 3041
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3042
{
3043
	struct protection_domain *domain = to_pdomain(dom);
3044
	size_t unmap_size;
3045

3046 3047 3048
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3049
	mutex_lock(&domain->api_lock);
3050
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3051
	mutex_unlock(&domain->api_lock);
3052

3053
	domain_flush_tlb_pde(domain);
3054

3055
	return unmap_size;
3056 3057
}

3058
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3059
					  dma_addr_t iova)
3060
{
3061
	struct protection_domain *domain = to_pdomain(dom);
3062
	unsigned long offset_mask, pte_pgsize;
3063
	u64 *pte, __pte;
3064

3065 3066 3067
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3068
	pte = fetch_pte(domain, iova, &pte_pgsize);
3069

3070
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3071 3072
		return 0;

3073 3074
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3075

3076
	return (__pte & ~offset_mask) | (iova & offset_mask);
3077 3078
}

3079
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3080
{
3081 3082
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3083
		return true;
3084
	case IOMMU_CAP_INTR_REMAP:
3085
		return (irq_remapping_enabled == 1);
3086 3087
	case IOMMU_CAP_NOEXEC:
		return false;
3088 3089
	}

3090
	return false;
S
Sheng Yang 已提交
3091 3092
}

3093 3094
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3095
{
3096
	struct iommu_resv_region *region;
3097
	struct unity_map_entry *entry;
3098
	int devid;
3099 3100

	devid = get_device_id(dev);
3101
	if (devid < 0)
3102
		return;
3103 3104

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3105 3106
		size_t length;
		int prot = 0;
3107 3108 3109 3110

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3111 3112 3113 3114 3115 3116 3117 3118 3119
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3120 3121 3122 3123 3124 3125 3126
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3127 3128 3129

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3130
					 0, IOMMU_RESV_MSI);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3141 3142
}

3143
static void amd_iommu_put_resv_regions(struct device *dev,
3144 3145
				     struct list_head *head)
{
3146
	struct iommu_resv_region *entry, *next;
3147 3148 3149 3150 3151

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3152
static void amd_iommu_apply_resv_region(struct device *dev,
3153
				      struct iommu_domain *domain,
3154
				      struct iommu_resv_region *region)
3155
{
3156
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3157 3158 3159 3160 3161 3162 3163 3164
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3165
const struct iommu_ops amd_iommu_ops = {
3166
	.capable = amd_iommu_capable,
3167 3168
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3169 3170
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3171 3172
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3173
	.map_sg = default_iommu_map_sg,
3174
	.iova_to_phys = amd_iommu_iova_to_phys,
3175 3176
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3177
	.device_group = amd_iommu_device_group,
3178 3179 3180
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3181
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3182 3183
};

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3206 3207 3208

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3209
	struct protection_domain *domain = to_pdomain(dom);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3227 3228 3229

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3230
	struct protection_domain *domain = to_pdomain(dom);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3291
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3308 3309 3310 3311 3312 3313
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3345
	struct protection_domain *domain = to_pdomain(dom);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3365
	struct protection_domain *domain = to_pdomain(dom);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3445
	struct protection_domain *domain = to_pdomain(dom);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3459
	struct protection_domain *domain = to_pdomain(dom);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3487 3488 3489

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3490
	struct protection_domain *pdomain;
3491

3492 3493
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3494 3495 3496
		return NULL;

	/* Only return IOMMUv2 domains */
3497
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3498 3499
		return NULL;

3500
	return &pdomain->domain;
3501 3502
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3558 3559 3560 3561 3562 3563 3564 3565 3566

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3567 3568
static struct irq_chip amd_ir_chip;

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3603
		goto out_unlock;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3617
		goto out_unlock;
3618

3619 3620 3621
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3622 3623 3624 3625 3626 3627 3628
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3629
		table = NULL;
3630
		goto out_unlock;
3631 3632
	}

3633 3634 3635 3636 3637 3638
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3639 3640 3641 3642 3643

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3644
			iommu->irte_ops->set_allocated(table, i);
3645 3646 3647 3648 3649 3650 3651
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3652
		set_dte_irq_entry(alias, table);
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3665
static int alloc_irq_index(u16 devid, int count)
3666 3667 3668 3669
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3670 3671 3672 3673
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3685
		if (!iommu->irte_ops->is_allocated(table, index))
3686 3687 3688 3689 3690 3691
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3692
				iommu->irte_ops->set_allocated(table, index - c + 1);
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3707 3708
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3709 3710 3711 3712
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3713
	struct irte_ga *entry;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3724 3725 3726 3727 3728 3729 3730

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3731 3732
	if (data)
		data->ref = entry;
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3757
	table->table[index] = irte->val;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3781
	iommu->irte_ops->clear_allocated(table, index);
3782 3783 3784 3785 3786 3787
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3788 3789
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3790
			 u8 vector, u32 dest_apicid, int devid)
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3804
			    u8 vector, u32 dest_apicid, int devid)
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3830
	modify_irte_ga(devid, index, irte, NULL);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3846
	modify_irte_ga(devid, index, irte, NULL);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3863
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3864

3865 3866
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
3867 3868 3869 3870
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3871 3872
}

3873
#define IRTE_ALLOCATED (~1U)
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3919
static int get_devid(struct irq_alloc_info *info)
3920
{
3921
	int devid = -1;
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3938

3939 3940
	return devid;
}
3941

3942 3943 3944 3945
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3946

3947 3948
	if (!info)
		return NULL;
3949

3950 3951 3952 3953 3954 3955
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3956

3957
	return NULL;
3958 3959
}

3960
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3961
{
3962 3963
	struct amd_iommu *iommu;
	int devid;
3964

3965 3966
	if (!info)
		return NULL;
3967

3968 3969 3970 3971
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3972
		if (devid < 0)
3973 3974
			return NULL;

3975 3976 3977
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3978 3979 3980 3981
		break;
	default:
		break;
	}
3982

3983 3984
	return NULL;
}
3985

3986 3987 3988 3989 3990 3991
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3992 3993 3994
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3995

3996 3997 3998 3999 4000 4001 4002 4003
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4004 4005 4006 4007
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4008

4009 4010
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4011 4012
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4013
				 irq_cfg->dest_apicid, devid);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4029

4030 4031 4032 4033 4034 4035 4036
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4037

4038 4039 4040 4041
	default:
		BUG_ON(1);
		break;
	}
4042 4043
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4064 4065
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4066
{
4067 4068
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4069
	struct amd_ir_data *data = NULL;
4070
	struct irq_cfg *cfg;
4071 4072
	int i, ret, devid;
	int index = -1;
4073

4074 4075 4076 4077
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4078 4079
		return -EINVAL;

4080 4081 4082 4083 4084 4085
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4086

4087 4088 4089
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4090

4091 4092 4093
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4094

4095 4096 4097 4098 4099 4100
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4101
		index = alloc_irq_index(devid, nr_irqs);
4102 4103 4104
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4105
		ret = index;
4106 4107
		goto out_free_parent;
	}
4108

4109 4110 4111 4112 4113 4114 4115
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4116

4117 4118 4119 4120 4121
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4132 4133 4134 4135 4136 4137
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4138

4139
	return 0;
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4152 4153
}

4154 4155
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4156
{
4157 4158 4159 4160
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4161

4162 4163 4164 4165 4166 4167
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4168
			kfree(data->entry);
4169 4170 4171 4172 4173
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4174

4175 4176 4177 4178 4179
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4180
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4181

4182 4183 4184
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4185 4186
}

4187 4188
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4189
{
4190 4191
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4192
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4193

4194 4195 4196
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4197
}
4198

4199
static const struct irq_domain_ops amd_ir_domain_ops = {
4200 4201 4202 4203
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4204
};
4205

4206 4207 4208 4209 4210 4211 4212 4213
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4214 4215 4216 4217 4218 4219 4220 4221
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4270 4271 4272 4273 4274 4275 4276
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4277
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4278
	int ret;
4279

4280 4281 4282
	if (!iommu)
		return -ENODEV;

4283 4284 4285
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4286

4287 4288 4289 4290
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4291 4292
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4293

4294 4295 4296 4297 4298
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4299
	send_cleanup_vector(cfg);
4300 4301

	return IRQ_SET_MASK_OK_DONE;
4302 4303
}

4304
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4305
{
4306
	struct amd_ir_data *ir_data = irq_data->chip_data;
4307

4308 4309
	*msg = ir_data->msi_entry;
}
4310

4311
static struct irq_chip amd_ir_chip = {
4312 4313 4314 4315 4316
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4317
};
4318

4319 4320
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4321 4322 4323 4324 4325 4326 4327
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4328 4329
	if (!iommu->ir_domain)
		return -ENOMEM;
4330

4331
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4332 4333 4334
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4335 4336
	return 0;
}
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4376
#endif