amd_iommu.c 91.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

123 124 125 126 127
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

128
static struct iommu_dev_data *alloc_dev_data(u16 devid)
129 130 131 132 133 134 135 136
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

137
	dev_data->devid = devid;
138 139 140 141 142 143 144 145

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

177 178 179 180
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

181
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
182 183
}

184 185 186 187 188
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

189 190 191 192
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
193 194
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
195 196 197 198 199 200 201 202 203 204 205 206
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

207 208 209 210 211 212 213 214 215
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

216
/*
217 218
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
219
 */
220 221
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
222
{
223
	u64 addr;
224

225 226 227 228 229
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
230
	}
231
}
232

233 234 235 236 237 238 239 240
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
241

242
	devid = get_device_id(dev);
243

244 245 246 247 248
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
249 250
}

251 252 253 254 255 256 257 258 259 260 261
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

262 263
	/* No PCI device */
	if (!dev_is_pci(dev))
264 265 266 267 268 269 270 271 272 273 274 275 276 277
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

278
static void init_iommu_group(struct device *dev)
279
{
280 281
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
282 283
	struct iommu_group *group;

284
	group = iommu_group_get_for_dev(dev);
285 286 287 288 289 290 291 292 293 294 295 296
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

311 312 313 314 315 316 317
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

318 319
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
320 321 322
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

323 324 325
	return 0;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

340 341
static void iommu_uninit_device(struct device *dev)
{
342 343 344 345 346
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
347 348 349
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

350 351
	iommu_group_remove_device(dev);

352 353 354
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

355
	/*
356 357
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
358
	 */
359
}
J
Joerg Roedel 已提交
360

361 362 363 364 365 366
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

367
DECLARE_STATS_COUNTER(compl_wait);
368
DECLARE_STATS_COUNTER(cnt_map_single);
369
DECLARE_STATS_COUNTER(cnt_unmap_single);
370
DECLARE_STATS_COUNTER(cnt_map_sg);
371
DECLARE_STATS_COUNTER(cnt_unmap_sg);
372
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
373
DECLARE_STATS_COUNTER(cnt_free_coherent);
374
DECLARE_STATS_COUNTER(cross_page);
375
DECLARE_STATS_COUNTER(domain_flush_single);
376
DECLARE_STATS_COUNTER(domain_flush_all);
377
DECLARE_STATS_COUNTER(alloced_io_mem);
378
DECLARE_STATS_COUNTER(total_map_requests);
379 380 381 382 383
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
403
					 &amd_iommu_unmap_flush);
404 405

	amd_iommu_stats_add(&compl_wait);
406
	amd_iommu_stats_add(&cnt_map_single);
407
	amd_iommu_stats_add(&cnt_unmap_single);
408
	amd_iommu_stats_add(&cnt_map_sg);
409
	amd_iommu_stats_add(&cnt_unmap_sg);
410
	amd_iommu_stats_add(&cnt_alloc_coherent);
411
	amd_iommu_stats_add(&cnt_free_coherent);
412
	amd_iommu_stats_add(&cross_page);
413
	amd_iommu_stats_add(&domain_flush_single);
414
	amd_iommu_stats_add(&domain_flush_all);
415
	amd_iommu_stats_add(&alloced_io_mem);
416
	amd_iommu_stats_add(&total_map_requests);
417 418 419 420
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
421 422 423 424
}

#endif

425 426 427 428 429 430
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

431 432 433 434
static void dump_dte_entry(u16 devid)
{
	int i;

435 436
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
437 438 439
			amd_iommu_dev_table[devid].data[i]);
}

440 441 442 443 444 445 446 447 448
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

449
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
472

473
	printk(KERN_ERR "AMD-Vi: Event logged [");
474 475 476 477 478

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
479
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
480
		       address, flags);
481
		dump_dte_entry(devid);
482 483 484 485
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
486
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
487 488 489 490 491
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
492
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
493 494 495 496 497
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
498
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
499 500 501 502
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
503
		dump_command(address);
504 505 506 507 508 509 510 511
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
512
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
513 514 515 516 517
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
518
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
519 520 521 522 523
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
524 525

	memset(__evt, 0, 4 * sizeof(u32));
526 527 528 529 530 531 532 533 534 535
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
536
		iommu_print_event(iommu, iommu->evt_buf + head);
537
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
538 539 540 541 542
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

543
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
544 545 546
{
	struct amd_iommu_fault fault;

547 548
	INC_STATS_COUNTER(pri_requests);

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
590

591 592 593
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
594

595 596 597 598 599 600 601
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
602 603
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
604 605 606 607 608 609

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
610 611 612 613
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

614
irqreturn_t amd_iommu_int_thread(int irq, void *data)
615
{
616 617
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
618

619 620 621 622
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
623

624 625 626 627
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
628

629 630 631 632
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
649
	return IRQ_HANDLED;
650 651
}

652 653 654 655 656
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

657 658 659 660 661 662
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
683 684 685
{
	u8 *target;

686
	target = iommu->cmd_buf + tail;
687
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
688 689 690 691 692

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
693
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
694
}
695

696
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
697
{
698 699
	WARN_ON(address & 0x7ULL);

700
	memset(cmd, 0, sizeof(*cmd));
701 702 703
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
704 705 706
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

707 708 709 710 711 712 713
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

714 715 716 717
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
718
	bool s;
719 720

	pages = iommu_num_pages(address, size, PAGE_SIZE);
721
	s     = false;
722 723 724 725 726 727 728

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
729
		s = true;
730 731 732 733 734 735 736 737 738 739 740
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
741
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
742 743 744
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

745 746 747 748
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
749
	bool s;
750 751

	pages = iommu_num_pages(address, size, PAGE_SIZE);
752
	s     = false;
753 754 755 756 757 758 759

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
760
		s = true;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

776 777 778 779 780 781 782
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

783
	cmd->data[0]  = pasid;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
802
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
803 804
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
805
	cmd->data[1] |= (pasid & 0xff) << 16;
806 807 808 809 810 811 812 813
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

814 815 816 817 818 819 820
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
821
		cmd->data[1]  = pasid;
822 823 824 825 826 827 828 829
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

830 831 832 833
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
834 835
}

836 837 838 839 840 841 842
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

843 844
/*
 * Writes the command to the IOMMUs command buffer and informs the
845
 * hardware about the new command.
846
 */
847 848 849
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
850
{
851
	u32 left, tail, head, next_tail;
852 853
	unsigned long flags;

854
again:
855 856
	spin_lock_irqsave(&iommu->lock, flags);

857 858
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
859 860
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
861

862 863 864 865
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
866

867 868
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
869

870 871 872 873 874 875
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
876 877
	}

878 879 880
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
881
	iommu->need_sync = sync;
882

883
	spin_unlock_irqrestore(&iommu->lock, flags);
884

885
	return 0;
886 887
}

888 889 890 891 892
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

893 894 895 896
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
897
static int iommu_completion_wait(struct amd_iommu *iommu)
898 899
{
	struct iommu_cmd cmd;
900
	volatile u64 sem = 0;
901
	int ret;
902

903
	if (!iommu->need_sync)
904
		return 0;
905

906
	build_completion_wait(&cmd, (u64)&sem);
907

908
	ret = iommu_queue_command_sync(iommu, &cmd, false);
909
	if (ret)
910
		return ret;
911

912
	return wait_on_sem(&sem);
913 914
}

915
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
916
{
917
	struct iommu_cmd cmd;
918

919
	build_inv_dte(&cmd, devid);
920

921 922
	return iommu_queue_command(iommu, &cmd);
}
923

924 925 926
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
927

928 929
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
930

931 932
	iommu_completion_wait(iommu);
}
933

934 935 936 937 938 939 940
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
941

942 943 944 945 946 947
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
948

949
	iommu_completion_wait(iommu);
950 951
}

952
static void iommu_flush_all(struct amd_iommu *iommu)
953
{
954
	struct iommu_cmd cmd;
955

956
	build_inv_all(&cmd);
957

958 959 960 961
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

981 982
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
983 984 985 986
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
987
		iommu_flush_irt_all(iommu);
988
		iommu_flush_tlb_all(iommu);
989 990 991
	}
}

992
/*
993
 * Command send function for flushing on-device TLB
994
 */
995 996
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
997 998
{
	struct amd_iommu *iommu;
999
	struct iommu_cmd cmd;
1000
	int qdep;
1001

1002 1003
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1004

1005
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1006 1007

	return iommu_queue_command(iommu, &cmd);
1008 1009
}

1010 1011 1012
/*
 * Command send function for invalidating a device table entry
 */
1013
static int device_flush_dte(struct iommu_dev_data *dev_data)
1014
{
1015
	struct amd_iommu *iommu;
1016
	u16 alias;
1017
	int ret;
1018

1019
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1020
	alias = amd_iommu_alias_table[dev_data->devid];
1021

1022
	ret = iommu_flush_dte(iommu, dev_data->devid);
1023 1024
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1025 1026 1027
	if (ret)
		return ret;

1028
	if (dev_data->ats.enabled)
1029
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1030 1031

	return ret;
1032 1033
}

1034 1035 1036 1037 1038
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1039 1040
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1041
{
1042
	struct iommu_dev_data *dev_data;
1043 1044
	struct iommu_cmd cmd;
	int ret = 0, i;
1045

1046
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1047

1048 1049 1050 1051 1052 1053 1054 1055
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1056
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1057 1058
	}

1059 1060
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1061
		if (!dev_data->ats.enabled)
1062 1063
			continue;

1064
		ret |= device_flush_iotlb(dev_data, address, size);
1065 1066
	}

1067
	WARN_ON(ret);
1068 1069
}

1070 1071
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1072
{
1073
	__domain_flush_pages(domain, address, size, 0);
1074
}
1075

1076
/* Flush the whole IO/TLB for a given protection domain */
1077
static void domain_flush_tlb(struct protection_domain *domain)
1078
{
1079
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1080 1081
}

1082
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1083
static void domain_flush_tlb_pde(struct protection_domain *domain)
1084
{
1085
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1086 1087
}

1088
static void domain_flush_complete(struct protection_domain *domain)
1089
{
1090
	int i;
1091

1092 1093 1094
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1095

1096 1097 1098 1099 1100
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1101
	}
1102 1103
}

1104

1105
/*
1106
 * This function flushes the DTEs for all devices in domain
1107
 */
1108
static void domain_flush_devices(struct protection_domain *domain)
1109
{
1110
	struct iommu_dev_data *dev_data;
1111

1112
	list_for_each_entry(dev_data, &domain->dev_list, list)
1113
		device_flush_dte(dev_data);
1114 1115
}

1116 1117 1118 1119 1120 1121 1122
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1152
		      unsigned long page_size,
1153 1154 1155
		      u64 **pte_page,
		      gfp_t gfp)
{
1156
	int level, end_lvl;
1157
	u64 *pte, *page;
1158 1159

	BUG_ON(!is_power_of_2(page_size));
1160 1161 1162 1163

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1164 1165 1166 1167
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1168 1169 1170 1171 1172 1173 1174 1175 1176

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1177 1178 1179 1180
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1198 1199 1200
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1201 1202 1203 1204
{
	int level;
	u64 *pte;

1205 1206 1207
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1208 1209 1210
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1211

1212 1213 1214
	while (level > 0) {

		/* Not Present */
1215 1216 1217
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1218
		/* Large PTE */
1219 1220 1221
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1222 1223 1224 1225 1226

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1227 1228
		level -= 1;

1229
		/* Walk to the next level */
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1245 1246 1247 1248 1249
	}

	return pte;
}

1250 1251 1252 1253 1254 1255 1256
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1257 1258 1259
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1260
			  int prot,
1261
			  unsigned long page_size)
1262
{
1263
	u64 __pte, *pte;
1264
	int i, count;
1265

1266 1267 1268
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1269
	if (!(prot & IOMMU_PROT_MASK))
1270 1271
		return -EINVAL;

1272 1273
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1274

1275 1276 1277
	if (!pte)
		return -ENOMEM;

1278 1279 1280
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1281

1282
	if (count > 1) {
1283 1284 1285 1286
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1287 1288 1289 1290 1291 1292

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1293 1294
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1295

1296 1297
	update_domain(dom);

1298 1299 1300
	return 0;
}

1301 1302 1303
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1304
{
1305 1306
	unsigned long long unmapped;
	unsigned long unmap_size;
1307 1308 1309 1310 1311
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1312

1313 1314
	while (unmapped < page_size) {

1315 1316 1317 1318 1319 1320
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1321 1322 1323 1324 1325 1326 1327 1328
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1329
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1330

1331
	return unmapped;
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1343

1344
/*
1345
 * The address allocator core functions.
1346 1347 1348
 *
 * called with domain->lock held
 */
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1370 1371 1372 1373 1374
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1375
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1376 1377 1378
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1379
	struct amd_iommu *iommu;
1380
	unsigned long i, old_size, pte_pgsize;
1381

1382 1383 1384 1385
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1405
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1416
	old_size                = dma_dom->aperture_size;
1417 1418
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1431
	/* Initialize the exclusion range if necessary */
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1453
	     i += pte_pgsize) {
1454
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1455 1456 1457
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1458 1459
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1460 1461
	}

1462 1463
	update_domain(&dma_dom->domain);

1464 1465 1466
	return 0;

out_free:
1467 1468
	update_domain(&dma_dom->domain);

1469 1470 1471 1472 1473 1474 1475 1476
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1477 1478 1479 1480 1481 1482 1483
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1484
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1485 1486
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1487
	unsigned long boundary_size, mask;
1488 1489 1490
	unsigned long address = -1;
	unsigned long limit;

1491 1492
	next_bit >>= PAGE_SHIFT;

1493 1494 1495 1496
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1513
			dom->next_address = address + (pages << PAGE_SHIFT);
1514 1515 1516 1517 1518 1519 1520 1521 1522
			break;
		}

		next_bit = 0;
	}

	return address;
}

1523 1524
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1525
					     unsigned int pages,
1526 1527
					     unsigned long align_mask,
					     u64 dma_mask)
1528 1529 1530
{
	unsigned long address;

1531 1532 1533 1534
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1535

1536
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1537
				     dma_mask, dom->next_address);
1538

1539
	if (address == -1) {
1540
		dom->next_address = 0;
1541 1542
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1543 1544
		dom->need_flush = true;
	}
1545

1546
	if (unlikely(address == -1))
1547
		address = DMA_ERROR_CODE;
1548 1549 1550 1551 1552 1553

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1554 1555 1556 1557 1558
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1559 1560 1561 1562
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1563 1564
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1565

1566 1567
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1568 1569 1570 1571
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1572

1573
	if (address >= dom->next_address)
1574
		dom->need_flush = true;
1575 1576

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1577

A
Akinobu Mita 已提交
1578
	bitmap_clear(range->bitmap, address, pages);
1579

1580 1581
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1654
		/* PTE present? */				\
1655 1656 1657
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1658 1659 1660 1661 1662
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1675
static void free_pagetable(struct protection_domain *domain)
1676
{
1677
	unsigned long root = (unsigned long)domain->pt_root;
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1702 1703 1704
	}
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1735 1736
static void free_gcr3_table(struct protection_domain *domain)
{
1737 1738 1739 1740
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1741 1742
	else
		BUG_ON(domain->glx != 0);
1743

1744 1745 1746
	free_page((unsigned long)domain->gcr3_tbl);
}

1747 1748 1749 1750
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1751 1752
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1753 1754
	int i;

1755 1756 1757
	if (!dom)
		return;

1758 1759
	del_domain_from_list(&dom->domain);

1760
	free_pagetable(&dom->domain);
1761

1762 1763 1764 1765 1766 1767
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1768 1769 1770 1771

	kfree(dom);
}

1772 1773
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1774
 * It also initializes the page table and the address allocator data
1775 1776
 * structures required for the dma_ops interface
 */
1777
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1778 1779 1780 1781 1782 1783 1784
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1785
	if (protection_domain_init(&dma_dom->domain))
1786
		goto free_dma_dom;
1787

1788
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1789
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1790
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1791 1792 1793 1794
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1795 1796
	dma_dom->need_flush = false;

1797 1798
	add_domain_to_list(&dma_dom->domain);

1799
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1800 1801
		goto free_dma_dom;

1802
	/*
1803 1804
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1805
	 */
1806
	dma_dom->aperture[0]->bitmap[0] = 1;
1807
	dma_dom->next_address = 0;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1827
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1828
{
1829
	u64 pte_root = 0;
1830
	u64 flags = 0;
1831

1832 1833 1834
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1835 1836 1837
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1838

1839 1840
	flags = amd_iommu_dev_table[devid].data[1];

1841 1842 1843
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1870 1871 1872 1873 1874
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1875 1876 1877 1878 1879
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1880 1881
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1882 1883

	amd_iommu_apply_erratum_63(devid);
1884 1885
}

1886 1887
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1888 1889
{
	struct amd_iommu *iommu;
1890
	u16 alias;
1891
	bool ats;
1892

1893
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1894
	alias = amd_iommu_alias_table[dev_data->devid];
1895
	ats   = dev_data->ats.enabled;
1896 1897 1898 1899 1900 1901 1902 1903 1904

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1905 1906 1907 1908 1909
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

1910
	device_flush_dte(dev_data);
1911 1912
}

1913
static void do_detach(struct iommu_dev_data *dev_data)
1914 1915
{
	struct amd_iommu *iommu;
1916
	u16 alias;
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1927
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1928
	alias = amd_iommu_alias_table[dev_data->devid];
1929 1930

	/* decrease reference counters */
1931 1932 1933 1934 1935 1936
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1937
	clear_dte_entry(dev_data->devid);
1938 1939
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1940

1941
	/* Flush the DTE entry */
1942
	device_flush_dte(dev_data);
1943 1944 1945 1946 1947 1948
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1949
static int __attach_device(struct iommu_dev_data *dev_data,
1950
			   struct protection_domain *domain)
1951
{
1952
	int ret;
1953

1954 1955 1956 1957 1958 1959
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1960 1961 1962
	/* lock domain */
	spin_lock(&domain->lock);

1963
	ret = -EBUSY;
1964
	if (dev_data->domain != NULL)
1965
		goto out_unlock;
1966

1967
	/* Attach alias group root */
1968
	do_attach(dev_data, domain);
1969

1970 1971 1972 1973
	ret = 0;

out_unlock:

1974 1975
	/* ready */
	spin_unlock(&domain->lock);
1976

1977
	return ret;
1978
}
1979

1980 1981 1982 1983 1984 1985 1986 1987

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1988 1989 1990 1991 1992 1993
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1994
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1995 1996 1997
	if (!pos)
		return -EINVAL;

1998 1999 2000
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2001 2002 2003 2004

	return 0;
}

2005 2006
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2007 2008 2009 2010 2011 2012 2013 2014
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2026 2027
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2028 2029 2030
	if (ret)
		goto out_err;

2031 2032 2033 2034 2035 2036
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2050
/* FIXME: Move this to PCI code */
2051
#define PCI_PRI_TLP_OFF		(1 << 15)
2052

J
Joerg Roedel 已提交
2053
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2054
{
2055
	u16 status;
2056 2057
	int pos;

2058
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2059 2060 2061
	if (!pos)
		return false;

2062
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2063

2064
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2065 2066
}

2067
/*
F
Frank Arnold 已提交
2068
 * If a device is not yet associated with a domain, this function
2069 2070
 * assigns it visible for the hardware
 */
2071 2072
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2073
{
2074
	struct pci_dev *pdev = to_pci_dev(dev);
2075
	struct iommu_dev_data *dev_data;
2076
	unsigned long flags;
2077
	int ret;
2078

2079 2080
	dev_data = get_dev_data(dev);

2081
	if (domain->flags & PD_IOMMUV2_MASK) {
2082
		if (!dev_data->passthrough)
2083 2084
			return -EINVAL;

2085 2086 2087
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2088

2089 2090 2091 2092
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2093 2094
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2095 2096 2097
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2098

2099
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2100
	ret = __attach_device(dev_data, domain);
2101 2102
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2103 2104 2105 2106 2107
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2108
	domain_flush_tlb_pde(domain);
2109 2110

	return ret;
2111 2112
}

2113 2114 2115
/*
 * Removes a device from a protection domain (unlocked)
 */
2116
static void __detach_device(struct iommu_dev_data *dev_data)
2117
{
2118
	struct protection_domain *domain;
2119

2120 2121 2122 2123 2124
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2125

2126 2127
	if (WARN_ON(!dev_data->domain))
		return;
2128

2129
	domain = dev_data->domain;
2130

2131
	spin_lock(&domain->lock);
2132

2133
	do_detach(dev_data);
2134

2135
	spin_unlock(&domain->lock);
2136 2137 2138 2139 2140
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2141
static void detach_device(struct device *dev)
2142
{
2143
	struct protection_domain *domain;
2144
	struct iommu_dev_data *dev_data;
2145 2146
	unsigned long flags;

2147
	dev_data = get_dev_data(dev);
2148
	domain   = dev_data->domain;
2149

2150 2151
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2152
	__detach_device(dev_data);
2153
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154

2155
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2156 2157
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2158
		pci_disable_ats(to_pci_dev(dev));
2159 2160

	dev_data->ats.enabled = false;
2161
}
2162

2163
static int amd_iommu_add_device(struct device *dev)
2164
{
2165
	struct iommu_dev_data *dev_data;
2166
	struct iommu_domain *domain;
2167
	struct amd_iommu *iommu;
2168
	u16 devid;
2169
	int ret;
2170

2171
	if (!check_device(dev) || get_dev_data(dev))
2172
		return 0;
2173

2174 2175
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2176

2177
	ret = iommu_init_device(dev);
2178 2179 2180 2181
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2182

2183
		iommu_ignore_device(dev);
2184
		dev->archdata.dma_ops = &nommu_dma_ops;
2185 2186 2187
		goto out;
	}
	init_iommu_group(dev);
2188

2189
	dev_data = get_dev_data(dev);
2190

2191
	BUG_ON(!dev_data);
2192

2193
	if (iommu_pass_through || dev_data->iommu_v2)
2194
		iommu_request_dm_for_dev(dev);
2195

2196 2197
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2198
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2199
		dev_data->passthrough = true;
2200
	else
2201
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2202

2203
out:
2204 2205 2206 2207 2208
	iommu_completion_wait(iommu);

	return 0;
}

2209
static void amd_iommu_remove_device(struct device *dev)
2210
{
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2237
static struct protection_domain *get_domain(struct device *dev)
2238
{
2239
	struct protection_domain *domain;
2240
	struct iommu_domain *io_domain;
2241

2242
	if (!check_device(dev))
2243
		return ERR_PTR(-EINVAL);
2244

2245
	io_domain = iommu_get_domain_for_dev(dev);
2246 2247
	if (!io_domain)
		return NULL;
2248

2249 2250
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2251
		return ERR_PTR(-EBUSY);
2252

2253
	return domain;
2254 2255
}

2256 2257
static void update_device_table(struct protection_domain *domain)
{
2258
	struct iommu_dev_data *dev_data;
2259

2260 2261
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2262 2263 2264 2265 2266 2267 2268 2269
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2270 2271 2272

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2273 2274 2275 2276

	domain->updated = false;
}

2277 2278 2279 2280 2281 2282
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2283
	struct aperture_range *aperture;
2284 2285
	u64 *pte, *pte_page;

2286 2287 2288 2289 2290
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2291
	if (!pte) {
2292
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2293
				GFP_ATOMIC);
2294 2295
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2296
		pte += PM_LEVEL_INDEX(0, address);
2297

2298
	update_domain(&dom->domain);
2299 2300 2301 2302

	return pte;
}

2303 2304 2305 2306
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2307
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2318
	pte  = dma_ops_get_pte(dom, address);
2319
	if (!pte)
2320
		return DMA_ERROR_CODE;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2338 2339 2340
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2341
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2342 2343
				 unsigned long address)
{
2344
	struct aperture_range *aperture;
2345 2346 2347 2348 2349
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2350 2351 2352 2353 2354 2355 2356
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2357

2358
	pte += PM_LEVEL_INDEX(0, address);
2359 2360 2361 2362 2363 2364

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2365 2366
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2367 2368
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2369 2370
 * Must be called with the domain lock held.
 */
2371 2372 2373 2374
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2375
			       int dir,
2376 2377
			       bool align,
			       u64 dma_mask)
2378 2379
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2380
	dma_addr_t address, start, ret;
2381
	unsigned int pages;
2382
	unsigned long align_mask = 0;
2383 2384
	int i;

2385
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2386 2387
	paddr &= PAGE_MASK;

2388 2389
	INC_STATS_COUNTER(total_map_requests);

2390 2391 2392
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2393 2394 2395
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2396
retry:
2397 2398
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2399
	if (unlikely(address == DMA_ERROR_CODE)) {
2400 2401 2402 2403 2404 2405 2406
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2407
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2408 2409 2410
			goto out;

		/*
2411
		 * aperture was successfully enlarged by 128 MB, try
2412 2413 2414 2415
		 * allocation again
		 */
		goto retry;
	}
2416 2417 2418

	start = address;
	for (i = 0; i < pages; ++i) {
2419
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2420
		if (ret == DMA_ERROR_CODE)
2421 2422
			goto out_unmap;

2423 2424 2425 2426 2427
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2428 2429
	ADD_STATS_COUNTER(alloced_io_mem, size);

2430
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2431
		domain_flush_tlb(&dma_dom->domain);
2432
		dma_dom->need_flush = false;
2433
	} else if (unlikely(amd_iommu_np_cache))
2434
		domain_flush_pages(&dma_dom->domain, address, size);
2435

2436 2437
out:
	return address;
2438 2439 2440 2441 2442

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2443
		dma_ops_domain_unmap(dma_dom, start);
2444 2445 2446 2447
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2448
	return DMA_ERROR_CODE;
2449 2450
}

2451 2452 2453 2454
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2455
static void __unmap_single(struct dma_ops_domain *dma_dom,
2456 2457 2458 2459
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2460
	dma_addr_t flush_addr;
2461 2462 2463
	dma_addr_t i, start;
	unsigned int pages;

2464
	if ((dma_addr == DMA_ERROR_CODE) ||
2465
	    (dma_addr + size > dma_dom->aperture_size))
2466 2467
		return;

2468
	flush_addr = dma_addr;
2469
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2470 2471 2472 2473
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2474
		dma_ops_domain_unmap(dma_dom, start);
2475 2476 2477
		start += PAGE_SIZE;
	}

2478 2479
	SUB_STATS_COUNTER(alloced_io_mem, size);

2480
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2481

2482
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2483
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2484 2485
		dma_dom->need_flush = false;
	}
2486 2487
}

2488 2489 2490
/*
 * The exported map_single function for dma_ops.
 */
2491 2492 2493 2494
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2495 2496 2497 2498
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2499
	u64 dma_mask;
2500
	phys_addr_t paddr = page_to_phys(page) + offset;
2501

2502 2503
	INC_STATS_COUNTER(cnt_map_single);

2504 2505
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2506
		return (dma_addr_t)paddr;
2507 2508
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2509

2510 2511
	dma_mask = *dev->dma_mask;

2512
	spin_lock_irqsave(&domain->lock, flags);
2513

2514
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2515
			    dma_mask);
2516
	if (addr == DMA_ERROR_CODE)
2517 2518
		goto out;

2519
	domain_flush_complete(domain);
2520 2521 2522 2523 2524 2525 2526

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2527 2528 2529
/*
 * The exported unmap_single function for dma_ops.
 */
2530 2531
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2532 2533 2534 2535
{
	unsigned long flags;
	struct protection_domain *domain;

2536 2537
	INC_STATS_COUNTER(cnt_unmap_single);

2538 2539
	domain = get_domain(dev);
	if (IS_ERR(domain))
2540 2541
		return;

2542 2543
	spin_lock_irqsave(&domain->lock, flags);

2544
	__unmap_single(domain->priv, dma_addr, size, dir);
2545

2546
	domain_flush_complete(domain);
2547 2548 2549 2550

	spin_unlock_irqrestore(&domain->lock, flags);
}

2551 2552 2553 2554
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2555
static int map_sg(struct device *dev, struct scatterlist *sglist,
2556 2557
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2558 2559 2560 2561 2562 2563 2564
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2565
	u64 dma_mask;
2566

2567 2568
	INC_STATS_COUNTER(cnt_map_sg);

2569
	domain = get_domain(dev);
2570
	if (IS_ERR(domain))
2571
		return 0;
2572

2573
	dma_mask = *dev->dma_mask;
2574 2575 2576 2577 2578 2579

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2580
		s->dma_address = __map_single(dev, domain->priv,
2581 2582
					      paddr, s->length, dir, false,
					      dma_mask);
2583 2584 2585 2586 2587 2588 2589 2590

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2591
	domain_flush_complete(domain);
2592 2593 2594 2595 2596 2597 2598 2599

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2600
			__unmap_single(domain->priv, s->dma_address,
2601 2602 2603 2604 2605 2606 2607 2608 2609
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2610 2611 2612 2613
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2614
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2615 2616
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2617 2618 2619 2620 2621 2622
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2623 2624
	INC_STATS_COUNTER(cnt_unmap_sg);

2625 2626
	domain = get_domain(dev);
	if (IS_ERR(domain))
2627 2628
		return;

2629 2630 2631
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2632
		__unmap_single(domain->priv, s->dma_address,
2633 2634 2635 2636
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2637
	domain_flush_complete(domain);
2638 2639 2640 2641

	spin_unlock_irqrestore(&domain->lock, flags);
}

2642 2643 2644
/*
 * The exported alloc_coherent function for dma_ops.
 */
2645
static void *alloc_coherent(struct device *dev, size_t size,
2646 2647
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2648
{
2649
	u64 dma_mask = dev->coherent_dma_mask;
2650 2651 2652
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2653

2654 2655
	INC_STATS_COUNTER(cnt_alloc_coherent);

2656 2657
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2658 2659 2660
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2661 2662
	} else if (IS_ERR(domain))
		return NULL;
2663

2664
	size	  = PAGE_ALIGN(size);
2665 2666
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2667
	flag     |= __GFP_ZERO;
2668

2669 2670 2671 2672
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2673

2674 2675 2676 2677 2678
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2679

2680 2681 2682
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2683 2684
	spin_lock_irqsave(&domain->lock, flags);

2685
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2686
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2687

2688
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2689
		spin_unlock_irqrestore(&domain->lock, flags);
2690
		goto out_free;
J
Jiri Slaby 已提交
2691
	}
2692

2693
	domain_flush_complete(domain);
2694 2695 2696

	spin_unlock_irqrestore(&domain->lock, flags);

2697
	return page_address(page);
2698 2699 2700

out_free:

2701 2702
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2703 2704

	return NULL;
2705 2706
}

2707 2708 2709
/*
 * The exported free_coherent function for dma_ops.
 */
2710
static void free_coherent(struct device *dev, size_t size,
2711 2712
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2713 2714
{
	struct protection_domain *domain;
2715 2716
	unsigned long flags;
	struct page *page;
2717

2718 2719
	INC_STATS_COUNTER(cnt_free_coherent);

2720 2721 2722
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2723 2724
	domain = get_domain(dev);
	if (IS_ERR(domain))
2725 2726
		goto free_mem;

2727 2728
	spin_lock_irqsave(&domain->lock, flags);

2729
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2730

2731
	domain_flush_complete(domain);
2732 2733 2734 2735

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2736 2737
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2738 2739
}

2740 2741 2742 2743 2744 2745
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2746
	return check_device(dev);
2747 2748
}

2749
static struct dma_map_ops amd_iommu_dma_ops = {
2750 2751
	.alloc = alloc_coherent,
	.free = free_coherent,
2752 2753
	.map_page = map_page,
	.unmap_page = unmap_page,
2754 2755
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2756
	.dma_supported = amd_iommu_dma_supported,
2757 2758
};

2759
int __init amd_iommu_init_api(void)
2760
{
2761
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2762 2763
}

2764 2765
int __init amd_iommu_init_dma_ops(void)
{
2766
	swiotlb        = iommu_pass_through ? 1 : 0;
2767 2768
	iommu_detected = 1;

2769 2770 2771 2772 2773 2774 2775 2776 2777
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2778 2779
	amd_iommu_stats_init();

2780 2781 2782 2783 2784
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2785 2786
	return 0;
}
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2800
	struct iommu_dev_data *entry;
2801 2802 2803 2804
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2805 2806 2807 2808
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2809
	}
2810 2811 2812 2813

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2814 2815 2816 2817 2818
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2819 2820
	del_domain_from_list(domain);

2821 2822 2823 2824 2825 2826
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2839
static struct protection_domain *protection_domain_alloc(void)
2840 2841 2842 2843 2844
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2845
		return NULL;
2846

2847
	if (protection_domain_init(domain))
2848 2849
		goto out_err;

2850 2851
	add_domain_to_list(domain);

2852 2853 2854 2855 2856 2857 2858 2859
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2860
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2861
{
2862
	struct protection_domain *pdomain;
2863
	struct dma_ops_domain *dma_domain;
2864

2865 2866 2867 2868 2869
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2870

2871 2872 2873 2874 2875 2876
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2877

2878 2879 2880
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2891 2892 2893 2894
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2895

2896 2897
		pdomain->mode = PAGE_MODE_NONE;
		break;
2898 2899 2900
	default:
		return NULL;
	}
2901

2902
	return &pdomain->domain;
2903 2904
}

2905
static void amd_iommu_domain_free(struct iommu_domain *dom)
2906
{
2907
	struct protection_domain *domain;
2908

2909
	if (!dom)
2910 2911
		return;

2912 2913
	domain = to_pdomain(dom);

2914 2915 2916 2917 2918
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2919 2920
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2921

2922 2923 2924
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2925
	protection_domain_free(domain);
2926 2927
}

2928 2929 2930
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2931
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2932 2933 2934
	struct amd_iommu *iommu;
	u16 devid;

2935
	if (!check_device(dev))
2936 2937
		return;

2938
	devid = get_device_id(dev);
2939

2940
	if (dev_data->domain != NULL)
2941
		detach_device(dev);
2942 2943 2944 2945 2946 2947 2948 2949

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2950 2951 2952
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2953
	struct protection_domain *domain = to_pdomain(dom);
2954
	struct iommu_dev_data *dev_data;
2955
	struct amd_iommu *iommu;
2956
	int ret;
2957

2958
	if (!check_device(dev))
2959 2960
		return -EINVAL;

2961 2962
	dev_data = dev->archdata.iommu;

2963
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2964 2965 2966
	if (!iommu)
		return -EINVAL;

2967
	if (dev_data->domain)
2968
		detach_device(dev);
2969

2970
	ret = attach_device(dev, domain);
2971 2972 2973

	iommu_completion_wait(iommu);

2974
	return ret;
2975 2976
}

2977
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2978
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2979
{
2980
	struct protection_domain *domain = to_pdomain(dom);
2981 2982 2983
	int prot = 0;
	int ret;

2984 2985 2986
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2987 2988 2989 2990 2991
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2992
	mutex_lock(&domain->api_lock);
2993
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2994 2995
	mutex_unlock(&domain->api_lock);

2996
	return ret;
2997 2998
}

2999 3000
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3001
{
3002
	struct protection_domain *domain = to_pdomain(dom);
3003
	size_t unmap_size;
3004

3005 3006 3007
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3008
	mutex_lock(&domain->api_lock);
3009
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3010
	mutex_unlock(&domain->api_lock);
3011

3012
	domain_flush_tlb_pde(domain);
3013

3014
	return unmap_size;
3015 3016
}

3017
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3018
					  dma_addr_t iova)
3019
{
3020
	struct protection_domain *domain = to_pdomain(dom);
3021
	unsigned long offset_mask, pte_pgsize;
3022
	u64 *pte, __pte;
3023

3024 3025 3026
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3027
	pte = fetch_pte(domain, iova, &pte_pgsize);
3028

3029
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3030 3031
		return 0;

3032 3033
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3034

3035
	return (__pte & ~offset_mask) | (iova & offset_mask);
3036 3037
}

3038
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3039
{
3040 3041
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3042
		return true;
3043
	case IOMMU_CAP_INTR_REMAP:
3044
		return (irq_remapping_enabled == 1);
3045 3046
	case IOMMU_CAP_NOEXEC:
		return false;
3047 3048
	}

3049
	return false;
S
Sheng Yang 已提交
3050 3051
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3093
static const struct iommu_ops amd_iommu_ops = {
3094
	.capable = amd_iommu_capable,
3095 3096
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3097 3098
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3099 3100
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3101
	.map_sg = default_iommu_map_sg,
3102
	.iova_to_phys = amd_iommu_iova_to_phys,
3103 3104
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3105
	.device_group = pci_device_group,
3106 3107
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3108
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3109 3110
};

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3133 3134 3135

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3136
	struct protection_domain *domain = to_pdomain(dom);
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3154 3155 3156

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3157
	struct protection_domain *domain = to_pdomain(dom);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3235 3236 3237 3238 3239 3240
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3266 3267
	INC_STATS_COUNTER(invalidate_iotlb);

3268 3269 3270 3271 3272 3273
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3274
	struct protection_domain *domain = to_pdomain(dom);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3288 3289
	INC_STATS_COUNTER(invalidate_iotlb_all);

3290 3291 3292 3293 3294 3295
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3296
	struct protection_domain *domain = to_pdomain(dom);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3376
	struct protection_domain *domain = to_pdomain(dom);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3390
	struct protection_domain *domain = to_pdomain(dom);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3401 3402 3403 3404 3405 3406 3407 3408

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3409 3410
	INC_STATS_COUNTER(complete_ppr);

3411 3412 3413 3414 3415 3416 3417 3418 3419
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3420 3421 3422

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3423
	struct protection_domain *pdomain;
3424

3425 3426
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3427 3428 3429
		return NULL;

	/* Only return IOMMUv2 domains */
3430
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3431 3432
		return NULL;

3433
	return &pdomain->domain;
3434 3435
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3515 3516 3517 3518 3519
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3582 3583 3584
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3585 3586 3587 3588 3589 3590 3591
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3592
		table = NULL;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3610
		set_dte_irq_entry(alias, table);
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3623
static int alloc_irq_index(u16 devid, int count)
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3707
static int get_devid(struct irq_alloc_info *info)
3708
{
3709
	int devid = -1;
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3726

3727 3728
	return devid;
}
3729

3730 3731 3732 3733
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3734

3735 3736
	if (!info)
		return NULL;
3737

3738 3739 3740 3741 3742 3743
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3744

3745
	return NULL;
3746 3747
}

3748
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3749
{
3750 3751
	struct amd_iommu *iommu;
	int devid;
3752

3753 3754
	if (!info)
		return NULL;
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3769

3770 3771
	return NULL;
}
3772

3773 3774 3775 3776 3777 3778
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3779 3780 3781
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3792

3793 3794
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3818

3819 3820 3821 3822 3823 3824 3825
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3826

3827 3828 3829 3830
	default:
		BUG_ON(1);
		break;
	}
3831 3832
}

3833 3834
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3835
{
3836 3837 3838
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3839
	struct irq_cfg *cfg;
3840 3841
	int i, ret, devid;
	int index = -1;
3842

3843 3844 3845 3846
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3847 3848
		return -EINVAL;

3849 3850 3851 3852 3853 3854
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3855

3856 3857 3858
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3859

3860 3861 3862
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3863

3864 3865 3866 3867 3868 3869
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3870
		index = alloc_irq_index(devid, nr_irqs);
3871 3872 3873 3874 3875
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3876

3877 3878 3879 3880 3881 3882 3883
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3884

3885 3886 3887 3888 3889
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3890 3891 3892 3893 3894 3895
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3896

3897
	return 0;
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3910 3911
}

3912 3913
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3914
{
3915 3916 3917 3918
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3919

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3931

3932 3933 3934 3935 3936
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3937

3938
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3939 3940
}

3941 3942
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3943
{
3944 3945 3946
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3947

3948 3949 3950
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3951

3952 3953 3954 3955 3956
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3957
};
3958

3959 3960 3961 3962 3963 3964 3965 3966
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3967

3968 3969 3970
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3971

3972 3973 3974 3975 3976 3977 3978
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
3979

3980 3981 3982 3983 3984
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
3985
	send_cleanup_vector(cfg);
3986 3987

	return IRQ_SET_MASK_OK_DONE;
3988 3989
}

3990
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3991
{
3992
	struct amd_ir_data *ir_data = irq_data->chip_data;
3993

3994 3995
	*msg = ir_data->msi_entry;
}
3996

3997 3998 3999 4000 4001
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4002

4003 4004 4005 4006 4007
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4008

4009 4010
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4011 4012 4013

	return 0;
}
4014
#endif