amd_iommu.c 97.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84
static const struct iommu_ops amd_iommu_ops;
85

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
97
	struct list_head alias_list;      /* Link alias-groups together */
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

112 113 114
/*
 * general struct to manage commands send to an IOMMU
 */
115
struct iommu_cmd {
116 117 118
	u32 data[4];
};

119 120
struct kmem_cache *amd_iommu_irq_cache;

121
static void update_domain(struct protection_domain *domain);
122
static int __init alloc_passthrough_domain(void);
123

124 125 126 127 128 129
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

130 131 132 133 134
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

135
static struct iommu_dev_data *alloc_dev_data(u16 devid)
136 137 138 139 140 141 142 143
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

144 145
	INIT_LIST_HEAD(&dev_data->alias_list);

146
	dev_data->devid = devid;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

197 198 199 200
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

201
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
202 203
}

204 205 206 207 208
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

209 210 211 212
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
213 214
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
215 216 217 218 219 220 221 222 223 224 225 226
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

227 228 229 230 231 232 233 234 235
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

264 265 266 267 268 269 270 271 272 273 274
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

275 276
	/* No PCI device */
	if (!dev_is_pci(dev))
277 278 279 280 281 282 283 284 285 286 287 288 289 290
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

291
static void init_iommu_group(struct device *dev)
292 293 294
{
	struct iommu_group *group;

295
	group = iommu_group_get_for_dev(dev);
296 297
	if (!IS_ERR(group))
		iommu_group_put(group);
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

362 363 364 365 366 367 368 369 370 371 372 373 374
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

375 376
	alias = get_alias(dev);

377 378 379 380 381 382 383 384 385 386 387 388
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

389 390
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
391
	}
392

393 394 395 396 397 398 399
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

400 401
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
402 403 404
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

405 406 407
	return 0;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

422 423
static void iommu_uninit_device(struct device *dev)
{
424 425 426 427 428
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
429 430 431
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

432 433
	iommu_group_remove_device(dev);

434 435 436
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

437
	/*
438 439
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
440
	 */
441
}
J
Joerg Roedel 已提交
442 443 444

void __init amd_iommu_uninit_devices(void)
{
445
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
446 447 448 449 450 451 452 453 454
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
455 456 457 458

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
472 473 474
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
475 476 477
			goto out_free;
	}

478 479 480 481 482 483 484 485 486
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
487 488 489 490 491 492 493 494
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
495 496 497 498 499 500
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

501
DECLARE_STATS_COUNTER(compl_wait);
502
DECLARE_STATS_COUNTER(cnt_map_single);
503
DECLARE_STATS_COUNTER(cnt_unmap_single);
504
DECLARE_STATS_COUNTER(cnt_map_sg);
505
DECLARE_STATS_COUNTER(cnt_unmap_sg);
506
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
507
DECLARE_STATS_COUNTER(cnt_free_coherent);
508
DECLARE_STATS_COUNTER(cross_page);
509
DECLARE_STATS_COUNTER(domain_flush_single);
510
DECLARE_STATS_COUNTER(domain_flush_all);
511
DECLARE_STATS_COUNTER(alloced_io_mem);
512
DECLARE_STATS_COUNTER(total_map_requests);
513 514 515 516 517
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
537
					 &amd_iommu_unmap_flush);
538 539

	amd_iommu_stats_add(&compl_wait);
540
	amd_iommu_stats_add(&cnt_map_single);
541
	amd_iommu_stats_add(&cnt_unmap_single);
542
	amd_iommu_stats_add(&cnt_map_sg);
543
	amd_iommu_stats_add(&cnt_unmap_sg);
544
	amd_iommu_stats_add(&cnt_alloc_coherent);
545
	amd_iommu_stats_add(&cnt_free_coherent);
546
	amd_iommu_stats_add(&cross_page);
547
	amd_iommu_stats_add(&domain_flush_single);
548
	amd_iommu_stats_add(&domain_flush_all);
549
	amd_iommu_stats_add(&alloced_io_mem);
550
	amd_iommu_stats_add(&total_map_requests);
551 552 553 554
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
555 556 557 558
}

#endif

559 560 561 562 563 564
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

565 566 567 568
static void dump_dte_entry(u16 devid)
{
	int i;

569 570
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
571 572 573
			amd_iommu_dev_table[devid].data[i]);
}

574 575 576 577 578 579 580 581 582
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

583
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
606

607
	printk(KERN_ERR "AMD-Vi: Event logged [");
608 609 610 611 612

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
613
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614
		       address, flags);
615
		dump_dte_entry(devid);
616 617 618 619
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
620
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 622 623 624 625
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
626
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 628 629 630 631
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
632
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
633 634 635 636
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
637
		dump_command(address);
638 639 640 641 642 643 644 645
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
646
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 648 649 650 651
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
652
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
653 654 655 656 657
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
658 659

	memset(__evt, 0, 4 * sizeof(u32));
660 661 662 663 664 665 666 667 668 669
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
670
		iommu_print_event(iommu, iommu->evt_buf + head);
671 672 673 674 675 676
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

677
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
678 679 680
{
	struct amd_iommu_fault fault;

681 682
	INC_STATS_COUNTER(pri_requests);

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
724

725 726 727
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
728

729 730 731 732 733 734 735
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
736 737
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
738 739 740 741 742 743

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
744 745 746 747
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

748
irqreturn_t amd_iommu_int_thread(int irq, void *data)
749
{
750 751
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
752

753 754 755 756
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
757

758 759 760 761
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
762

763 764 765 766
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
783
	return IRQ_HANDLED;
784 785
}

786 787 788 789 790
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

791 792 793 794 795 796
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
817 818 819
{
	u8 *target;

820
	target = iommu->cmd_buf + tail;
821 822 823 824 825 826
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
827
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
828
}
829

830
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
831
{
832 833
	WARN_ON(address & 0x7ULL);

834
	memset(cmd, 0, sizeof(*cmd));
835 836 837
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
838 839 840
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

841 842 843 844 845 846 847
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

848 849 850 851
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
852
	bool s;
853 854

	pages = iommu_num_pages(address, size, PAGE_SIZE);
855
	s     = false;
856 857 858 859 860 861 862

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
863
		s = true;
864 865 866 867 868 869 870 871 872 873 874
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
875
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
876 877 878
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

879 880 881 882
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
883
	bool s;
884 885

	pages = iommu_num_pages(address, size, PAGE_SIZE);
886
	s     = false;
887 888 889 890 891 892 893

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894
		s = true;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

910 911 912 913 914 915 916
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

917
	cmd->data[0]  = pasid;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
936
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
937 938
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
939
	cmd->data[1] |= (pasid & 0xff) << 16;
940 941 942 943 944 945 946 947
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

948 949 950 951 952 953 954
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
955
		cmd->data[1]  = pasid;
956 957 958 959 960 961 962 963
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

964 965 966 967
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
968 969
}

970 971 972 973 974 975 976
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

977 978
/*
 * Writes the command to the IOMMUs command buffer and informs the
979
 * hardware about the new command.
980
 */
981 982 983
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
984
{
985
	u32 left, tail, head, next_tail;
986 987
	unsigned long flags;

988
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
989 990

again:
991 992
	spin_lock_irqsave(&iommu->lock, flags);

993 994 995 996
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
997

998 999 1000 1001
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1002

1003 1004
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1005

1006 1007 1008 1009 1010 1011
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1012 1013
	}

1014 1015 1016
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1017
	iommu->need_sync = sync;
1018

1019
	spin_unlock_irqrestore(&iommu->lock, flags);
1020

1021
	return 0;
1022 1023
}

1024 1025 1026 1027 1028
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1029 1030 1031 1032
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1033
static int iommu_completion_wait(struct amd_iommu *iommu)
1034 1035
{
	struct iommu_cmd cmd;
1036
	volatile u64 sem = 0;
1037
	int ret;
1038

1039
	if (!iommu->need_sync)
1040
		return 0;
1041

1042
	build_completion_wait(&cmd, (u64)&sem);
1043

1044
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1045
	if (ret)
1046
		return ret;
1047

1048
	return wait_on_sem(&sem);
1049 1050
}

1051
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1052
{
1053
	struct iommu_cmd cmd;
1054

1055
	build_inv_dte(&cmd, devid);
1056

1057 1058
	return iommu_queue_command(iommu, &cmd);
}
1059

1060 1061 1062
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1063

1064 1065
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1066

1067 1068
	iommu_completion_wait(iommu);
}
1069

1070 1071 1072 1073 1074 1075 1076
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1077

1078 1079 1080 1081 1082 1083
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1084

1085
	iommu_completion_wait(iommu);
1086 1087
}

1088
static void iommu_flush_all(struct amd_iommu *iommu)
1089
{
1090
	struct iommu_cmd cmd;
1091

1092
	build_inv_all(&cmd);
1093

1094 1095 1096 1097
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1117 1118
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1119 1120 1121 1122
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1123
		iommu_flush_irt_all(iommu);
1124
		iommu_flush_tlb_all(iommu);
1125 1126 1127
	}
}

1128
/*
1129
 * Command send function for flushing on-device TLB
1130
 */
1131 1132
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1133 1134
{
	struct amd_iommu *iommu;
1135
	struct iommu_cmd cmd;
1136
	int qdep;
1137

1138 1139
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1140

1141
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1142 1143

	return iommu_queue_command(iommu, &cmd);
1144 1145
}

1146 1147 1148
/*
 * Command send function for invalidating a device table entry
 */
1149
static int device_flush_dte(struct iommu_dev_data *dev_data)
1150
{
1151
	struct amd_iommu *iommu;
1152
	int ret;
1153

1154
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1155

1156
	ret = iommu_flush_dte(iommu, dev_data->devid);
1157 1158 1159
	if (ret)
		return ret;

1160
	if (dev_data->ats.enabled)
1161
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1162 1163

	return ret;
1164 1165
}

1166 1167 1168 1169 1170
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1171 1172
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1173
{
1174
	struct iommu_dev_data *dev_data;
1175 1176
	struct iommu_cmd cmd;
	int ret = 0, i;
1177

1178
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1179

1180 1181 1182 1183 1184 1185 1186 1187
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1188
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1189 1190
	}

1191 1192
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1193
		if (!dev_data->ats.enabled)
1194 1195
			continue;

1196
		ret |= device_flush_iotlb(dev_data, address, size);
1197 1198
	}

1199
	WARN_ON(ret);
1200 1201
}

1202 1203
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1204
{
1205
	__domain_flush_pages(domain, address, size, 0);
1206
}
1207

1208
/* Flush the whole IO/TLB for a given protection domain */
1209
static void domain_flush_tlb(struct protection_domain *domain)
1210
{
1211
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1212 1213
}

1214
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1215
static void domain_flush_tlb_pde(struct protection_domain *domain)
1216
{
1217
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1218 1219
}

1220
static void domain_flush_complete(struct protection_domain *domain)
1221
{
1222
	int i;
1223

1224 1225 1226
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1227

1228 1229 1230 1231 1232
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1233
	}
1234 1235
}

1236

1237
/*
1238
 * This function flushes the DTEs for all devices in domain
1239
 */
1240
static void domain_flush_devices(struct protection_domain *domain)
1241
{
1242
	struct iommu_dev_data *dev_data;
1243

1244
	list_for_each_entry(dev_data, &domain->dev_list, list)
1245
		device_flush_dte(dev_data);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1284
		      unsigned long page_size,
1285 1286 1287
		      u64 **pte_page,
		      gfp_t gfp)
{
1288
	int level, end_lvl;
1289
	u64 *pte, *page;
1290 1291

	BUG_ON(!is_power_of_2(page_size));
1292 1293 1294 1295

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1296 1297 1298 1299
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1300 1301 1302 1303 1304 1305 1306 1307 1308

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1309 1310 1311 1312
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1330 1331 1332
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1333 1334 1335 1336
{
	int level;
	u64 *pte;

1337 1338 1339
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1340 1341 1342
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1343

1344 1345 1346
	while (level > 0) {

		/* Not Present */
1347 1348 1349
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1350
		/* Large PTE */
1351 1352 1353
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1354 1355 1356 1357 1358

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1359 1360
		level -= 1;

1361
		/* Walk to the next level */
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1377 1378 1379 1380 1381
	}

	return pte;
}

1382 1383 1384 1385 1386 1387 1388
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1389 1390 1391
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1392
			  int prot,
1393
			  unsigned long page_size)
1394
{
1395
	u64 __pte, *pte;
1396
	int i, count;
1397

1398 1399 1400
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1401
	if (!(prot & IOMMU_PROT_MASK))
1402 1403
		return -EINVAL;

1404 1405
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1406

1407 1408 1409
	if (!pte)
		return -ENOMEM;

1410 1411 1412
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1413

1414
	if (count > 1) {
1415 1416 1417 1418
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1419 1420 1421 1422 1423 1424

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1425 1426
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1427

1428 1429
	update_domain(dom);

1430 1431 1432
	return 0;
}

1433 1434 1435
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1436
{
1437 1438
	unsigned long long unmapped;
	unsigned long unmap_size;
1439 1440 1441 1442 1443
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1444

1445 1446
	while (unmapped < page_size) {

1447 1448 1449 1450 1451 1452
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1453 1454 1455 1456 1457 1458 1459 1460
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1461
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1462

1463
	return unmapped;
1464 1465
}

1466 1467 1468 1469
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1484 1485 1486 1487
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1488 1489 1490 1491 1492 1493 1494 1495
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1496
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1497
				     PAGE_SIZE);
1498 1499 1500 1501 1502 1503 1504
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1505
			__set_bit(addr >> PAGE_SHIFT,
1506
				  dma_dom->aperture[0]->bitmap);
1507 1508 1509 1510 1511
	}

	return 0;
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1534 1535 1536
/*
 * Inits the unity mappings required for a specific device
 */
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1563

1564
/*
1565
 * The address allocator core functions.
1566 1567 1568
 *
 * called with domain->lock held
 */
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1590 1591 1592 1593 1594
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1595
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1596 1597 1598
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1599
	struct amd_iommu *iommu;
1600
	unsigned long i, old_size, pte_pgsize;
1601

1602 1603 1604 1605
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1625
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1636
	old_size                = dma_dom->aperture_size;
1637 1638
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1651
	/* Initialize the exclusion range if necessary */
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1673
	     i += pte_pgsize) {
1674
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1675 1676 1677
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1678 1679
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1680 1681
	}

1682 1683
	update_domain(&dma_dom->domain);

1684 1685 1686
	return 0;

out_free:
1687 1688
	update_domain(&dma_dom->domain);

1689 1690 1691 1692 1693 1694 1695 1696
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1697 1698 1699 1700 1701 1702 1703
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1704
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1705 1706 1707 1708 1709 1710
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1711 1712
	next_bit >>= PAGE_SHIFT;

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1731
			dom->next_address = address + (pages << PAGE_SHIFT);
1732 1733 1734 1735 1736 1737 1738 1739 1740
			break;
		}

		next_bit = 0;
	}

	return address;
}

1741 1742
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1743
					     unsigned int pages,
1744 1745
					     unsigned long align_mask,
					     u64 dma_mask)
1746 1747 1748
{
	unsigned long address;

1749 1750 1751 1752
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1753

1754
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1755
				     dma_mask, dom->next_address);
1756

1757
	if (address == -1) {
1758
		dom->next_address = 0;
1759 1760
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1761 1762
		dom->need_flush = true;
	}
1763

1764
	if (unlikely(address == -1))
1765
		address = DMA_ERROR_CODE;
1766 1767 1768 1769 1770 1771

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1772 1773 1774 1775 1776
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1777 1778 1779 1780
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1781 1782
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1783

1784 1785
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1786 1787 1788 1789
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1790

1791
	if (address >= dom->next_address)
1792
		dom->need_flush = true;
1793 1794

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1795

A
Akinobu Mita 已提交
1796
	bitmap_clear(range->bitmap, address, pages);
1797

1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1887
static void free_pagetable(struct protection_domain *domain)
1888
{
1889
	unsigned long root = (unsigned long)domain->pt_root;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1914 1915 1916
	}
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1947 1948
static void free_gcr3_table(struct protection_domain *domain)
{
1949 1950 1951 1952 1953 1954 1955
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1956 1957 1958
	free_page((unsigned long)domain->gcr3_tbl);
}

1959 1960 1961 1962
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1963 1964
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1965 1966
	int i;

1967 1968 1969
	if (!dom)
		return;

1970 1971
	del_domain_from_list(&dom->domain);

1972
	free_pagetable(&dom->domain);
1973

1974 1975 1976 1977 1978 1979
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1980 1981 1982 1983

	kfree(dom);
}

1984 1985
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1986
 * It also initializes the page table and the address allocator data
1987 1988
 * structures required for the dma_ops interface
 */
1989
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2002
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2003
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2004
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2005
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2006 2007 2008 2009
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2010
	dma_dom->need_flush = false;
2011
	dma_dom->target_dev = 0xffff;
2012

2013 2014
	add_domain_to_list(&dma_dom->domain);

2015
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2016 2017
		goto free_dma_dom;

2018
	/*
2019 2020
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2021
	 */
2022
	dma_dom->aperture[0]->bitmap[0] = 1;
2023
	dma_dom->next_address = 0;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2043
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2044
{
2045
	u64 pte_root = 0;
2046
	u64 flags = 0;
2047

2048 2049 2050
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2051 2052 2053
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2054

2055 2056
	flags = amd_iommu_dev_table[devid].data[1];

2057 2058 2059
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2086 2087 2088 2089 2090
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2091 2092 2093 2094 2095 2096 2097 2098 2099
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2100 2101
}

2102 2103
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2104 2105
{
	struct amd_iommu *iommu;
2106
	bool ats;
2107

2108 2109
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2110 2111 2112 2113

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2114
	set_dte_entry(dev_data->devid, domain, ats);
2115 2116 2117 2118 2119 2120

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2121
	device_flush_dte(dev_data);
2122 2123
}

2124
static void do_detach(struct iommu_dev_data *dev_data)
2125 2126 2127
{
	struct amd_iommu *iommu;

2128
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2129 2130

	/* decrease reference counters */
2131 2132 2133 2134 2135 2136
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2137
	clear_dte_entry(dev_data->devid);
2138

2139
	/* Flush the DTE entry */
2140
	device_flush_dte(dev_data);
2141 2142 2143 2144 2145 2146
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2147
static int __attach_device(struct iommu_dev_data *dev_data,
2148
			   struct protection_domain *domain)
2149
{
2150
	struct iommu_dev_data *head, *entry;
2151
	int ret;
2152

2153 2154 2155
	/* lock domain */
	spin_lock(&domain->lock);

2156
	head = dev_data;
2157

2158 2159
	if (head->alias_data != NULL)
		head = head->alias_data;
2160

2161
	/* Now we have the root of the alias group, if any */
2162

2163 2164 2165
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2166

2167 2168
	/* Attach alias group root */
	do_attach(head, domain);
2169

2170 2171 2172
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2173

2174 2175 2176 2177
	ret = 0;

out_unlock:

2178 2179
	/* ready */
	spin_unlock(&domain->lock);
2180

2181
	return ret;
2182
}
2183

2184 2185 2186 2187 2188 2189 2190 2191

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2192 2193 2194 2195 2196 2197
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2198
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2199 2200 2201
	if (!pos)
		return -EINVAL;

2202 2203 2204
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2205 2206 2207 2208

	return 0;
}

2209 2210
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2211 2212 2213 2214 2215 2216 2217 2218
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2230 2231
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2232 2233 2234
	if (ret)
		goto out_err;

2235 2236 2237 2238 2239 2240
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2254
/* FIXME: Move this to PCI code */
2255
#define PCI_PRI_TLP_OFF		(1 << 15)
2256

J
Joerg Roedel 已提交
2257
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2258
{
2259
	u16 status;
2260 2261
	int pos;

2262
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2263 2264 2265
	if (!pos)
		return false;

2266
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2267

2268
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2269 2270
}

2271
/*
F
Frank Arnold 已提交
2272
 * If a device is not yet associated with a domain, this function
2273 2274
 * assigns it visible for the hardware
 */
2275 2276
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2277
{
2278
	struct pci_dev *pdev = to_pci_dev(dev);
2279
	struct iommu_dev_data *dev_data;
2280
	unsigned long flags;
2281
	int ret;
2282

2283 2284
	dev_data = get_dev_data(dev);

2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2294
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2295 2296
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2297 2298 2299
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2300

2301
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2302
	ret = __attach_device(dev_data, domain);
2303 2304
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2305 2306 2307 2308 2309
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2310
	domain_flush_tlb_pde(domain);
2311 2312

	return ret;
2313 2314
}

2315 2316 2317
/*
 * Removes a device from a protection domain (unlocked)
 */
2318
static void __detach_device(struct iommu_dev_data *dev_data)
2319
{
2320
	struct iommu_dev_data *head, *entry;
2321
	struct protection_domain *domain;
2322
	unsigned long flags;
2323

2324
	BUG_ON(!dev_data->domain);
2325

2326 2327 2328
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2329

2330 2331 2332
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2333

2334 2335
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2336

2337
	do_detach(head);
2338

2339
	spin_unlock_irqrestore(&domain->lock, flags);
2340 2341 2342

	/*
	 * If we run in passthrough mode the device must be assigned to the
2343 2344
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2345
	 */
2346
	if (dev_data->passthrough &&
2347
	    (dev_data->domain == NULL && domain != pt_domain))
2348
		__attach_device(dev_data, pt_domain);
2349 2350 2351 2352 2353
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2354
static void detach_device(struct device *dev)
2355
{
2356
	struct protection_domain *domain;
2357
	struct iommu_dev_data *dev_data;
2358 2359
	unsigned long flags;

2360
	dev_data = get_dev_data(dev);
2361
	domain   = dev_data->domain;
2362

2363 2364
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365
	__detach_device(dev_data);
2366
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367

2368 2369 2370
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2371
		pci_disable_ats(to_pci_dev(dev));
2372 2373

	dev_data->ats.enabled = false;
2374
}
2375

2376 2377 2378 2379 2380 2381
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2382
	struct iommu_dev_data *dev_data;
2383
	struct protection_domain *dom = NULL;
2384 2385
	unsigned long flags;

2386
	dev_data   = get_dev_data(dev);
2387

2388 2389
	if (dev_data->domain)
		return dev_data->domain;
2390

2391 2392
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2393 2394 2395 2396 2397 2398 2399 2400

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2401 2402 2403 2404

	return dom;
}

2405 2406 2407 2408
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2409 2410 2411
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2412
	struct amd_iommu *iommu;
2413
	unsigned long flags;
2414
	u16 devid;
2415

2416 2417
	if (!check_device(dev))
		return 0;
2418

2419 2420 2421
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2422 2423

	switch (action) {
2424
	case BUS_NOTIFY_ADD_DEVICE:
2425 2426

		iommu_init_device(dev);
2427
		init_iommu_group(dev);
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2441 2442
		domain = domain_for_device(dev);

2443 2444
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2455

2456
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2457

2458
		break;
2459
	case BUS_NOTIFY_REMOVED_DEVICE:
2460 2461 2462

		iommu_uninit_device(dev);

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2473
static struct notifier_block device_nb = {
2474 2475
	.notifier_call = device_change_notifier,
};
2476

2477 2478 2479 2480 2481
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2495
static struct protection_domain *get_domain(struct device *dev)
2496
{
2497
	struct protection_domain *domain;
2498
	struct dma_ops_domain *dma_dom;
2499
	u16 devid = get_device_id(dev);
2500

2501
	if (!check_device(dev))
2502
		return ERR_PTR(-EINVAL);
2503

2504 2505 2506
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2507

2508 2509
	if (domain != NULL)
		return domain;
2510

F
Frank Arnold 已提交
2511
	/* Device not bound yet - bind it */
2512
	dma_dom = find_protection_domain(devid);
2513
	if (!dma_dom)
2514 2515
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2516
	DUMP_printk("Using protection domain %d for device %s\n",
2517
		    dma_dom->domain.id, dev_name(dev));
2518

2519
	return &dma_dom->domain;
2520 2521
}

2522 2523
static void update_device_table(struct protection_domain *domain)
{
2524
	struct iommu_dev_data *dev_data;
2525

2526 2527
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2528 2529 2530 2531 2532 2533 2534 2535
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2536 2537 2538

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2539 2540 2541 2542

	domain->updated = false;
}

2543 2544 2545 2546 2547 2548
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2549
	struct aperture_range *aperture;
2550 2551
	u64 *pte, *pte_page;

2552 2553 2554 2555 2556
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2557
	if (!pte) {
2558
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2559
				GFP_ATOMIC);
2560 2561
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2562
		pte += PM_LEVEL_INDEX(0, address);
2563

2564
	update_domain(&dom->domain);
2565 2566 2567 2568

	return pte;
}

2569 2570 2571 2572
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2573
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2584
	pte  = dma_ops_get_pte(dom, address);
2585
	if (!pte)
2586
		return DMA_ERROR_CODE;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2604 2605 2606
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2607
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2608 2609
				 unsigned long address)
{
2610
	struct aperture_range *aperture;
2611 2612 2613 2614 2615
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2616 2617 2618 2619 2620 2621 2622
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2623

2624
	pte += PM_LEVEL_INDEX(0, address);
2625 2626 2627 2628 2629 2630

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2631 2632
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2633 2634
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2635 2636
 * Must be called with the domain lock held.
 */
2637 2638 2639 2640
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2641
			       int dir,
2642 2643
			       bool align,
			       u64 dma_mask)
2644 2645
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2646
	dma_addr_t address, start, ret;
2647
	unsigned int pages;
2648
	unsigned long align_mask = 0;
2649 2650
	int i;

2651
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2652 2653
	paddr &= PAGE_MASK;

2654 2655
	INC_STATS_COUNTER(total_map_requests);

2656 2657 2658
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2659 2660 2661
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2662
retry:
2663 2664
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2665
	if (unlikely(address == DMA_ERROR_CODE)) {
2666 2667 2668 2669 2670 2671 2672
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2673
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2674 2675 2676
			goto out;

		/*
2677
		 * aperture was successfully enlarged by 128 MB, try
2678 2679 2680 2681
		 * allocation again
		 */
		goto retry;
	}
2682 2683 2684

	start = address;
	for (i = 0; i < pages; ++i) {
2685
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2686
		if (ret == DMA_ERROR_CODE)
2687 2688
			goto out_unmap;

2689 2690 2691 2692 2693
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2694 2695
	ADD_STATS_COUNTER(alloced_io_mem, size);

2696
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2697
		domain_flush_tlb(&dma_dom->domain);
2698
		dma_dom->need_flush = false;
2699
	} else if (unlikely(amd_iommu_np_cache))
2700
		domain_flush_pages(&dma_dom->domain, address, size);
2701

2702 2703
out:
	return address;
2704 2705 2706 2707 2708

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2709
		dma_ops_domain_unmap(dma_dom, start);
2710 2711 2712 2713
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2714
	return DMA_ERROR_CODE;
2715 2716
}

2717 2718 2719 2720
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2721
static void __unmap_single(struct dma_ops_domain *dma_dom,
2722 2723 2724 2725
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2726
	dma_addr_t flush_addr;
2727 2728 2729
	dma_addr_t i, start;
	unsigned int pages;

2730
	if ((dma_addr == DMA_ERROR_CODE) ||
2731
	    (dma_addr + size > dma_dom->aperture_size))
2732 2733
		return;

2734
	flush_addr = dma_addr;
2735
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2736 2737 2738 2739
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2740
		dma_ops_domain_unmap(dma_dom, start);
2741 2742 2743
		start += PAGE_SIZE;
	}

2744 2745
	SUB_STATS_COUNTER(alloced_io_mem, size);

2746
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2747

2748
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2749
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2750 2751
		dma_dom->need_flush = false;
	}
2752 2753
}

2754 2755 2756
/*
 * The exported map_single function for dma_ops.
 */
2757 2758 2759 2760
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2761 2762 2763 2764
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2765
	u64 dma_mask;
2766
	phys_addr_t paddr = page_to_phys(page) + offset;
2767

2768 2769
	INC_STATS_COUNTER(cnt_map_single);

2770 2771
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2772
		return (dma_addr_t)paddr;
2773 2774
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2775

2776 2777
	dma_mask = *dev->dma_mask;

2778
	spin_lock_irqsave(&domain->lock, flags);
2779

2780
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2781
			    dma_mask);
2782
	if (addr == DMA_ERROR_CODE)
2783 2784
		goto out;

2785
	domain_flush_complete(domain);
2786 2787 2788 2789 2790 2791 2792

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2793 2794 2795
/*
 * The exported unmap_single function for dma_ops.
 */
2796 2797
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2798 2799 2800 2801
{
	unsigned long flags;
	struct protection_domain *domain;

2802 2803
	INC_STATS_COUNTER(cnt_unmap_single);

2804 2805
	domain = get_domain(dev);
	if (IS_ERR(domain))
2806 2807
		return;

2808 2809
	spin_lock_irqsave(&domain->lock, flags);

2810
	__unmap_single(domain->priv, dma_addr, size, dir);
2811

2812
	domain_flush_complete(domain);
2813 2814 2815 2816

	spin_unlock_irqrestore(&domain->lock, flags);
}

2817 2818 2819 2820
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2821
static int map_sg(struct device *dev, struct scatterlist *sglist,
2822 2823
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2824 2825 2826 2827 2828 2829 2830
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2831
	u64 dma_mask;
2832

2833 2834
	INC_STATS_COUNTER(cnt_map_sg);

2835
	domain = get_domain(dev);
2836
	if (IS_ERR(domain))
2837
		return 0;
2838

2839
	dma_mask = *dev->dma_mask;
2840 2841 2842 2843 2844 2845

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2846
		s->dma_address = __map_single(dev, domain->priv,
2847 2848
					      paddr, s->length, dir, false,
					      dma_mask);
2849 2850 2851 2852 2853 2854 2855 2856

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2857
	domain_flush_complete(domain);
2858 2859 2860 2861 2862 2863 2864 2865

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2866
			__unmap_single(domain->priv, s->dma_address,
2867 2868 2869 2870 2871 2872 2873 2874 2875
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2876 2877 2878 2879
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2880
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2881 2882
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2883 2884 2885 2886 2887 2888
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2889 2890
	INC_STATS_COUNTER(cnt_unmap_sg);

2891 2892
	domain = get_domain(dev);
	if (IS_ERR(domain))
2893 2894
		return;

2895 2896 2897
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2898
		__unmap_single(domain->priv, s->dma_address,
2899 2900 2901 2902
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2903
	domain_flush_complete(domain);
2904 2905 2906 2907

	spin_unlock_irqrestore(&domain->lock, flags);
}

2908 2909 2910
/*
 * The exported alloc_coherent function for dma_ops.
 */
2911
static void *alloc_coherent(struct device *dev, size_t size,
2912 2913
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2914
{
2915
	u64 dma_mask = dev->coherent_dma_mask;
2916 2917 2918
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2919

2920 2921
	INC_STATS_COUNTER(cnt_alloc_coherent);

2922 2923
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2924 2925 2926
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2927 2928
	} else if (IS_ERR(domain))
		return NULL;
2929

2930
	size	  = PAGE_ALIGN(size);
2931 2932
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2933

2934 2935 2936 2937
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2938

2939 2940 2941 2942 2943
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2944

2945 2946 2947
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2948 2949
	spin_lock_irqsave(&domain->lock, flags);

2950
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2951
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2952

2953
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2954
		spin_unlock_irqrestore(&domain->lock, flags);
2955
		goto out_free;
J
Jiri Slaby 已提交
2956
	}
2957

2958
	domain_flush_complete(domain);
2959 2960 2961

	spin_unlock_irqrestore(&domain->lock, flags);

2962
	return page_address(page);
2963 2964 2965

out_free:

2966 2967
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2968 2969

	return NULL;
2970 2971
}

2972 2973 2974
/*
 * The exported free_coherent function for dma_ops.
 */
2975
static void free_coherent(struct device *dev, size_t size,
2976 2977
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2978 2979
{
	struct protection_domain *domain;
2980 2981
	unsigned long flags;
	struct page *page;
2982

2983 2984
	INC_STATS_COUNTER(cnt_free_coherent);

2985 2986 2987
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2988 2989
	domain = get_domain(dev);
	if (IS_ERR(domain))
2990 2991
		goto free_mem;

2992 2993
	spin_lock_irqsave(&domain->lock, flags);

2994
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2995

2996
	domain_flush_complete(domain);
2997 2998 2999 3000

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
3001 3002
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
3003 3004
}

3005 3006 3007 3008 3009 3010
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3011
	return check_device(dev);
3012 3013
}

3014
/*
3015 3016
 * The function for pre-allocating protection domains.
 *
3017 3018 3019 3020
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3021
static void __init prealloc_protection_domains(void)
3022
{
3023
	struct iommu_dev_data *dev_data;
3024
	struct dma_ops_domain *dma_dom;
3025
	struct pci_dev *dev = NULL;
3026
	u16 devid;
3027

3028
	for_each_pci_dev(dev) {
3029 3030 3031

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3032
			continue;
3033

3034 3035 3036 3037 3038 3039
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3040
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3041 3042 3043
				dev_name(&dev->dev));
		}

3044
		/* Is there already any domain for it? */
3045
		if (domain_for_device(&dev->dev))
3046
			continue;
3047 3048 3049

		devid = get_device_id(&dev->dev);

3050
		dma_dom = dma_ops_domain_alloc();
3051 3052 3053
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3054 3055
		dma_dom->target_dev = devid;

3056
		attach_device(&dev->dev, &dma_dom->domain);
3057

3058
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3059 3060 3061
	}
}

3062
static struct dma_map_ops amd_iommu_dma_ops = {
3063 3064
	.alloc = alloc_coherent,
	.free = free_coherent,
3065 3066
	.map_page = map_page,
	.unmap_page = unmap_page,
3067 3068
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3069
	.dma_supported = amd_iommu_dma_supported,
3070 3071
};

3072 3073
static unsigned device_dma_ops_init(void)
{
3074
	struct iommu_dev_data *dev_data;
3075 3076 3077 3078 3079
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3080 3081 3082

			iommu_ignore_device(&pdev->dev);

3083 3084 3085 3086
			unhandled += 1;
			continue;
		}

3087 3088 3089 3090 3091 3092
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3093 3094 3095 3096 3097
	}

	return unhandled;
}

3098 3099 3100
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3101 3102 3103

void __init amd_iommu_init_api(void)
{
3104
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3105 3106
}

3107 3108 3109
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3110
	int ret, unhandled;
3111

3112 3113 3114 3115 3116
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3117
	for_each_iommu(iommu) {
3118
		iommu->default_dom = dma_ops_domain_alloc();
3119 3120
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3121
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3122 3123 3124 3125 3126
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3127
	/*
3128
	 * Pre-allocate the protection domains for each device.
3129
	 */
3130
	prealloc_protection_domains();
3131 3132

	iommu_detected = 1;
3133
	swiotlb = 0;
3134

3135
	/* Make the driver finally visible to the drivers */
3136 3137 3138 3139 3140
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3141

3142 3143
	amd_iommu_stats_init();

3144 3145 3146 3147 3148
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3149 3150 3151 3152
	return 0;

free_domains:

3153
	for_each_iommu(iommu) {
3154
		dma_ops_domain_free(iommu->default_dom);
3155 3156 3157 3158
	}

	return ret;
}
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3172
	struct iommu_dev_data *entry;
3173 3174 3175 3176
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3177 3178 3179 3180
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3181
	}
3182 3183 3184 3185

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3186 3187 3188 3189 3190
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3191 3192
	del_domain_from_list(domain);

3193 3194 3195 3196 3197 3198 3199
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3200 3201 3202 3203 3204
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3205
		return NULL;
3206 3207

	spin_lock_init(&domain->lock);
3208
	mutex_init(&domain->api_lock);
3209 3210
	domain->id = domain_id_alloc();
	if (!domain->id)
3211
		goto out_err;
3212
	INIT_LIST_HEAD(&domain->dev_list);
3213

3214 3215
	add_domain_to_list(domain);

3216 3217 3218 3219 3220 3221 3222 3223
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3238 3239

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3240
{
3241
	struct protection_domain *pdomain;
3242

3243 3244 3245
	/* We only support unmanaged domains for now */
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
3246

3247 3248
	pdomain = protection_domain_alloc();
	if (!pdomain)
3249 3250
		goto out_free;

3251 3252 3253 3254
	pdomain->mode    = PAGE_MODE_3_LEVEL;
	pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!pdomain->pt_root)
		goto out_free;
3255

3256 3257 3258
	pdomain->domain.geometry.aperture_start = 0;
	pdomain->domain.geometry.aperture_end   = ~0ULL;
	pdomain->domain.geometry.force_aperture = true;
3259

3260
	return &pdomain->domain;
3261 3262

out_free:
3263
	protection_domain_free(pdomain);
3264

3265
	return NULL;
3266 3267
}

3268
static void amd_iommu_domain_free(struct iommu_domain *dom)
3269
{
3270
	struct protection_domain *domain;
3271

3272
	if (!dom)
3273 3274
		return;

3275 3276
	domain = to_pdomain(dom);

3277 3278 3279 3280 3281
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3282 3283
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3284

3285 3286 3287
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3288
	protection_domain_free(domain);
3289 3290
}

3291 3292 3293
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3294
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3295 3296 3297
	struct amd_iommu *iommu;
	u16 devid;

3298
	if (!check_device(dev))
3299 3300
		return;

3301
	devid = get_device_id(dev);
3302

3303
	if (dev_data->domain != NULL)
3304
		detach_device(dev);
3305 3306 3307 3308 3309 3310 3311 3312

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3313 3314 3315
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3316
	struct protection_domain *domain = to_pdomain(dom);
3317
	struct iommu_dev_data *dev_data;
3318
	struct amd_iommu *iommu;
3319
	int ret;
3320

3321
	if (!check_device(dev))
3322 3323
		return -EINVAL;

3324 3325
	dev_data = dev->archdata.iommu;

3326
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3327 3328 3329
	if (!iommu)
		return -EINVAL;

3330
	if (dev_data->domain)
3331
		detach_device(dev);
3332

3333
	ret = attach_device(dev, domain);
3334 3335 3336

	iommu_completion_wait(iommu);

3337
	return ret;
3338 3339
}

3340
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3341
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3342
{
3343
	struct protection_domain *domain = to_pdomain(dom);
3344 3345 3346
	int prot = 0;
	int ret;

3347 3348 3349
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3350 3351 3352 3353 3354
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3355
	mutex_lock(&domain->api_lock);
3356
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3357 3358
	mutex_unlock(&domain->api_lock);

3359
	return ret;
3360 3361
}

3362 3363
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3364
{
3365
	struct protection_domain *domain = to_pdomain(dom);
3366
	size_t unmap_size;
3367

3368 3369 3370
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3371
	mutex_lock(&domain->api_lock);
3372
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3373
	mutex_unlock(&domain->api_lock);
3374

3375
	domain_flush_tlb_pde(domain);
3376

3377
	return unmap_size;
3378 3379
}

3380
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3381
					  dma_addr_t iova)
3382
{
3383
	struct protection_domain *domain = to_pdomain(dom);
3384
	unsigned long offset_mask, pte_pgsize;
3385
	u64 *pte, __pte;
3386

3387 3388 3389
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3390
	pte = fetch_pte(domain, iova, &pte_pgsize);
3391

3392
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3393 3394
		return 0;

3395 3396
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3397

3398
	return (__pte & ~offset_mask) | (iova & offset_mask);
3399 3400
}

3401
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3402
{
3403 3404
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3405
		return true;
3406
	case IOMMU_CAP_INTR_REMAP:
3407
		return (irq_remapping_enabled == 1);
3408 3409
	case IOMMU_CAP_NOEXEC:
		return false;
3410 3411
	}

3412
	return false;
S
Sheng Yang 已提交
3413 3414
}

3415
static const struct iommu_ops amd_iommu_ops = {
3416
	.capable = amd_iommu_capable,
3417 3418
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3419 3420
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3421 3422
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3423
	.map_sg = default_iommu_map_sg,
3424
	.iova_to_phys = amd_iommu_iova_to_phys,
3425
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3426 3427
};

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3440
	struct iommu_dev_data *dev_data;
3441
	struct pci_dev *dev = NULL;
3442
	int ret;
3443

3444 3445 3446
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3447

3448
	for_each_pci_dev(dev) {
3449
		if (!check_device(&dev->dev))
3450 3451
			continue;

3452 3453 3454
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3455
		attach_device(&dev->dev, pt_domain);
3456 3457
	}

J
Joerg Roedel 已提交
3458 3459
	amd_iommu_stats_init();

3460 3461 3462 3463
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3477 3478 3479

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3480
	struct protection_domain *domain = to_pdomain(dom);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3498 3499 3500

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3501
	struct protection_domain *domain = to_pdomain(dom);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3605 3606
	INC_STATS_COUNTER(invalidate_iotlb);

3607 3608 3609 3610 3611 3612
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3613
	struct protection_domain *domain = to_pdomain(dom);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3627 3628
	INC_STATS_COUNTER(invalidate_iotlb_all);

3629 3630 3631 3632 3633 3634
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3635
	struct protection_domain *domain = to_pdomain(dom);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3715
	struct protection_domain *domain = to_pdomain(dom);
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3729
	struct protection_domain *domain = to_pdomain(dom);
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3740 3741 3742 3743 3744 3745 3746 3747

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3748 3749
	INC_STATS_COUNTER(complete_ppr);

3750 3751 3752 3753 3754 3755 3756 3757 3758
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3759 3760 3761

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3762
	struct protection_domain *pdomain;
3763

3764 3765
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3766 3767 3768
		return NULL;

	/* Only return IOMMUv2 domains */
3769
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3770 3771
		return NULL;

3772
	return &pdomain->domain;
3773 3774
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3906 3907 3908
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3909 3910 3911 3912 3913 3914 3915
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3916
		table = NULL;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3934
		set_dte_irq_entry(alias, table);
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3969
			struct irq_2_irte *irte_info;
3970 3971 3972 3973 3974 3975

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3976
			cfg->remapped	      = 1;
3977 3978 3979
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4055 4056 4057 4058 4059
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4060
	struct irq_2_irte *irte_info;
4061 4062 4063 4064 4065 4066 4067
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4068
	cfg = irq_cfg(irq);
4069 4070 4071
	if (!cfg)
		return -EINVAL;

4072
	irte_info = &cfg->irq_2_irte;
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4086
	cfg->remapped	      = 1;
4087 4088
	irte_info->devid      = devid;
	irte_info->index      = index;
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4122
	struct irq_2_irte *irte_info;
4123 4124 4125 4126 4127 4128 4129 4130
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4131
	cfg       = irqd_cfg(data);
4132
	irq       = data->irq;
4133
	irte_info = &cfg->irq_2_irte;
4134 4135 4136 4137

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4138
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4154
	modify_irte(irte_info->devid, irte_info->index, irte);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4166
	struct irq_2_irte *irte_info;
4167 4168
	struct irq_cfg *cfg;

4169
	cfg = irq_cfg(irq);
4170 4171 4172
	if (!cfg)
		return -EINVAL;

4173
	irte_info = &cfg->irq_2_irte;
4174

4175
	free_irte(irte_info->devid, irte_info->index);
4176 4177 4178 4179

	return 0;
}

4180 4181 4182 4183
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4184
	struct irq_2_irte *irte_info;
4185 4186 4187
	struct irq_cfg *cfg;
	union irte irte;

4188
	cfg = irq_cfg(irq);
4189 4190 4191
	if (!cfg)
		return;

4192
	irte_info = &cfg->irq_2_irte;
4193 4194 4195 4196 4197 4198 4199 4200

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4201
	modify_irte(irte_info->devid, irte_info->index, irte);
4202 4203 4204

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4205
	msg->data       = irte_info->index;
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4217
	cfg = irq_cfg(irq);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4230
	struct irq_2_irte *irte_info;
4231 4232 4233 4234 4235 4236
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4237
	cfg = irq_cfg(irq);
4238 4239 4240 4241 4242 4243 4244
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4245
	irte_info	= &cfg->irq_2_irte;
4246

4247
	cfg->remapped	      = 1;
4248 4249
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4250 4251 4252 4253

	return 0;
}

4254
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4255
{
4256
	struct irq_2_irte *irte_info;
4257 4258 4259
	struct irq_cfg *cfg;
	int index, devid;

4260
	cfg = irq_cfg(irq);
4261 4262 4263
	if (!cfg)
		return -EINVAL;

4264
	irte_info = &cfg->irq_2_irte;
4265 4266 4267 4268 4269 4270 4271 4272
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4273
	cfg->remapped	      = 1;
4274 4275
	irte_info->devid      = devid;
	irte_info->index      = index;
4276 4277 4278 4279

	return 0;
}

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4292
	.alloc_hpet_msi		= alloc_hpet_msi,
4293
};
4294
#endif