amd_iommu.c 104.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

72 73 74 75
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

76 77 78
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

79 80 81 82 83 84
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

85
static const struct iommu_ops amd_iommu_ops;
86

87
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
88
int amd_iommu_max_glx_val = -1;
89

90 91
static struct dma_map_ops amd_iommu_dma_ops;

92 93 94 95 96 97
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
98
	struct list_head alias_list;      /* Link alias-groups together */
99 100 101 102 103 104 105 106 107 108 109 110 111 112
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

113 114 115
/*
 * general struct to manage commands send to an IOMMU
 */
116
struct iommu_cmd {
117 118 119
	u32 data[4];
};

120 121
struct kmem_cache *amd_iommu_irq_cache;

122
static void update_domain(struct protection_domain *domain);
123
static int __init alloc_passthrough_domain(void);
124

125 126 127 128 129 130
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

131 132 133 134 135
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

136
static struct iommu_dev_data *alloc_dev_data(u16 devid)
137 138 139 140 141 142 143 144
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

145 146
	INIT_LIST_HEAD(&dev_data->alias_list);

147
	dev_data->devid = devid;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

198 199 200 201
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

202
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
203 204
}

205 206 207 208 209
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

210 211 212 213
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
214 215
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
216 217 218 219 220 221 222 223 224 225 226 227
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

228 229 230 231 232 233 234 235 236
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

265 266 267 268 269 270 271 272 273 274 275
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

276 277
	/* No PCI device */
	if (!dev_is_pci(dev))
278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

292
static void init_iommu_group(struct device *dev)
293 294 295
{
	struct iommu_group *group;

296
	group = iommu_group_get_for_dev(dev);
297 298
	if (!IS_ERR(group))
		iommu_group_put(group);
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

363 364 365 366 367 368 369 370 371 372 373 374 375
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

376 377
	alias = get_alias(dev);

378 379 380 381 382 383 384 385 386 387 388 389
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

390 391
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
392
	}
393

394 395 396 397 398 399 400
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

401 402
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
403 404 405
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

406 407 408
	return 0;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

423 424
static void iommu_uninit_device(struct device *dev)
{
425 426 427 428 429
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
430 431 432
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

433 434
	iommu_group_remove_device(dev);

435 436 437
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

438
	/*
439 440
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
441
	 */
442
}
J
Joerg Roedel 已提交
443 444 445

void __init amd_iommu_uninit_devices(void)
{
446
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
447 448 449 450 451 452 453 454 455
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
456 457 458 459

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
473 474 475
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
476 477 478
			goto out_free;
	}

479 480 481 482 483 484 485 486 487
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
488 489 490 491 492 493 494 495
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
496 497 498 499 500 501
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

502
DECLARE_STATS_COUNTER(compl_wait);
503
DECLARE_STATS_COUNTER(cnt_map_single);
504
DECLARE_STATS_COUNTER(cnt_unmap_single);
505
DECLARE_STATS_COUNTER(cnt_map_sg);
506
DECLARE_STATS_COUNTER(cnt_unmap_sg);
507
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
508
DECLARE_STATS_COUNTER(cnt_free_coherent);
509
DECLARE_STATS_COUNTER(cross_page);
510
DECLARE_STATS_COUNTER(domain_flush_single);
511
DECLARE_STATS_COUNTER(domain_flush_all);
512
DECLARE_STATS_COUNTER(alloced_io_mem);
513
DECLARE_STATS_COUNTER(total_map_requests);
514 515 516 517 518
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
538
					 &amd_iommu_unmap_flush);
539 540

	amd_iommu_stats_add(&compl_wait);
541
	amd_iommu_stats_add(&cnt_map_single);
542
	amd_iommu_stats_add(&cnt_unmap_single);
543
	amd_iommu_stats_add(&cnt_map_sg);
544
	amd_iommu_stats_add(&cnt_unmap_sg);
545
	amd_iommu_stats_add(&cnt_alloc_coherent);
546
	amd_iommu_stats_add(&cnt_free_coherent);
547
	amd_iommu_stats_add(&cross_page);
548
	amd_iommu_stats_add(&domain_flush_single);
549
	amd_iommu_stats_add(&domain_flush_all);
550
	amd_iommu_stats_add(&alloced_io_mem);
551
	amd_iommu_stats_add(&total_map_requests);
552 553 554 555
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
556 557 558 559
}

#endif

560 561 562 563 564 565
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

566 567 568 569
static void dump_dte_entry(u16 devid)
{
	int i;

570 571
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
572 573 574
			amd_iommu_dev_table[devid].data[i]);
}

575 576 577 578 579 580 581 582 583
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

584
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
585
{
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
607

608
	printk(KERN_ERR "AMD-Vi: Event logged [");
609 610 611 612 613

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
614
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
615
		       address, flags);
616
		dump_dte_entry(devid);
617 618 619 620
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
621
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 623 624 625 626
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631 632
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
633
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 635 636 637
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
638
		dump_command(address);
639 640 641 642 643 644 645 646
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
647
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 649 650 651 652
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
653
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
654 655 656 657 658
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
659 660

	memset(__evt, 0, 4 * sizeof(u32));
661 662 663 664 665 666 667 668 669 670
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
671
		iommu_print_event(iommu, iommu->evt_buf + head);
672 673 674 675 676 677
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

678
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
679 680 681
{
	struct amd_iommu_fault fault;

682 683
	INC_STATS_COUNTER(pri_requests);

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
725

726 727 728
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
729

730 731 732 733 734 735 736
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
737 738
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742 743 744

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
745 746 747 748
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

749
irqreturn_t amd_iommu_int_thread(int irq, void *data)
750
{
751 752
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
753

754 755 756 757
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
758

759 760 761 762
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
763

764 765 766 767
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
784
	return IRQ_HANDLED;
785 786
}

787 788 789 790 791
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

792 793 794 795 796 797
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
818 819 820
{
	u8 *target;

821
	target = iommu->cmd_buf + tail;
822 823 824 825 826 827
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
828
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
829
}
830

831
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
832
{
833 834
	WARN_ON(address & 0x7ULL);

835
	memset(cmd, 0, sizeof(*cmd));
836 837 838
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
839 840 841
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

842 843 844 845 846 847 848
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

849 850 851 852
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
853
	bool s;
854 855

	pages = iommu_num_pages(address, size, PAGE_SIZE);
856
	s     = false;
857 858 859 860 861 862 863

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
864
		s = true;
865 866 867 868 869 870 871 872 873 874 875
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
876
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
877 878 879
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

880 881 882 883
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
884
	bool s;
885 886

	pages = iommu_num_pages(address, size, PAGE_SIZE);
887
	s     = false;
888 889 890 891 892 893 894

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
895
		s = true;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

911 912 913 914 915 916 917
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

918
	cmd->data[0]  = pasid;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
937
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
938 939
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
940
	cmd->data[1] |= (pasid & 0xff) << 16;
941 942 943 944 945 946 947 948
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

949 950 951 952 953 954 955
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
956
		cmd->data[1]  = pasid;
957 958 959 960 961 962 963 964
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

965 966 967 968
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
969 970
}

971 972 973 974 975 976 977
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

978 979
/*
 * Writes the command to the IOMMUs command buffer and informs the
980
 * hardware about the new command.
981
 */
982 983 984
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
985
{
986
	u32 left, tail, head, next_tail;
987 988
	unsigned long flags;

989
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
990 991

again:
992 993
	spin_lock_irqsave(&iommu->lock, flags);

994 995 996 997
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
998

999 1000 1001 1002
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1003

1004 1005
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1006

1007 1008 1009 1010 1011 1012
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1013 1014
	}

1015 1016 1017
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1018
	iommu->need_sync = sync;
1019

1020
	spin_unlock_irqrestore(&iommu->lock, flags);
1021

1022
	return 0;
1023 1024
}

1025 1026 1027 1028 1029
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1030 1031 1032 1033
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1034
static int iommu_completion_wait(struct amd_iommu *iommu)
1035 1036
{
	struct iommu_cmd cmd;
1037
	volatile u64 sem = 0;
1038
	int ret;
1039

1040
	if (!iommu->need_sync)
1041
		return 0;
1042

1043
	build_completion_wait(&cmd, (u64)&sem);
1044

1045
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1046
	if (ret)
1047
		return ret;
1048

1049
	return wait_on_sem(&sem);
1050 1051
}

1052
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1053
{
1054
	struct iommu_cmd cmd;
1055

1056
	build_inv_dte(&cmd, devid);
1057

1058 1059
	return iommu_queue_command(iommu, &cmd);
}
1060

1061 1062 1063
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1064

1065 1066
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1067

1068 1069
	iommu_completion_wait(iommu);
}
1070

1071 1072 1073 1074 1075 1076 1077
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1078

1079 1080 1081 1082 1083 1084
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1085

1086
	iommu_completion_wait(iommu);
1087 1088
}

1089
static void iommu_flush_all(struct amd_iommu *iommu)
1090
{
1091
	struct iommu_cmd cmd;
1092

1093
	build_inv_all(&cmd);
1094

1095 1096 1097 1098
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1118 1119
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1120 1121 1122 1123
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1124
		iommu_flush_irt_all(iommu);
1125
		iommu_flush_tlb_all(iommu);
1126 1127 1128
	}
}

1129
/*
1130
 * Command send function for flushing on-device TLB
1131
 */
1132 1133
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1134 1135
{
	struct amd_iommu *iommu;
1136
	struct iommu_cmd cmd;
1137
	int qdep;
1138

1139 1140
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1141

1142
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1143 1144

	return iommu_queue_command(iommu, &cmd);
1145 1146
}

1147 1148 1149
/*
 * Command send function for invalidating a device table entry
 */
1150
static int device_flush_dte(struct iommu_dev_data *dev_data)
1151
{
1152
	struct amd_iommu *iommu;
1153
	int ret;
1154

1155
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1156

1157
	ret = iommu_flush_dte(iommu, dev_data->devid);
1158 1159 1160
	if (ret)
		return ret;

1161
	if (dev_data->ats.enabled)
1162
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1163 1164

	return ret;
1165 1166
}

1167 1168 1169 1170 1171
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1172 1173
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1174
{
1175
	struct iommu_dev_data *dev_data;
1176 1177
	struct iommu_cmd cmd;
	int ret = 0, i;
1178

1179
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1180

1181 1182 1183 1184 1185 1186 1187 1188
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1189
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1190 1191
	}

1192 1193
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1194
		if (!dev_data->ats.enabled)
1195 1196
			continue;

1197
		ret |= device_flush_iotlb(dev_data, address, size);
1198 1199
	}

1200
	WARN_ON(ret);
1201 1202
}

1203 1204
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1205
{
1206
	__domain_flush_pages(domain, address, size, 0);
1207
}
1208

1209
/* Flush the whole IO/TLB for a given protection domain */
1210
static void domain_flush_tlb(struct protection_domain *domain)
1211
{
1212
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1213 1214
}

1215
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1216
static void domain_flush_tlb_pde(struct protection_domain *domain)
1217
{
1218
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1219 1220
}

1221
static void domain_flush_complete(struct protection_domain *domain)
1222
{
1223
	int i;
1224

1225 1226 1227
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1228

1229 1230 1231 1232 1233
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1234
	}
1235 1236
}

1237

1238
/*
1239
 * This function flushes the DTEs for all devices in domain
1240
 */
1241
static void domain_flush_devices(struct protection_domain *domain)
1242
{
1243
	struct iommu_dev_data *dev_data;
1244

1245
	list_for_each_entry(dev_data, &domain->dev_list, list)
1246
		device_flush_dte(dev_data);
1247 1248
}

1249 1250 1251 1252 1253 1254 1255
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1285
		      unsigned long page_size,
1286 1287 1288
		      u64 **pte_page,
		      gfp_t gfp)
{
1289
	int level, end_lvl;
1290
	u64 *pte, *page;
1291 1292

	BUG_ON(!is_power_of_2(page_size));
1293 1294 1295 1296

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1297 1298 1299 1300
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1301 1302 1303 1304 1305 1306 1307 1308 1309

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1310 1311 1312 1313
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1331 1332 1333
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1334 1335 1336 1337
{
	int level;
	u64 *pte;

1338 1339 1340
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1341 1342 1343
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1344

1345 1346 1347
	while (level > 0) {

		/* Not Present */
1348 1349 1350
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1351
		/* Large PTE */
1352 1353 1354
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1355 1356 1357 1358 1359

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1360 1361
		level -= 1;

1362
		/* Walk to the next level */
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1378 1379 1380 1381 1382
	}

	return pte;
}

1383 1384 1385 1386 1387 1388 1389
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1390 1391 1392
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1393
			  int prot,
1394
			  unsigned long page_size)
1395
{
1396
	u64 __pte, *pte;
1397
	int i, count;
1398

1399 1400 1401
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1402
	if (!(prot & IOMMU_PROT_MASK))
1403 1404
		return -EINVAL;

1405 1406
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1407

1408 1409 1410
	if (!pte)
		return -ENOMEM;

1411 1412 1413
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1414

1415
	if (count > 1) {
1416 1417 1418 1419
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1420 1421 1422 1423 1424 1425

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1426 1427
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1428

1429 1430
	update_domain(dom);

1431 1432 1433
	return 0;
}

1434 1435 1436
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1437
{
1438 1439
	unsigned long long unmapped;
	unsigned long unmap_size;
1440 1441 1442 1443 1444
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1445

1446 1447
	while (unmapped < page_size) {

1448 1449 1450 1451 1452 1453
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1454 1455 1456 1457 1458 1459 1460 1461
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1462
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1463

1464
	return unmapped;
1465 1466
}

1467 1468 1469 1470
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1485 1486 1487 1488
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1489 1490 1491 1492 1493 1494 1495 1496
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1497
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1498
				     PAGE_SIZE);
1499 1500 1501 1502 1503 1504 1505
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1506
			__set_bit(addr >> PAGE_SHIFT,
1507
				  dma_dom->aperture[0]->bitmap);
1508 1509 1510 1511 1512
	}

	return 0;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1535 1536 1537
/*
 * Inits the unity mappings required for a specific device
 */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1555 1556 1557 1558 1559 1560 1561 1562 1563
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1564

1565
/*
1566
 * The address allocator core functions.
1567 1568 1569
 *
 * called with domain->lock held
 */
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1591 1592 1593 1594 1595
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1596
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1597 1598 1599
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1600
	struct amd_iommu *iommu;
1601
	unsigned long i, old_size, pte_pgsize;
1602

1603 1604 1605 1606
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1626
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1637
	old_size                = dma_dom->aperture_size;
1638 1639
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1652
	/* Initialize the exclusion range if necessary */
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1674
	     i += pte_pgsize) {
1675
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1676 1677 1678
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1679 1680
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1681 1682
	}

1683 1684
	update_domain(&dma_dom->domain);

1685 1686 1687
	return 0;

out_free:
1688 1689
	update_domain(&dma_dom->domain);

1690 1691 1692 1693 1694 1695 1696 1697
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1698 1699 1700 1701 1702 1703 1704
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1705
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1706 1707 1708 1709 1710 1711
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1712 1713
	next_bit >>= PAGE_SHIFT;

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1732
			dom->next_address = address + (pages << PAGE_SHIFT);
1733 1734 1735 1736 1737 1738 1739 1740 1741
			break;
		}

		next_bit = 0;
	}

	return address;
}

1742 1743
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1744
					     unsigned int pages,
1745 1746
					     unsigned long align_mask,
					     u64 dma_mask)
1747 1748 1749
{
	unsigned long address;

1750 1751 1752 1753
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1754

1755
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1756
				     dma_mask, dom->next_address);
1757

1758
	if (address == -1) {
1759
		dom->next_address = 0;
1760 1761
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1762 1763
		dom->need_flush = true;
	}
1764

1765
	if (unlikely(address == -1))
1766
		address = DMA_ERROR_CODE;
1767 1768 1769 1770 1771 1772

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1773 1774 1775 1776 1777
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1778 1779 1780 1781
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1782 1783
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1784

1785 1786
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1787 1788 1789 1790
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1791

1792
	if (address >= dom->next_address)
1793
		dom->need_flush = true;
1794 1795

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1796

A
Akinobu Mita 已提交
1797
	bitmap_clear(range->bitmap, address, pages);
1798

1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1888
static void free_pagetable(struct protection_domain *domain)
1889
{
1890
	unsigned long root = (unsigned long)domain->pt_root;
1891

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1915 1916 1917
	}
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1948 1949
static void free_gcr3_table(struct protection_domain *domain)
{
1950 1951 1952 1953 1954 1955 1956
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1957 1958 1959
	free_page((unsigned long)domain->gcr3_tbl);
}

1960 1961 1962 1963
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1964 1965
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1966 1967
	int i;

1968 1969 1970
	if (!dom)
		return;

1971 1972
	del_domain_from_list(&dom->domain);

1973
	free_pagetable(&dom->domain);
1974

1975 1976 1977 1978 1979 1980
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1981 1982 1983 1984

	kfree(dom);
}

1985 1986
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1987
 * It also initializes the page table and the address allocator data
1988 1989
 * structures required for the dma_ops interface
 */
1990
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2003
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2004
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2005
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2006
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2007 2008 2009 2010
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2011
	dma_dom->need_flush = false;
2012
	dma_dom->target_dev = 0xffff;
2013

2014 2015
	add_domain_to_list(&dma_dom->domain);

2016
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2017 2018
		goto free_dma_dom;

2019
	/*
2020 2021
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2022
	 */
2023
	dma_dom->aperture[0]->bitmap[0] = 1;
2024
	dma_dom->next_address = 0;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2044
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2045
{
2046
	u64 pte_root = 0;
2047
	u64 flags = 0;
2048

2049 2050 2051
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2052 2053 2054
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2055

2056 2057
	flags = amd_iommu_dev_table[devid].data[1];

2058 2059 2060
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2087 2088 2089 2090 2091
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2092 2093 2094 2095 2096 2097 2098 2099 2100
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2101 2102
}

2103 2104
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2105 2106
{
	struct amd_iommu *iommu;
2107
	bool ats;
2108

2109 2110
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2111 2112 2113 2114

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2115
	set_dte_entry(dev_data->devid, domain, ats);
2116 2117 2118 2119 2120 2121

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2122
	device_flush_dte(dev_data);
2123 2124
}

2125
static void do_detach(struct iommu_dev_data *dev_data)
2126 2127 2128
{
	struct amd_iommu *iommu;

2129
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2130 2131

	/* decrease reference counters */
2132 2133 2134 2135 2136 2137
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2138
	clear_dte_entry(dev_data->devid);
2139

2140
	/* Flush the DTE entry */
2141
	device_flush_dte(dev_data);
2142 2143 2144 2145 2146 2147
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2148
static int __attach_device(struct iommu_dev_data *dev_data,
2149
			   struct protection_domain *domain)
2150
{
2151
	struct iommu_dev_data *head, *entry;
2152
	int ret;
2153

2154 2155 2156
	/* lock domain */
	spin_lock(&domain->lock);

2157
	head = dev_data;
2158

2159 2160
	if (head->alias_data != NULL)
		head = head->alias_data;
2161

2162
	/* Now we have the root of the alias group, if any */
2163

2164 2165 2166
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2167

2168 2169
	/* Attach alias group root */
	do_attach(head, domain);
2170

2171 2172 2173
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2174

2175 2176 2177 2178
	ret = 0;

out_unlock:

2179 2180
	/* ready */
	spin_unlock(&domain->lock);
2181

2182
	return ret;
2183
}
2184

2185 2186 2187 2188 2189 2190 2191 2192

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2193 2194 2195 2196 2197 2198
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2199
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2200 2201 2202
	if (!pos)
		return -EINVAL;

2203 2204 2205
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2206 2207 2208 2209

	return 0;
}

2210 2211
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2212 2213 2214 2215 2216 2217 2218 2219
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2231 2232
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2233 2234 2235
	if (ret)
		goto out_err;

2236 2237 2238 2239 2240 2241
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2255
/* FIXME: Move this to PCI code */
2256
#define PCI_PRI_TLP_OFF		(1 << 15)
2257

J
Joerg Roedel 已提交
2258
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2259
{
2260
	u16 status;
2261 2262
	int pos;

2263
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2264 2265 2266
	if (!pos)
		return false;

2267
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2268

2269
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2270 2271
}

2272
/*
F
Frank Arnold 已提交
2273
 * If a device is not yet associated with a domain, this function
2274 2275
 * assigns it visible for the hardware
 */
2276 2277
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2278
{
2279
	struct pci_dev *pdev = to_pci_dev(dev);
2280
	struct iommu_dev_data *dev_data;
2281
	unsigned long flags;
2282
	int ret;
2283

2284 2285
	dev_data = get_dev_data(dev);

2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2295
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2296 2297
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2298 2299 2300
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2301

2302
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2303
	ret = __attach_device(dev_data, domain);
2304 2305
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2306 2307 2308 2309 2310
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2311
	domain_flush_tlb_pde(domain);
2312 2313

	return ret;
2314 2315
}

2316 2317 2318
/*
 * Removes a device from a protection domain (unlocked)
 */
2319
static void __detach_device(struct iommu_dev_data *dev_data)
2320
{
2321
	struct iommu_dev_data *head, *entry;
2322
	struct protection_domain *domain;
2323
	unsigned long flags;
2324

2325
	BUG_ON(!dev_data->domain);
2326

2327 2328 2329
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2330

2331 2332 2333
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2334

2335 2336
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2337

2338
	do_detach(head);
2339

2340
	spin_unlock_irqrestore(&domain->lock, flags);
2341 2342 2343

	/*
	 * If we run in passthrough mode the device must be assigned to the
2344 2345
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2346
	 */
2347
	if (dev_data->passthrough &&
2348
	    (dev_data->domain == NULL && domain != pt_domain))
2349
		__attach_device(dev_data, pt_domain);
2350 2351 2352 2353 2354
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2355
static void detach_device(struct device *dev)
2356
{
2357
	struct protection_domain *domain;
2358
	struct iommu_dev_data *dev_data;
2359 2360
	unsigned long flags;

2361
	dev_data = get_dev_data(dev);
2362
	domain   = dev_data->domain;
2363

2364 2365
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2366
	__detach_device(dev_data);
2367
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2368

2369 2370 2371
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2372
		pci_disable_ats(to_pci_dev(dev));
2373 2374

	dev_data->ats.enabled = false;
2375
}
2376

2377 2378 2379 2380 2381 2382
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2383
	struct iommu_dev_data *dev_data;
2384
	struct protection_domain *dom = NULL;
2385 2386
	unsigned long flags;

2387
	dev_data   = get_dev_data(dev);
2388

2389 2390
	if (dev_data->domain)
		return dev_data->domain;
2391

2392 2393
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2394 2395 2396 2397 2398 2399 2400 2401

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2402 2403 2404 2405

	return dom;
}

2406 2407 2408 2409
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2410 2411 2412
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2413
	struct amd_iommu *iommu;
2414
	unsigned long flags;
2415
	u16 devid;
2416

2417 2418
	if (!check_device(dev))
		return 0;
2419

2420 2421 2422
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2423 2424

	switch (action) {
2425
	case BUS_NOTIFY_ADD_DEVICE:
2426 2427

		iommu_init_device(dev);
2428
		init_iommu_group(dev);
2429

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2442 2443
		domain = domain_for_device(dev);

2444 2445
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2456

2457
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2458

2459
		break;
2460
	case BUS_NOTIFY_REMOVED_DEVICE:
2461 2462 2463

		iommu_uninit_device(dev);

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2474
static struct notifier_block device_nb = {
2475 2476
	.notifier_call = device_change_notifier,
};
2477

2478 2479 2480 2481 2482
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2496
static struct protection_domain *get_domain(struct device *dev)
2497
{
2498
	struct protection_domain *domain;
2499
	struct dma_ops_domain *dma_dom;
2500
	u16 devid = get_device_id(dev);
2501

2502
	if (!check_device(dev))
2503
		return ERR_PTR(-EINVAL);
2504

2505 2506 2507
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2508

2509 2510
	if (domain != NULL)
		return domain;
2511

F
Frank Arnold 已提交
2512
	/* Device not bound yet - bind it */
2513
	dma_dom = find_protection_domain(devid);
2514
	if (!dma_dom)
2515 2516
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2517
	DUMP_printk("Using protection domain %d for device %s\n",
2518
		    dma_dom->domain.id, dev_name(dev));
2519

2520
	return &dma_dom->domain;
2521 2522
}

2523 2524
static void update_device_table(struct protection_domain *domain)
{
2525
	struct iommu_dev_data *dev_data;
2526

2527 2528
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2529 2530 2531 2532 2533 2534 2535 2536
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2537 2538 2539

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2540 2541 2542 2543

	domain->updated = false;
}

2544 2545 2546 2547 2548 2549
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2550
	struct aperture_range *aperture;
2551 2552
	u64 *pte, *pte_page;

2553 2554 2555 2556 2557
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2558
	if (!pte) {
2559
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2560
				GFP_ATOMIC);
2561 2562
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2563
		pte += PM_LEVEL_INDEX(0, address);
2564

2565
	update_domain(&dom->domain);
2566 2567 2568 2569

	return pte;
}

2570 2571 2572 2573
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2574
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2585
	pte  = dma_ops_get_pte(dom, address);
2586
	if (!pte)
2587
		return DMA_ERROR_CODE;
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2605 2606 2607
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2608
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2609 2610
				 unsigned long address)
{
2611
	struct aperture_range *aperture;
2612 2613 2614 2615 2616
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2617 2618 2619 2620 2621 2622 2623
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2624

2625
	pte += PM_LEVEL_INDEX(0, address);
2626 2627 2628 2629 2630 2631

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2632 2633
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2634 2635
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2636 2637
 * Must be called with the domain lock held.
 */
2638 2639 2640 2641
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2642
			       int dir,
2643 2644
			       bool align,
			       u64 dma_mask)
2645 2646
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2647
	dma_addr_t address, start, ret;
2648
	unsigned int pages;
2649
	unsigned long align_mask = 0;
2650 2651
	int i;

2652
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2653 2654
	paddr &= PAGE_MASK;

2655 2656
	INC_STATS_COUNTER(total_map_requests);

2657 2658 2659
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2660 2661 2662
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2663
retry:
2664 2665
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2666
	if (unlikely(address == DMA_ERROR_CODE)) {
2667 2668 2669 2670 2671 2672 2673
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2674
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2675 2676 2677
			goto out;

		/*
2678
		 * aperture was successfully enlarged by 128 MB, try
2679 2680 2681 2682
		 * allocation again
		 */
		goto retry;
	}
2683 2684 2685

	start = address;
	for (i = 0; i < pages; ++i) {
2686
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2687
		if (ret == DMA_ERROR_CODE)
2688 2689
			goto out_unmap;

2690 2691 2692 2693 2694
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2695 2696
	ADD_STATS_COUNTER(alloced_io_mem, size);

2697
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2698
		domain_flush_tlb(&dma_dom->domain);
2699
		dma_dom->need_flush = false;
2700
	} else if (unlikely(amd_iommu_np_cache))
2701
		domain_flush_pages(&dma_dom->domain, address, size);
2702

2703 2704
out:
	return address;
2705 2706 2707 2708 2709

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2710
		dma_ops_domain_unmap(dma_dom, start);
2711 2712 2713 2714
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2715
	return DMA_ERROR_CODE;
2716 2717
}

2718 2719 2720 2721
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2722
static void __unmap_single(struct dma_ops_domain *dma_dom,
2723 2724 2725 2726
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2727
	dma_addr_t flush_addr;
2728 2729 2730
	dma_addr_t i, start;
	unsigned int pages;

2731
	if ((dma_addr == DMA_ERROR_CODE) ||
2732
	    (dma_addr + size > dma_dom->aperture_size))
2733 2734
		return;

2735
	flush_addr = dma_addr;
2736
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2737 2738 2739 2740
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2741
		dma_ops_domain_unmap(dma_dom, start);
2742 2743 2744
		start += PAGE_SIZE;
	}

2745 2746
	SUB_STATS_COUNTER(alloced_io_mem, size);

2747
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2748

2749
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2750
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2751 2752
		dma_dom->need_flush = false;
	}
2753 2754
}

2755 2756 2757
/*
 * The exported map_single function for dma_ops.
 */
2758 2759 2760 2761
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2762 2763 2764 2765
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2766
	u64 dma_mask;
2767
	phys_addr_t paddr = page_to_phys(page) + offset;
2768

2769 2770
	INC_STATS_COUNTER(cnt_map_single);

2771 2772
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2773
		return (dma_addr_t)paddr;
2774 2775
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2776

2777 2778
	dma_mask = *dev->dma_mask;

2779
	spin_lock_irqsave(&domain->lock, flags);
2780

2781
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2782
			    dma_mask);
2783
	if (addr == DMA_ERROR_CODE)
2784 2785
		goto out;

2786
	domain_flush_complete(domain);
2787 2788 2789 2790 2791 2792 2793

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2794 2795 2796
/*
 * The exported unmap_single function for dma_ops.
 */
2797 2798
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2799 2800 2801 2802
{
	unsigned long flags;
	struct protection_domain *domain;

2803 2804
	INC_STATS_COUNTER(cnt_unmap_single);

2805 2806
	domain = get_domain(dev);
	if (IS_ERR(domain))
2807 2808
		return;

2809 2810
	spin_lock_irqsave(&domain->lock, flags);

2811
	__unmap_single(domain->priv, dma_addr, size, dir);
2812

2813
	domain_flush_complete(domain);
2814 2815 2816 2817

	spin_unlock_irqrestore(&domain->lock, flags);
}

2818 2819 2820 2821
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2822
static int map_sg(struct device *dev, struct scatterlist *sglist,
2823 2824
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2825 2826 2827 2828 2829 2830 2831
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2832
	u64 dma_mask;
2833

2834 2835
	INC_STATS_COUNTER(cnt_map_sg);

2836
	domain = get_domain(dev);
2837
	if (IS_ERR(domain))
2838
		return 0;
2839

2840
	dma_mask = *dev->dma_mask;
2841 2842 2843 2844 2845 2846

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2847
		s->dma_address = __map_single(dev, domain->priv,
2848 2849
					      paddr, s->length, dir, false,
					      dma_mask);
2850 2851 2852 2853 2854 2855 2856 2857

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2858
	domain_flush_complete(domain);
2859 2860 2861 2862 2863 2864 2865 2866

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2867
			__unmap_single(domain->priv, s->dma_address,
2868 2869 2870 2871 2872 2873 2874 2875 2876
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2877 2878 2879 2880
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2881
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2882 2883
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2884 2885 2886 2887 2888 2889
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2890 2891
	INC_STATS_COUNTER(cnt_unmap_sg);

2892 2893
	domain = get_domain(dev);
	if (IS_ERR(domain))
2894 2895
		return;

2896 2897 2898
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2899
		__unmap_single(domain->priv, s->dma_address,
2900 2901 2902 2903
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2904
	domain_flush_complete(domain);
2905 2906 2907 2908

	spin_unlock_irqrestore(&domain->lock, flags);
}

2909 2910 2911
/*
 * The exported alloc_coherent function for dma_ops.
 */
2912
static void *alloc_coherent(struct device *dev, size_t size,
2913 2914
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2915
{
2916
	u64 dma_mask = dev->coherent_dma_mask;
2917 2918 2919
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2920

2921 2922
	INC_STATS_COUNTER(cnt_alloc_coherent);

2923 2924
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2925 2926 2927
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2928 2929
	} else if (IS_ERR(domain))
		return NULL;
2930

2931
	size	  = PAGE_ALIGN(size);
2932 2933
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2934

2935 2936 2937 2938
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2939

2940 2941 2942 2943 2944
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2945

2946 2947 2948
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2949 2950
	spin_lock_irqsave(&domain->lock, flags);

2951
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2952
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2953

2954
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2955
		spin_unlock_irqrestore(&domain->lock, flags);
2956
		goto out_free;
J
Jiri Slaby 已提交
2957
	}
2958

2959
	domain_flush_complete(domain);
2960 2961 2962

	spin_unlock_irqrestore(&domain->lock, flags);

2963
	return page_address(page);
2964 2965 2966

out_free:

2967 2968
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2969 2970

	return NULL;
2971 2972
}

2973 2974 2975
/*
 * The exported free_coherent function for dma_ops.
 */
2976
static void free_coherent(struct device *dev, size_t size,
2977 2978
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2979 2980
{
	struct protection_domain *domain;
2981 2982
	unsigned long flags;
	struct page *page;
2983

2984 2985
	INC_STATS_COUNTER(cnt_free_coherent);

2986 2987 2988
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2989 2990
	domain = get_domain(dev);
	if (IS_ERR(domain))
2991 2992
		goto free_mem;

2993 2994
	spin_lock_irqsave(&domain->lock, flags);

2995
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2996

2997
	domain_flush_complete(domain);
2998 2999 3000 3001

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
3002 3003
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
3004 3005
}

3006 3007 3008 3009 3010 3011
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3012
	return check_device(dev);
3013 3014
}

3015
/*
3016 3017
 * The function for pre-allocating protection domains.
 *
3018 3019 3020 3021
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3022
static void __init prealloc_protection_domains(void)
3023
{
3024
	struct iommu_dev_data *dev_data;
3025
	struct dma_ops_domain *dma_dom;
3026
	struct pci_dev *dev = NULL;
3027
	u16 devid;
3028

3029
	for_each_pci_dev(dev) {
3030 3031 3032

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3033
			continue;
3034

3035 3036 3037 3038 3039 3040
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3041
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3042 3043 3044
				dev_name(&dev->dev));
		}

3045
		/* Is there already any domain for it? */
3046
		if (domain_for_device(&dev->dev))
3047
			continue;
3048 3049 3050

		devid = get_device_id(&dev->dev);

3051
		dma_dom = dma_ops_domain_alloc();
3052 3053 3054
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3055 3056
		dma_dom->target_dev = devid;

3057
		attach_device(&dev->dev, &dma_dom->domain);
3058

3059
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3060 3061 3062
	}
}

3063
static struct dma_map_ops amd_iommu_dma_ops = {
3064 3065
	.alloc = alloc_coherent,
	.free = free_coherent,
3066 3067
	.map_page = map_page,
	.unmap_page = unmap_page,
3068 3069
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3070
	.dma_supported = amd_iommu_dma_supported,
3071 3072
};

3073 3074
static unsigned device_dma_ops_init(void)
{
3075
	struct iommu_dev_data *dev_data;
3076 3077 3078 3079 3080
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3081 3082 3083

			iommu_ignore_device(&pdev->dev);

3084 3085 3086 3087
			unhandled += 1;
			continue;
		}

3088 3089 3090 3091 3092 3093
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3094 3095 3096 3097 3098
	}

	return unhandled;
}

3099 3100 3101
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3102 3103 3104

void __init amd_iommu_init_api(void)
{
3105
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3106 3107
}

3108 3109 3110
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3111
	int ret, unhandled;
3112

3113 3114 3115 3116 3117
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3118
	for_each_iommu(iommu) {
3119
		iommu->default_dom = dma_ops_domain_alloc();
3120 3121
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3122
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3123 3124 3125 3126 3127
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3128
	/*
3129
	 * Pre-allocate the protection domains for each device.
3130
	 */
3131
	prealloc_protection_domains();
3132 3133

	iommu_detected = 1;
3134
	swiotlb = 0;
3135

3136
	/* Make the driver finally visible to the drivers */
3137 3138 3139 3140 3141
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3142

3143 3144
	amd_iommu_stats_init();

3145 3146 3147 3148 3149
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3150 3151 3152 3153
	return 0;

free_domains:

3154
	for_each_iommu(iommu) {
3155
		dma_ops_domain_free(iommu->default_dom);
3156 3157 3158 3159
	}

	return ret;
}
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3173
	struct iommu_dev_data *entry;
3174 3175 3176 3177
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3178 3179 3180 3181
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3182
	}
3183 3184 3185 3186

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3187 3188 3189 3190 3191
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3192 3193
	del_domain_from_list(domain);

3194 3195 3196 3197 3198 3199 3200
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3201 3202 3203 3204 3205
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3206
		return NULL;
3207 3208

	spin_lock_init(&domain->lock);
3209
	mutex_init(&domain->api_lock);
3210 3211
	domain->id = domain_id_alloc();
	if (!domain->id)
3212
		goto out_err;
3213
	INIT_LIST_HEAD(&domain->dev_list);
3214

3215 3216
	add_domain_to_list(domain);

3217 3218 3219 3220 3221 3222 3223 3224
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3239 3240

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3241
{
3242
	struct protection_domain *pdomain;
3243

3244 3245 3246
	/* We only support unmanaged domains for now */
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
3247

3248 3249
	pdomain = protection_domain_alloc();
	if (!pdomain)
3250 3251
		goto out_free;

3252 3253 3254 3255
	pdomain->mode    = PAGE_MODE_3_LEVEL;
	pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!pdomain->pt_root)
		goto out_free;
3256

3257 3258 3259
	pdomain->domain.geometry.aperture_start = 0;
	pdomain->domain.geometry.aperture_end   = ~0ULL;
	pdomain->domain.geometry.force_aperture = true;
3260

3261
	return &pdomain->domain;
3262 3263

out_free:
3264
	protection_domain_free(pdomain);
3265

3266
	return NULL;
3267 3268
}

3269
static void amd_iommu_domain_free(struct iommu_domain *dom)
3270
{
3271
	struct protection_domain *domain;
3272

3273
	if (!dom)
3274 3275
		return;

3276 3277
	domain = to_pdomain(dom);

3278 3279 3280 3281 3282
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3283 3284
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3285

3286 3287 3288
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3289
	protection_domain_free(domain);
3290 3291
}

3292 3293 3294
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3295
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3296 3297 3298
	struct amd_iommu *iommu;
	u16 devid;

3299
	if (!check_device(dev))
3300 3301
		return;

3302
	devid = get_device_id(dev);
3303

3304
	if (dev_data->domain != NULL)
3305
		detach_device(dev);
3306 3307 3308 3309 3310 3311 3312 3313

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3314 3315 3316
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3317
	struct protection_domain *domain = to_pdomain(dom);
3318
	struct iommu_dev_data *dev_data;
3319
	struct amd_iommu *iommu;
3320
	int ret;
3321

3322
	if (!check_device(dev))
3323 3324
		return -EINVAL;

3325 3326
	dev_data = dev->archdata.iommu;

3327
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3328 3329 3330
	if (!iommu)
		return -EINVAL;

3331
	if (dev_data->domain)
3332
		detach_device(dev);
3333

3334
	ret = attach_device(dev, domain);
3335 3336 3337

	iommu_completion_wait(iommu);

3338
	return ret;
3339 3340
}

3341
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3342
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3343
{
3344
	struct protection_domain *domain = to_pdomain(dom);
3345 3346 3347
	int prot = 0;
	int ret;

3348 3349 3350
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3351 3352 3353 3354 3355
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3356
	mutex_lock(&domain->api_lock);
3357
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3358 3359
	mutex_unlock(&domain->api_lock);

3360
	return ret;
3361 3362
}

3363 3364
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3365
{
3366
	struct protection_domain *domain = to_pdomain(dom);
3367
	size_t unmap_size;
3368

3369 3370 3371
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3372
	mutex_lock(&domain->api_lock);
3373
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3374
	mutex_unlock(&domain->api_lock);
3375

3376
	domain_flush_tlb_pde(domain);
3377

3378
	return unmap_size;
3379 3380
}

3381
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3382
					  dma_addr_t iova)
3383
{
3384
	struct protection_domain *domain = to_pdomain(dom);
3385
	unsigned long offset_mask, pte_pgsize;
3386
	u64 *pte, __pte;
3387

3388 3389 3390
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3391
	pte = fetch_pte(domain, iova, &pte_pgsize);
3392

3393
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3394 3395
		return 0;

3396 3397
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3398

3399
	return (__pte & ~offset_mask) | (iova & offset_mask);
3400 3401
}

3402
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3403
{
3404 3405
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3406
		return true;
3407
	case IOMMU_CAP_INTR_REMAP:
3408
		return (irq_remapping_enabled == 1);
3409 3410
	case IOMMU_CAP_NOEXEC:
		return false;
3411 3412
	}

3413
	return false;
S
Sheng Yang 已提交
3414 3415
}

3416
static const struct iommu_ops amd_iommu_ops = {
3417
	.capable = amd_iommu_capable,
3418 3419
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3420 3421
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3422 3423
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3424
	.map_sg = default_iommu_map_sg,
3425
	.iova_to_phys = amd_iommu_iova_to_phys,
3426
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3427 3428
};

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3441
	struct iommu_dev_data *dev_data;
3442
	struct pci_dev *dev = NULL;
3443
	int ret;
3444

3445 3446 3447
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3448

3449
	for_each_pci_dev(dev) {
3450
		if (!check_device(&dev->dev))
3451 3452
			continue;

3453 3454 3455
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3456
		attach_device(&dev->dev, pt_domain);
3457 3458
	}

J
Joerg Roedel 已提交
3459 3460
	amd_iommu_stats_init();

3461 3462 3463 3464
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3478 3479 3480

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3481
	struct protection_domain *domain = to_pdomain(dom);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3499 3500 3501

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3502
	struct protection_domain *domain = to_pdomain(dom);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3606 3607
	INC_STATS_COUNTER(invalidate_iotlb);

3608 3609 3610 3611 3612 3613
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3614
	struct protection_domain *domain = to_pdomain(dom);
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3628 3629
	INC_STATS_COUNTER(invalidate_iotlb_all);

3630 3631 3632 3633 3634 3635
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3636
	struct protection_domain *domain = to_pdomain(dom);
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3716
	struct protection_domain *domain = to_pdomain(dom);
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3730
	struct protection_domain *domain = to_pdomain(dom);
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3741 3742 3743 3744 3745 3746 3747 3748

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3749 3750
	INC_STATS_COUNTER(complete_ppr);

3751 3752 3753 3754 3755 3756 3757 3758 3759
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3760 3761 3762

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3763
	struct protection_domain *pdomain;
3764

3765 3766
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3767 3768 3769
		return NULL;

	/* Only return IOMMUv2 domains */
3770
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3771 3772
		return NULL;

3773
	return &pdomain->domain;
3774 3775
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3917 3918 3919
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3920 3921 3922 3923 3924 3925 3926
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3927
		table = NULL;
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3945
		set_dte_irq_entry(alias, table);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3958 3959
static int alloc_irq_index(struct irq_cfg *cfg, struct irq_2_irte *irte_info,
			   u16 devid, int count)
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3986
			cfg->remapped	      = 1;
3987 3988
			irte_info->devid      = devid;
			irte_info->index      = index;
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4064 4065 4066 4067 4068
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4069
	struct irq_2_irte *irte_info;
4070 4071 4072 4073 4074 4075 4076
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4077
	cfg = irq_cfg(irq);
4078 4079 4080
	if (!cfg)
		return -EINVAL;

4081
	irte_info = &cfg->irq_2_irte;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4095
	cfg->remapped	      = 1;
4096 4097
	irte_info->devid      = devid;
	irte_info->index      = index;
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4131
	struct irq_2_irte *irte_info;
4132 4133 4134 4135 4136 4137 4138 4139
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4140
	cfg       = irqd_cfg(data);
4141
	irq       = data->irq;
4142
	irte_info = &cfg->irq_2_irte;
4143 4144 4145 4146

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4147
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4163
	modify_irte(irte_info->devid, irte_info->index, irte);
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4175
	struct irq_2_irte *irte_info;
4176 4177
	struct irq_cfg *cfg;

4178
	cfg = irq_cfg(irq);
4179 4180 4181
	if (!cfg)
		return -EINVAL;

4182
	irte_info = &cfg->irq_2_irte;
4183

4184
	free_irte(irte_info->devid, irte_info->index);
4185 4186 4187 4188

	return 0;
}

4189 4190 4191 4192
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4193
	struct irq_2_irte *irte_info;
4194 4195 4196
	struct irq_cfg *cfg;
	union irte irte;

4197
	cfg = irq_cfg(irq);
4198 4199 4200
	if (!cfg)
		return;

4201
	irte_info = &cfg->irq_2_irte;
4202 4203 4204 4205 4206 4207 4208 4209

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4210
	modify_irte(irte_info->devid, irte_info->index, irte);
4211 4212 4213

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4214
	msg->data       = irte_info->index;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4226
	cfg = irq_cfg(irq);
4227 4228 4229 4230
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
4231
	index = alloc_irq_index(cfg, &cfg->irq_2_irte, devid, nvec);
4232 4233 4234 4235 4236 4237 4238

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4239
	struct irq_2_irte *irte_info;
4240 4241 4242 4243 4244 4245
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4246
	cfg = irq_cfg(irq);
4247 4248 4249 4250 4251 4252 4253
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4254
	irte_info	= &cfg->irq_2_irte;
4255

4256
	cfg->remapped	      = 1;
4257 4258
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4259 4260 4261 4262

	return 0;
}

4263
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4264
{
4265
	struct irq_2_irte *irte_info;
4266 4267 4268
	struct irq_cfg *cfg;
	int index, devid;

4269
	cfg = irq_cfg(irq);
4270 4271 4272
	if (!cfg)
		return -EINVAL;

4273
	irte_info = &cfg->irq_2_irte;
4274 4275 4276 4277
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

4278
	index = alloc_irq_index(cfg, &cfg->irq_2_irte, devid, 1);
4279 4280 4281
	if (index < 0)
		return index;

4282
	cfg->remapped	      = 1;
4283 4284
	irte_info->devid      = devid;
	irte_info->index      = index;
4285 4286 4287 4288

	return 0;
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
static int get_devid(struct irq_alloc_info *info)
{
	int devid = -1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}

	return devid;
}

static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;

	if (!info)
		return NULL;

	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}

	return NULL;
}

static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;

	if (!info)
		return NULL;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}

	return NULL;
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4367
	.alloc_hpet_msi		= alloc_hpet_msi,
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};

static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;

	irq_cfg->remapped = 1;
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;

	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;

	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;

	default:
		BUG_ON(1);
		break;
	}
}

static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
{
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	struct irq_cfg *cfg;
	int i, ret, devid;
	int index = -1;

	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
		cfg = irq_cfg(virq);
		index = alloc_irq_index(cfg, &data->irq_2_irte, devid, nr_irqs);
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
			data = kzalloc(sizeof(*data), GFP_KERNEL);
			if (!data)
				goto out_free_data;
		}
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
{
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;

	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}

static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;

	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}

static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4553
};
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610

static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);

	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	return IRQ_SET_MASK_OK_DONE;
}

static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
{
	struct amd_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};

int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;

	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);

	return 0;
}
4611
#endif