blk-mq-sched.c 19.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
10
#include <linux/list_sort.h>
11 12 13 14 15

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
16
#include "blk-mq-debugfs.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

D
Damien Le Moal 已提交
36
void blk_mq_sched_assign_ioc(struct request *rq)
37
{
38
	struct request_queue *q = rq->q;
39
	struct io_context *ioc;
40 41
	struct io_cq *icq;

42 43 44 45 46 47 48
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

49
	spin_lock_irq(&q->queue_lock);
50
	icq = ioc_lookup_icq(ioc, q);
51
	spin_unlock_irq(&q->queue_lock);
52 53 54 55 56 57

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
58
	get_io_context(icq->ioc);
59
	rq->elv.icq = icq;
60 61
}

62 63 64 65
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
66
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 68 69 70
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

71
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72
}
73
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74

75
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 77
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 79
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80

81 82 83 84 85 86 87 88 89
	/*
	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
	 * meantime new request added to hctx->dispatch is missed to check in
	 * blk_mq_run_hw_queue().
	 */
	smp_mb();

90
	blk_mq_run_hw_queue(hctx, true);
91 92
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return rqa->mq_hctx > rqb->mq_hctx;
}

static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
{
	struct blk_mq_hw_ctx *hctx =
		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
	struct request *rq;
	LIST_HEAD(hctx_list);
	unsigned int count = 0;

	list_for_each_entry(rq, rq_list, queuelist) {
		if (rq->mq_hctx != hctx) {
			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
			goto dispatch;
		}
		count++;
	}
	list_splice_tail_init(rq_list, &hctx_list);

dispatch:
119
	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
120 121
}

122 123
#define BLK_MQ_BUDGET_DELAY	3		/* ms units */

124 125 126 127
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
128 129 130
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 * be run again.  This is necessary to avoid starving flushes.
131
 */
132
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
133 134 135
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
136 137 138
	bool multi_hctxs = false, run_queue = false;
	bool dispatched = false, busy = false;
	unsigned int max_dispatch;
139
	LIST_HEAD(rq_list);
140 141 142 143 144 145
	int count = 0;

	if (hctx->dispatch_busy)
		max_dispatch = 1;
	else
		max_dispatch = hctx->queue->nr_requests;
146 147

	do {
148 149
		struct request *rq;

150
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
151
			break;
152

153
		if (!list_empty_careful(&hctx->dispatch)) {
154
			busy = true;
155 156 157
			break;
		}

158
		if (!blk_mq_get_dispatch_budget(q))
159
			break;
160

161
		rq = e->type->ops.dispatch_request(hctx);
162
		if (!rq) {
163
			blk_mq_put_dispatch_budget(q);
164 165 166 167 168 169 170
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
171
			run_queue = true;
172 173 174 175 176 177 178 179
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
		list_add_tail(&rq->queuelist, &rq_list);
		if (rq->mq_hctx != hctx)
			multi_hctxs = true;
	} while (++count < max_dispatch);

	if (!count) {
		if (run_queue)
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
	} else if (multi_hctxs) {
		/*
		 * Requests from different hctx may be dequeued from some
		 * schedulers, such as bfq and deadline.
		 *
		 * Sort the requests in the list according to their hctx,
		 * dispatch batching requests from same hctx at a time.
		 */
		list_sort(NULL, &rq_list, sched_rq_cmp);
		do {
			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
		} while (!list_empty(&rq_list));
	} else {
		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
	}

	if (busy)
		return -EAGAIN;
	return !!dispatched;
}

static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
	int ret;

	do {
		ret = __blk_mq_do_dispatch_sched(hctx);
	} while (ret == 1);
216 217

	return ret;
218 219
}

220 221 222
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
223
	unsigned short idx = ctx->index_hw[hctx->type];
224 225 226 227 228 229 230

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

231 232 233 234
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235 236
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237
 * be run again.  This is necessary to avoid starving flushes.
238
 */
239
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240 241 242 243
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244
	int ret = 0;
245
	struct request *rq;
246 247

	do {
248 249 250 251 252
		if (!list_empty_careful(&hctx->dispatch)) {
			ret = -EAGAIN;
			break;
		}

253 254 255
		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

256
		if (!blk_mq_get_dispatch_budget(q))
257
			break;
258 259 260

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
261
			blk_mq_put_dispatch_budget(q);
262 263 264 265 266 267 268 269
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
270 271 272 273 274 275 276 277 278 279 280 281 282
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

283
	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
284 285

	WRITE_ONCE(hctx->dispatch_from, ctx);
286
	return ret;
287 288
}

289
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
290
{
291 292
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
293
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
294
	int ret = 0;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	LIST_HEAD(rq_list);

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
316 317 318 319
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
320
	 */
321
	if (!list_empty(&rq_list)) {
322
		blk_mq_sched_mark_restart_hctx(hctx);
323
		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
324
			if (has_sched_dispatch)
325
				ret = blk_mq_do_dispatch_sched(hctx);
326
			else
327
				ret = blk_mq_do_dispatch_ctx(hctx);
328
		}
329
	} else if (has_sched_dispatch) {
330
		ret = blk_mq_do_dispatch_sched(hctx);
331 332
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
333
		ret = blk_mq_do_dispatch_ctx(hctx);
334
	} else {
335
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
336
		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
337
	}
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	return ret;
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;

	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
		return;

	hctx->run++;

	/*
	 * A return of -EAGAIN is an indication that hctx->dispatch is not
	 * empty and we must run again in order to avoid starving flushes.
	 */
	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
			blk_mq_run_hw_queue(hctx, true);
	}
360 361
}

362
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
363
		unsigned int nr_segs, struct request **merged_request)
364 365 366
{
	struct request *rq;

367 368
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
369 370
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
371
		if (!bio_attempt_back_merge(rq, bio, nr_segs))
372 373 374 375 376 377
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
378 379
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
380
		if (!bio_attempt_front_merge(rq, bio, nr_segs))
381 382 383 384 385
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
386 387
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
388 389
	default:
		return false;
390 391 392 393
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

394
/*
395 396
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
397
 */
398
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
399
			   struct bio *bio, unsigned int nr_segs)
400 401 402 403
{
	struct request *rq;
	int checked = 8;

404
	list_for_each_entry_reverse(rq, list, queuelist) {
405 406 407 408 409 410 411 412 413 414 415
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
416 417
				merged = bio_attempt_back_merge(rq, bio,
						nr_segs);
418 419 420
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
421 422
				merged = bio_attempt_front_merge(rq, bio,
						nr_segs);
423 424 425 426 427 428 429 430 431 432 433 434 435
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
436 437 438 439 440 441 442 443
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
M
Ming Lei 已提交
444
				 struct blk_mq_hw_ctx *hctx,
445 446
				 struct blk_mq_ctx *ctx, struct bio *bio,
				 unsigned int nr_segs)
447
{
M
Ming Lei 已提交
448 449
	enum hctx_type type = hctx->type;

450 451
	lockdep_assert_held(&ctx->lock);

452
	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
453 454 455 456 457 458
		ctx->rq_merged++;
		return true;
	}

	return false;
}
459

460 461
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
462 463
{
	struct elevator_queue *e = q->elevator;
464
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
465
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
466
	bool ret = false;
M
Ming Lei 已提交
467
	enum hctx_type type;
468

469
	if (e && e->type->ops.bio_merge)
470
		return e->type->ops.bio_merge(hctx, bio, nr_segs);
471

M
Ming Lei 已提交
472
	type = hctx->type;
473
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
M
Ming Lei 已提交
474
			!list_empty_careful(&ctx->rq_lists[type])) {
475 476
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
477
		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
478 479 480 481
		spin_unlock(&ctx->lock);
	}

	return ret;
482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

496
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
497
				       bool has_sched,
498
				       struct request *rq)
499
{
500 501 502 503 504 505 506 507 508 509 510 511
	/*
	 * dispatch flush and passthrough rq directly
	 *
	 * passthrough request has to be added to hctx->dispatch directly.
	 * For some reason, device may be in one situation which can't
	 * handle FS request, so STS_RESOURCE is always returned and the
	 * FS request will be added to hctx->dispatch. However passthrough
	 * request may be required at that time for fixing the problem. If
	 * passthrough request is added to scheduler queue, there isn't any
	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
	 */
	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
512 513
		return true;

514
	if (has_sched)
515 516
		rq->rq_flags |= RQF_SORTED;

517
	return false;
518 519
}

520
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
521
				 bool run_queue, bool async)
522 523 524 525
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
526
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527

528 529
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
530 531
		blk_insert_flush(rq);
		goto run;
532 533
	}

534 535
	WARN_ON(e && (rq->tag != -1));

536
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		/*
		 * Firstly normal IO request is inserted to scheduler queue or
		 * sw queue, meantime we add flush request to dispatch queue(
		 * hctx->dispatch) directly and there is at most one in-flight
		 * flush request for each hw queue, so it doesn't matter to add
		 * flush request to tail or front of the dispatch queue.
		 *
		 * Secondly in case of NCQ, flush request belongs to non-NCQ
		 * command, and queueing it will fail when there is any
		 * in-flight normal IO request(NCQ command). When adding flush
		 * rq to the front of hctx->dispatch, it is easier to introduce
		 * extra time to flush rq's latency because of S_SCHED_RESTART
		 * compared with adding to the tail of dispatch queue, then
		 * chance of flush merge is increased, and less flush requests
		 * will be issued to controller. It is observed that ~10% time
		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
		 * drive when adding flush rq to the front of hctx->dispatch.
		 *
		 * Simply queue flush rq to the front of hctx->dispatch so that
		 * intensive flush workloads can benefit in case of NCQ HW.
		 */
		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
559
		blk_mq_request_bypass_insert(rq, at_head, false);
560
		goto run;
561
	}
562

563
	if (e && e->type->ops.insert_requests) {
564 565 566
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
567
		e->type->ops.insert_requests(hctx, &list, at_head);
568 569 570 571 572 573
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

574
run:
575 576 577 578
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

579
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
580 581 582
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
583
	struct elevator_queue *e;
584 585 586 587 588 589 590 591
	struct request_queue *q = hctx->queue;

	/*
	 * blk_mq_sched_insert_requests() is called from flush plug
	 * context only, and hold one usage counter to prevent queue
	 * from being released.
	 */
	percpu_ref_get(&q->q_usage_counter);
592

593
	e = hctx->queue->elevator;
594 595
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
596 597 598 599 600 601
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
602
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
603
			blk_mq_try_issue_list_directly(hctx, list);
604
			if (list_empty(list))
605
				goto out;
606 607
		}
		blk_mq_insert_requests(hctx, ctx, list);
608
	}
609 610

	blk_mq_run_hw_queue(hctx, run_queue_async);
611 612
 out:
	percpu_ref_put(&q->q_usage_counter);
613 614
}

615 616 617 618 619 620 621 622 623 624 625
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

645
/* called in queue's release handler, tagset has gone away */
646
static void blk_mq_sched_tags_teardown(struct request_queue *q)
647 648
{
	struct blk_mq_hw_ctx *hctx;
649 650
	int i;

651 652 653 654 655 656
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags) {
			blk_mq_free_rq_map(hctx->sched_tags);
			hctx->sched_tags = NULL;
		}
	}
657 658 659 660 661
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
662
	struct elevator_queue *eq;
663 664 665 666 667
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
668
		q->nr_requests = q->tag_set->queue_depth;
669 670
		return 0;
	}
671 672

	/*
673 674 675
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
676
	 */
677 678
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
679 680

	queue_for_each_hw_ctx(q, hctx, i) {
681
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
682
		if (ret)
683
			goto err;
684 685
	}

686
	ret = e->ops.init_sched(q, e);
687 688
	if (ret)
		goto err;
689

690 691 692
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
693 694
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
695 696
			if (ret) {
				eq = q->elevator;
697
				blk_mq_sched_free_requests(q);
698 699 700 701 702
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
703
		blk_mq_debugfs_register_sched_hctx(q, hctx);
704 705
	}

706 707
	return 0;

708
err:
709
	blk_mq_sched_free_requests(q);
710 711
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
712
	return ret;
713
}
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/*
 * called in either blk_queue_cleanup or elevator_switch, tagset
 * is required for freeing requests
 */
void blk_mq_sched_free_requests(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags)
			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
	}
}

730 731
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
732 733 734
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

735 736
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
737 738
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
739
			hctx->sched_data = NULL;
740 741
		}
	}
742
	blk_mq_debugfs_unregister_sched(q);
743 744
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
745 746 747
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}