random.c 68.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5
 *
6
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
80 81
 * When random bytes are desired, they are obtained by taking the BLAKE2s
 * hash of the contents of the "entropy pool".  The BLAKE2s hash avoids
L
Linus Torvalds 已提交
82 83
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
84 85
 * about the input of BLAKE2s from its output.  Even if it is possible to
 * analyze BLAKE2s in some clever way, as long as the amount of data
L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
95
 * outputs.  This requires successful cryptanalysis of BLAKE2s, which is
L
Linus Torvalds 已提交
96 97 98 99 100 101 102
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
103 104
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
105
 *
106 107
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
108
 *
109
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
193 194 195 196 197 198
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
199
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
200 201
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
202
 *	void add_interrupt_randomness(int irq);
203
 * 	void add_disk_randomness(struct gendisk *disk);
204 205 206
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
207
 *
208 209 210 211 212 213 214 215
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
216 217 218
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
219 220 221
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
222 223 224 225 226 227
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
228 229 230 231 232
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
233 234 235 236 237 238 239 240
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

Y
Yangtao Li 已提交
320 321
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
335
#include <linux/mm.h>
336
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
337
#include <linux/spinlock.h>
338
#include <linux/kthread.h>
L
Linus Torvalds 已提交
339
#include <linux/percpu.h>
340
#include <linux/fips.h>
341
#include <linux/ptrace.h>
342
#include <linux/workqueue.h>
343
#include <linux/irq.h>
344
#include <linux/ratelimit.h>
345 346
#include <linux/syscalls.h>
#include <linux/completion.h>
347
#include <linux/uuid.h>
348
#include <crypto/chacha.h>
349
#include <crypto/blake2s.h>
350

L
Linus Torvalds 已提交
351
#include <asm/processor.h>
352
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
353
#include <asm/irq.h>
354
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
355 356
#include <asm/io.h>

357 358 359
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

360 361
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
362 363 364
/*
 * Configuration information
 */
365 366 367 368
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
369
#define EXTRACT_SIZE		(BLAKE2S_HASH_SIZE / 2)
370

371
/*
T
Theodore Ts'o 已提交
372 373
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
374
 *
375
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
376
 * credit_entropy_bits() needs to be 64 bits wide.
377 378 379 380
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
381 382 383 384 385
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
386
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
387 388

/*
389 390 391 392 393 394 395 396 397 398
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
399
 * GFSR generators II.  ACM Transactions on Modeling and Computer
400 401 402 403 404
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
405
 * where we use BLAKE2s.  All that we want of mixing operation is that
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
432
 */
433
static const struct poolinfo {
434 435
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
436 437
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
438 439 440
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
L
Linus Torvalds 已提交
441 442 443 444 445
};

/*
 * Static global variables
 */
446
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
447
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
448

449 450 451
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

452 453 454 455 456 457
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

458
static struct crng_state primary_crng = {
459
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
460 461 462 463
	.state[0] = CHACHA_CONSTANT_EXPA,
	.state[1] = CHACHA_CONSTANT_ND_3,
	.state[2] = CHACHA_CONSTANT_2_BY,
	.state[3] = CHACHA_CONSTANT_TE_K,
464 465 466 467 468 469 470 471 472 473 474
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
475
static bool crng_need_final_init = false;
T
Theodore Ts'o 已提交
476
#define crng_ready() (likely(crng_init > 1))
477
static int crng_init_cnt = 0;
478
static unsigned long crng_global_init_time = 0;
479 480
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
481
static void _crng_backtrack_protect(struct crng_state *crng,
482
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
483
static void process_random_ready_list(void);
484
static void _get_random_bytes(void *buf, int nbytes);
485

486 487 488 489 490 491 492 493 494 495
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503 504
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
505
	/* read-only data: */
506
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
507 508 509 510
	__u32 *pool;
	const char *name;

	/* read-write data: */
511
	spinlock_t lock;
512 513
	unsigned short add_ptr;
	unsigned short input_rotate;
514
	int entropy_count;
515
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
516
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
517 518
};

519 520 521 522 523 524
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
525
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
526 527 528 529

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
530
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
531 532 533
	.pool = input_pool_data
};

534 535 536 537
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
538
/*
539
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
540
 * update the entropy estimate.  The caller should call
541
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
542 543 544 545 546 547
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
548
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
549
			    int nbytes)
L
Linus Torvalds 已提交
550
{
551
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
552
	int input_rotate;
L
Linus Torvalds 已提交
553
	int wordmask = r->poolinfo->poolwords - 1;
554
	const unsigned char *bytes = in;
555
	__u32 w;
L
Linus Torvalds 已提交
556 557 558 559 560 561 562

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

563 564
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
565

566 567
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
568
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
569
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
570 571

		/* XOR in the various taps */
M
Matt Mackall 已提交
572
		w ^= r->pool[i];
L
Linus Torvalds 已提交
573 574 575 576 577
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
578 579

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
580
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
581 582 583 584 585 586 587

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
588
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
589 590
	}

591 592
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
593 594
}

595
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
596
			     int nbytes)
597 598
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
599
	_mix_pool_bytes(r, in, nbytes);
600 601 602
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
603
			   int nbytes)
L
Linus Torvalds 已提交
604
{
605 606
	unsigned long flags;

607
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
608
	spin_lock_irqsave(&r->lock, flags);
609
	_mix_pool_bytes(r, in, nbytes);
610
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
611 612
}

613 614 615
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
616
	unsigned short	reg_idx;
617
	unsigned char	count;
618 619 620 621 622 623 624
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
625
static void fast_mix(struct fast_pool *f)
626
{
627 628 629 630
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
631
	b = rol32(b, 6);	d = rol32(d, 27);
632 633 634
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
635
	b = rol32(b, 16);	d = rol32(d, 14);
636 637 638
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
639
	b = rol32(b, 6);	d = rol32(d, 27);
640 641 642
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
643
	b = rol32(b, 16);	d = rol32(d, 14);
644 645 646 647
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
648
	f->count++;
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
667
/*
668 669 670
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
671
 */
672
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
673
{
674
	int entropy_count, orig;
675 676
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
677

678 679 680
	if (!nbits)
		return;

681
retry:
682
	entropy_count = orig = READ_ONCE(r->entropy_count);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
721

722
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
723
		pr_warn("negative entropy/overflow: pool %s count %d\n",
724
			r->name, entropy_count);
725
		entropy_count = 0;
726 727
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
728 729
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
730

731
	trace_credit_entropy_bits(r->name, nbits,
732
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
733

734
	if (r == &input_pool) {
735
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
736

737
		if (crng_init < 2 && entropy_bits >= 128)
738
			crng_reseed(&primary_crng, r);
739
	}
L
Linus Torvalds 已提交
740 741
}

742
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
743
{
744
	const int nbits_max = r->poolinfo->poolwords * 32;
745

746 747 748
	if (nbits < 0)
		return -EINVAL;

749 750 751 752
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
753
	return 0;
754 755
}

756 757 758 759 760 761 762 763 764 765
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

766 767 768 769 770 771 772 773
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;

774
static void invalidate_batched_entropy(void);
775
static void numa_crng_init(void);
776

777 778 779 780 781 782 783
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

784
static bool crng_init_try_arch(struct crng_state *crng)
785 786
{
	int		i;
787
	bool		arch_init = true;
788 789 790 791
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
792
		    !arch_get_random_long(&rv)) {
793
			rv = random_get_entropy();
794
			arch_init = false;
795
		}
796 797
		crng->state[i] ^= rv;
	}
798 799 800 801

	return arch_init;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
	int		i;
	bool		arch_init = true;
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		crng->state[i] ^= rv;
	}

	return arch_init;
}

820
static void crng_initialize_secondary(struct crng_state *crng)
821
{
822
	chacha_init_consts(crng->state);
823 824 825 826 827 828 829 830
	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static void __init crng_initialize_primary(struct crng_state *crng)
{
	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
831
	if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) {
832 833
		invalidate_batched_entropy();
		numa_crng_init();
834
		crng_init = 2;
835
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
836
	}
837 838 839
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static void crng_finalize_init(struct crng_state *crng)
{
	if (crng != &primary_crng || crng_init >= 2)
		return;
	if (!system_wq) {
		/* We can't call numa_crng_init until we have workqueues,
		 * so mark this for processing later. */
		crng_need_final_init = true;
		return;
	}

	invalidate_batched_entropy();
	numa_crng_init();
	crng_init = 2;
	process_random_ready_list();
	wake_up_interruptible(&crng_init_wait);
	kill_fasync(&fasync, SIGIO, POLL_IN);
	pr_notice("crng init done\n");
	if (unseeded_warning.missed) {
		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
			  unseeded_warning.missed);
		unseeded_warning.missed = 0;
	}
	if (urandom_warning.missed) {
		pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
			  urandom_warning.missed);
		urandom_warning.missed = 0;
	}
}

870
static void do_numa_crng_init(struct work_struct *work)
871 872 873 874 875 876 877 878 879 880
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
881
		crng_initialize_secondary(crng);
882 883
		pool[i] = crng;
	}
884 885
	/* pairs with READ_ONCE() in select_crng() */
	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
886 887 888 889 890
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
891 892 893 894 895

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
896 897
	if (IS_ENABLED(CONFIG_NUMA))
		schedule_work(&numa_crng_init_work);
898
}
899 900 901

static struct crng_state *select_crng(void)
{
902 903 904 905 906 907 908 909 910
	if (IS_ENABLED(CONFIG_NUMA)) {
		struct crng_state **pool;
		int nid = numa_node_id();

		/* pairs with cmpxchg_release() in do_numa_crng_init() */
		pool = READ_ONCE(crng_node_pool);
		if (pool && pool[nid])
			return pool[nid];
	}
911 912 913

	return &primary_crng;
}
914

915 916
/*
 * crng_fast_load() can be called by code in the interrupt service
917 918
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
919
 */
920
static size_t crng_fast_load(const char *cp, size_t len)
921 922 923
{
	unsigned long flags;
	char *p;
924
	size_t ret = 0;
925 926 927

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
928
	if (crng_init != 0) {
929 930 931 932 933
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
934
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
935
		cp++; crng_init_cnt++; len--; ret++;
936
	}
937
	spin_unlock_irqrestore(&primary_crng.lock, flags);
938
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
939
		invalidate_batched_entropy();
940
		crng_init = 1;
Y
Yangtao Li 已提交
941
		pr_notice("fast init done\n");
942
	}
943
	return ret;
944 945
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
965
	unsigned		i, max = CHACHA_KEY_SIZE;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
983 984
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
985 986 987 988 989 990
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

991 992 993 994 995
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
996
		__u8	block[CHACHA_BLOCK_SIZE];
997 998 999 1000 1001 1002 1003
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
1004
	} else {
1005
		_extract_crng(&primary_crng, buf.block);
1006
		_crng_backtrack_protect(&primary_crng, buf.block,
1007
					CHACHA_KEY_SIZE);
1008
	}
1009
	spin_lock_irqsave(&crng->lock, flags);
1010 1011 1012 1013 1014 1015 1016 1017
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
1018
	WRITE_ONCE(crng->init_time, jiffies);
1019
	spin_unlock_irqrestore(&crng->lock, flags);
1020
	crng_finalize_init(crng);
1021 1022
}

1023
static void _extract_crng(struct crng_state *crng,
1024
			  __u8 out[CHACHA_BLOCK_SIZE])
1025
{
1026 1027 1028 1029 1030 1031 1032 1033 1034
	unsigned long v, flags, init_time;

	if (crng_ready()) {
		init_time = READ_ONCE(crng->init_time);
		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
			crng_reseed(crng, crng == &primary_crng ?
				    &input_pool : NULL);
	}
1035 1036 1037 1038 1039 1040 1041 1042 1043
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1044
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1045
{
1046
	_extract_crng(select_crng(), out);
1047 1048
}

1049 1050 1051 1052 1053
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1054
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1055 1056 1057 1058 1059 1060
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1061
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1062 1063 1064 1065
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1066
	s = (__u32 *) &tmp[used];
1067 1068 1069 1070 1071 1072
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1073
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1074
{
1075
	_crng_backtrack_protect(select_crng(), tmp, used);
1076 1077
}

1078 1079
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1080 1081
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1095
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1105
	crng_backtrack_protect(tmp, i);
1106 1107 1108 1109 1110 1111 1112 1113

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1123
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1124 1125
};

1126 1127
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1128
/*
1129 1130
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1131
 *
1132 1133 1134
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1135 1136 1137
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1138
	unsigned long time = random_get_entropy() ^ jiffies;
1139
	unsigned long flags;
1140

1141 1142
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1143

1144
	trace_add_device_randomness(size, _RET_IP_);
1145
	spin_lock_irqsave(&input_pool.lock, flags);
1146 1147
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1148
	spin_unlock_irqrestore(&input_pool.lock, flags);
1149 1150 1151
}
EXPORT_SYMBOL(add_device_randomness);

1152
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1153

L
Linus Torvalds 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1166
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1167 1168
	struct {
		long jiffies;
1169
		unsigned cycles;
L
Linus Torvalds 已提交
1170 1171 1172 1173 1174
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1175
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1176
	sample.num = num;
1177
	r = &input_pool;
1178
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1179 1180 1181 1182 1183 1184

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1185 1186
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1187

1188 1189
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1190

1191 1192
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1204

1205 1206 1207
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1208
	 * and limit entropy estimate to 12 bits.
1209 1210
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1211 1212
}

1213
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1225
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1226
}
1227
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1228

1229 1230
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1252 1253 1254
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1255
	unsigned int idx;
1256 1257 1258

	if (regs == NULL)
		return 0;
1259 1260 1261 1262 1263
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1264
	return *ptr;
1265 1266
}

1267
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1268
{
1269
	struct entropy_store	*r;
1270
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1271 1272
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1273
	cycles_t		cycles = random_get_entropy();
1274
	__u32			c_high, j_high;
1275
	__u64			ip;
1276

1277 1278
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1279 1280
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1281 1282
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1283
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1284
	fast_pool->pool[2] ^= ip;
1285 1286
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1287

1288 1289
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1290

T
Theodore Ts'o 已提交
1291
	if (unlikely(crng_init == 0)) {
1292 1293
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
1294
				   sizeof(fast_pool->pool)) > 0) {
1295 1296 1297 1298 1299 1300
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1301 1302
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1303 1304
		return;

1305
	r = &input_pool;
1306
	if (!spin_trylock(&r->lock))
1307
		return;
1308

1309
	fast_pool->last = now;
1310
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1311
	spin_unlock(&r->lock);
1312

1313
	fast_pool->count = 0;
1314

1315
	/* award one bit for the contents of the fast pool */
1316
	credit_entropy_bits(r, 1);
L
Linus Torvalds 已提交
1317
}
1318
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1319

1320
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1321 1322 1323 1324 1325
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1326
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1327
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1328
}
1329
EXPORT_SYMBOL_GPL(add_disk_randomness);
1330
#endif
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335 1336 1337 1338

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1339 1340
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1341 1342 1343 1344
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1345
	int entropy_count, orig, have_bytes;
1346
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1347

1348
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1349 1350

	/* Can we pull enough? */
1351
retry:
1352
	entropy_count = orig = READ_ONCE(r->entropy_count);
1353
	ibytes = nbytes;
S
Stephan Müller 已提交
1354 1355
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1356

S
Stephan Müller 已提交
1357 1358 1359
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1360
	if (ibytes < min)
1361
		ibytes = 0;
1362

1363
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
1364
		pr_warn("negative entropy count: pool %s count %d\n",
1365 1366 1367 1368 1369 1370 1371
			r->name, entropy_count);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1372
		entropy_count = 0;
1373

G
Greg Price 已提交
1374 1375
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1376

1377
	trace_debit_entropy(r->name, 8 * ibytes);
1378
	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1379
		wake_up_interruptible(&random_write_wait);
1380 1381 1382
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1383
	return ibytes;
L
Linus Torvalds 已提交
1384 1385
}

G
Greg Price 已提交
1386
/*
1387
 * This function does the actual extraction for extract_entropy.
G
Greg Price 已提交
1388 1389 1390
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1391 1392
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1393 1394 1395
	struct blake2s_state state __aligned(__alignof__(unsigned long));
	u8 hash[BLAKE2S_HASH_SIZE];
	unsigned long *salt;
1396
	unsigned long flags;
L
Linus Torvalds 已提交
1397

1398 1399
	blake2s_init(&state, sizeof(hash));

1400
	/*
1401
	 * If we have an architectural hardware random number
1402
	 * generator, use it for BLAKE2's salt & personal fields.
1403
	 */
1404 1405
	for (salt = (unsigned long *)&state.h[4];
	     salt < (unsigned long *)&state.h[8]; ++salt) {
1406 1407 1408
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1409
		*salt ^= v;
1410 1411
	}

1412
	/* Generate a hash across the pool */
1413
	spin_lock_irqsave(&r->lock, flags);
1414 1415 1416
	blake2s_update(&state, (const u8 *)r->pool,
		       r->poolinfo->poolwords * sizeof(*r->pool));
	blake2s_final(&state, hash); /* final zeros out state */
1417

L
Linus Torvalds 已提交
1418
	/*
1419 1420 1421
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
1422 1423
	 * outputs), unless the hash function can be inverted. By
	 * mixing at least a hash worth of hash data back, we make
1424 1425
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1426
	 */
1427
	__mix_pool_bytes(r, hash, sizeof(hash));
1428
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1429

1430 1431 1432
	/* Note that EXTRACT_SIZE is half of hash size here, because above
	 * we've dumped the full length back into mixer. By reducing the
	 * amount that we emit, we retain a level of forward secrecy.
L
Linus Torvalds 已提交
1433
	 */
1434 1435
	memcpy(out, hash, EXTRACT_SIZE);
	memzero_explicit(hash, sizeof(hash));
L
Linus Torvalds 已提交
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1477
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1478
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1479 1480
{
	__u8 tmp[EXTRACT_SIZE];
1481
	unsigned long flags;
L
Linus Torvalds 已提交
1482

1483
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1484 1485 1486
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1487
			r->last_data_init = 1;
1488 1489
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1490
					      ENTROPY_BITS(r), _RET_IP_);
1491 1492 1493 1494 1495 1496
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1497

1498
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1499 1500
	nbytes = account(r, nbytes, min, reserved);

1501
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1502 1503
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1524
	if (__ratelimit(&unseeded_warning))
1525 1526 1527
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1528 1529
}

L
Linus Torvalds 已提交
1530 1531
/*
 * This function is the exported kernel interface.  It returns some
1532
 * number of good random numbers, suitable for key generation, seeding
1533 1534
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1535 1536 1537 1538
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1539
 */
1540
static void _get_random_bytes(void *buf, int nbytes)
1541
{
1542
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1543

1544
	trace_get_random_bytes(nbytes, _RET_IP_);
1545

1546
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1547
		extract_crng(buf);
1548 1549
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1550 1551 1552 1553 1554
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1555 1556
		crng_backtrack_protect(tmp, nbytes);
	} else
1557
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1558
	memzero_explicit(tmp, sizeof(tmp));
1559
}
1560 1561 1562 1563 1564 1565 1566 1567

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1568 1569
EXPORT_SYMBOL(get_random_bytes);

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1645 1646 1647
}
EXPORT_SYMBOL(wait_for_random_bytes);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1677
	if (crng_ready())
1678 1679 1680 1681 1682 1683 1684
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1685
	if (crng_ready())
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1721 1722 1723 1724 1725 1726 1727 1728 1729
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1730 1731
 *
 * Return number of bytes filled in.
1732
 */
1733
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1734
{
1735
	int left = nbytes;
1736 1737
	char *p = buf;

1738 1739
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1740
		unsigned long v;
1741
		int chunk = min_t(int, left, sizeof(unsigned long));
1742

1743 1744
		if (!arch_get_random_long(&v))
			break;
1745

L
Luck, Tony 已提交
1746
		memcpy(p, &v, chunk);
1747
		p += chunk;
1748
		left -= chunk;
1749 1750
	}

1751
	return nbytes - left;
L
Linus Torvalds 已提交
1752
}
1753 1754
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1764
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1765
{
1766
	int i;
1767 1768
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1769

1770
	mix_pool_bytes(r, &now, sizeof(now));
1771
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1772 1773
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1774
			rv = random_get_entropy();
1775
		mix_pool_bytes(r, &rv, sizeof(rv));
1776
	}
1777
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1778 1779
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1790
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1791 1792
{
	init_std_data(&input_pool);
1793 1794
	if (crng_need_final_init)
		crng_finalize_init(&primary_crng);
1795
	crng_initialize_primary(&primary_crng);
1796
	crng_global_init_time = jiffies;
1797 1798 1799 1800
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1801 1802 1803
	return 0;
}

1804
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1810
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1811 1812
	 * source.
	 */
1813
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1814 1815
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1816
		disk->random = state;
1817
	}
L
Linus Torvalds 已提交
1818
}
1819
#endif
L
Linus Torvalds 已提交
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1833
static ssize_t
1834
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1835
{
1836
	unsigned long flags;
1837
	static int maxwarn = 10;
1838

1839
	if (!crng_ready() && maxwarn > 0) {
1840
		maxwarn--;
1841
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1842 1843
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1844 1845 1846
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1847
	}
1848 1849

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1850 1851
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1863
static __poll_t
1864
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1865
{
1866
	__poll_t mask;
L
Linus Torvalds 已提交
1867

1868
	poll_wait(file, &crng_init_wait, wait);
1869 1870
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1871
	if (crng_ready())
1872
		mask |= EPOLLIN | EPOLLRDNORM;
1873
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1874
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1875 1876 1877
	return mask;
}

1878 1879
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1880 1881
{
	size_t bytes;
1882
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1883 1884
	const char __user *p = buffer;

1885
	while (count > 0) {
1886 1887
		int b, i = 0;

1888 1889 1890
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1891

1892 1893 1894 1895 1896 1897
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1898
		count -= bytes;
L
Linus Torvalds 已提交
1899 1900
		p += bytes;

1901
		mix_pool_bytes(r, buf, bytes);
1902
		cond_resched();
L
Linus Torvalds 已提交
1903
	}
1904 1905 1906 1907

	return 0;
}

1908 1909
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1910 1911 1912
{
	size_t ret;

1913
	ret = write_pool(&input_pool, buffer, count);
1914 1915 1916 1917
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1918 1919
}

M
Matt Mackall 已提交
1920
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925 1926 1927
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1928
		/* inherently racy, no point locking */
1929 1930
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936 1937
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1938
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1948 1949
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1950 1951
		if (retval < 0)
			return retval;
1952
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1953 1954
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1955 1956 1957 1958
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1959 1960
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1961
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1962
		return 0;
1963 1964 1965 1966 1967
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1968
		crng_reseed(&primary_crng, &input_pool);
1969
		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1970
		return 0;
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975
	default:
		return -EINVAL;
	}
}

1976 1977 1978 1979 1980
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1981
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1982 1983
	.read  = random_read,
	.write = random_write,
1984
	.poll  = random_poll,
M
Matt Mackall 已提交
1985
	.unlocked_ioctl = random_ioctl,
1986
	.compat_ioctl = compat_ptr_ioctl,
1987
	.fasync = random_fasync,
1988
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1989 1990
};

1991
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1992 1993
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1994
	.unlocked_ioctl = random_ioctl,
1995
	.compat_ioctl = compat_ptr_ioctl,
1996
	.fasync = random_fasync,
1997
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1998 1999
};

2000 2001 2002
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2003 2004
	int ret;

2005 2006 2007 2008 2009 2010 2011 2012
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2013 2014 2015 2016 2017
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2018
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2019 2020
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2021 2022 2023
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2024
	}
2025
	return urandom_read_nowarn(NULL, buf, count, NULL);
2026 2027
}

L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

2038
static int min_write_thresh;
L
Linus Torvalds 已提交
2039
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2040
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2041 2042 2043
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2044
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2045 2046 2047
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2048 2049 2050
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2051
 */
2052
static int proc_do_uuid(struct ctl_table *table, int write,
2053
			void *buffer, size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
2054
{
2055
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2062 2063 2064 2065 2066 2067 2068 2069
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2070

J
Joe Perches 已提交
2071 2072
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2073 2074 2075
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2076
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2077 2078
}

2079 2080 2081
/*
 * Return entropy available scaled to integral bits
 */
2082
static int proc_do_entropy(struct ctl_table *table, int write,
2083
			   void *buffer, size_t *lenp, loff_t *ppos)
2084
{
2085
	struct ctl_table fake_table;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2096
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2097 2098
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2104
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2110
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2111 2112 2113 2114
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2115
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2116 2117
		.maxlen		= sizeof(int),
		.mode		= 0644,
2118
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2119 2120 2121
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2122 2123 2124 2125 2126 2127 2128
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2134
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2140
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2141
	},
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2158
	{ }
L
Linus Torvalds 已提交
2159 2160 2161
};
#endif 	/* CONFIG_SYSCTL */

2162 2163
struct batched_entropy {
	union {
2164 2165
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2166 2167
	};
	unsigned int position;
2168
	spinlock_t batch_lock;
2169
};
2170

L
Linus Torvalds 已提交
2171
/*
2172
 * Get a random word for internal kernel use only. The quality of the random
2173 2174
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
2175
 * that the randomness provided by this function is okay, the function
2176 2177
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
2178
 */
2179 2180 2181 2182
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2183
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2184
{
2185
	u64 ret;
2186
	unsigned long flags;
2187
	struct batched_entropy *batch;
2188
	static void *previous;
2189

2190
	warn_unseeded_randomness(&previous);
2191

2192 2193
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2194
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2195
		extract_crng((u8 *)batch->entropy_u64);
2196 2197
		batch->position = 0;
	}
2198
	ret = batch->entropy_u64[batch->position++];
2199
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2200
	return ret;
L
Linus Torvalds 已提交
2201
}
2202
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2203

2204 2205 2206
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2207
u32 get_random_u32(void)
2208
{
2209
	u32 ret;
2210
	unsigned long flags;
2211
	struct batched_entropy *batch;
2212
	static void *previous;
2213

2214
	warn_unseeded_randomness(&previous);
2215

2216 2217
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2218
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2219
		extract_crng((u8 *)batch->entropy_u32);
2220 2221
		batch->position = 0;
	}
2222
	ret = batch->entropy_u32[batch->position++];
2223
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2224 2225
	return ret;
}
2226
EXPORT_SYMBOL(get_random_u32);
2227

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2249 2250 2251
	}
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2285 2286 2287 2288 2289 2290 2291 2292 2293
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2294
	if (unlikely(crng_init == 0)) {
2295
		size_t ret = crng_fast_load(buffer, count);
2296
		mix_pool_bytes(poolp, buffer, ret);
2297 2298 2299 2300
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
2301
	}
2302 2303 2304 2305 2306

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2307 2308
	wait_event_interruptible(random_write_wait,
			!system_wq || kthread_should_stop() ||
2309
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2310 2311 2312 2313
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2327
EXPORT_SYMBOL_GPL(add_bootloader_randomness);