random.c 68.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq, int irq_flags);
204
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
205
 *
206 207 208 209 210 211 212 213
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
214 215 216
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
217 218 219
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
220 221 222 223 224 225
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
323
#include <linux/mm.h>
324
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
325
#include <linux/spinlock.h>
326
#include <linux/kthread.h>
L
Linus Torvalds 已提交
327 328
#include <linux/percpu.h>
#include <linux/cryptohash.h>
329
#include <linux/fips.h>
330
#include <linux/ptrace.h>
331
#include <linux/workqueue.h>
332
#include <linux/irq.h>
333
#include <linux/ratelimit.h>
334 335
#include <linux/syscalls.h>
#include <linux/completion.h>
336
#include <linux/uuid.h>
337
#include <crypto/chacha.h>
338

L
Linus Torvalds 已提交
339
#include <asm/processor.h>
340
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
341
#include <asm/irq.h>
342
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
343 344
#include <asm/io.h>

345 346 347
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

348 349
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
350 351 352
/*
 * Configuration information
 */
353 354 355 356 357
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
358 359


360 361
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

362
/*
T
Theodore Ts'o 已提交
363 364
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
365
 *
366
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
367
 * credit_entropy_bits() needs to be 64 bits wide.
368 369 370 371
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
372 373 374 375
/*
 * The minimum number of bits of entropy before we wake up a read on
 * /dev/random.  Should be enough to do a significant reseed.
 */
376
static int random_read_wakeup_bits = 64;
L
Linus Torvalds 已提交
377 378 379 380 381 382

/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
383
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
384 385

/*
386 387 388 389 390 391 392 393 394 395
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
396
 * GFSR generators II.  ACM Transactions on Modeling and Computer
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
429
 */
430
static const struct poolinfo {
431 432
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
433 434
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
435 436 437 438 439 440
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
441 442
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
443
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
444 445

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
446
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
447 448

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
449
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
450 451

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
452
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
453 454

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
455
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
456
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
457
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
458 459

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
460
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
461 462

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
463
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
464 465

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
466
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
467 468 469 470 471 472
#endif
};

/*
 * Static global variables
 */
473
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
474
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
475

476 477 478
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

479 480 481 482 483 484
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

485
static struct crng_state primary_crng = {
486 487 488 489 490 491 492 493 494 495 496 497
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
498
#define crng_ready() (likely(crng_init > 1))
499
static int crng_init_cnt = 0;
500
static unsigned long crng_global_init_time = 0;
501 502
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
503
static void _crng_backtrack_protect(struct crng_state *crng,
504
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
505
static void process_random_ready_list(void);
506
static void _get_random_bytes(void *buf, int nbytes);
507

508 509 510 511 512 513 514 515 516 517
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
518 519 520 521 522 523 524 525 526
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
527
	/* read-only data: */
528
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
529 530 531 532
	__u32 *pool;
	const char *name;

	/* read-write data: */
533
	spinlock_t lock;
534 535
	unsigned short add_ptr;
	unsigned short input_rotate;
536
	int entropy_count;
537
	unsigned int initialized:1;
538
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
539
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
540 541
};

542 543 544 545 546 547
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
548
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
549 550 551 552

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
553
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
554 555 556
	.pool = input_pool_data
};

557 558 559 560
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
561
/*
562
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
563
 * update the entropy estimate.  The caller should call
564
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
565 566 567 568 569 570
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
571
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
572
			    int nbytes)
L
Linus Torvalds 已提交
573
{
574
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
575
	int input_rotate;
L
Linus Torvalds 已提交
576
	int wordmask = r->poolinfo->poolwords - 1;
577
	const char *bytes = in;
578
	__u32 w;
L
Linus Torvalds 已提交
579 580 581 582 583 584 585

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

586 587
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
588

589 590
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
591
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
592
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
593 594

		/* XOR in the various taps */
M
Matt Mackall 已提交
595
		w ^= r->pool[i];
L
Linus Torvalds 已提交
596 597 598 599 600
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
601 602

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
603
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
604 605 606 607 608 609 610

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
611
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
612 613
	}

614 615
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
616 617
}

618
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
619
			     int nbytes)
620 621
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
622
	_mix_pool_bytes(r, in, nbytes);
623 624 625
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
626
			   int nbytes)
L
Linus Torvalds 已提交
627
{
628 629
	unsigned long flags;

630
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
631
	spin_lock_irqsave(&r->lock, flags);
632
	_mix_pool_bytes(r, in, nbytes);
633
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
634 635
}

636 637 638
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
639
	unsigned short	reg_idx;
640
	unsigned char	count;
641 642 643 644 645 646 647
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
648
static void fast_mix(struct fast_pool *f)
649
{
650 651 652 653
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
654
	b = rol32(b, 6);	d = rol32(d, 27);
655 656 657
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
658
	b = rol32(b, 16);	d = rol32(d, 14);
659 660 661
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
662
	b = rol32(b, 6);	d = rol32(d, 27);
663 664 665
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
666
	b = rol32(b, 16);	d = rol32(d, 14);
667 668 669 670
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
671
	f->count++;
672 673
}

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
690
/*
691 692 693
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
694
 */
695
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
696
{
697
	int entropy_count, orig, has_initialized = 0;
698 699
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
700

701 702 703
	if (!nbits)
		return;

704
retry:
705
	entropy_count = orig = READ_ONCE(r->entropy_count);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
744

745
	if (unlikely(entropy_count < 0)) {
746 747 748
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
749
		entropy_count = 0;
750 751
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
752 753
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
754

755
	if (has_initialized) {
756
		r->initialized = 1;
757 758
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
759

760
	trace_credit_entropy_bits(r->name, nbits,
761
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
762

763
	if (r == &input_pool) {
764
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
765

766 767 768
		if (crng_init < 2) {
			if (entropy_bits < 128)
				return;
769 770 771
			crng_reseed(&primary_crng, r);
			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
		}
772
	}
L
Linus Torvalds 已提交
773 774
}

775
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
776
{
777
	const int nbits_max = r->poolinfo->poolwords * 32;
778

779 780 781
	if (nbits < 0)
		return -EINVAL;

782 783 784 785
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
786
	return 0;
787 788
}

789 790 791 792 793 794 795 796 797 798
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

799 800 801 802 803 804 805 806 807 808
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

809
static void invalidate_batched_entropy(void);
810
static void numa_crng_init(void);
811

812 813 814 815 816 817 818
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

819 820 821
static void crng_initialize(struct crng_state *crng)
{
	int		i;
822
	int		arch_init = 1;
823 824 825 826 827 828 829
	unsigned long	rv;

	memcpy(&crng->state[0], "expand 32-byte k", 16);
	if (crng == &primary_crng)
		_extract_entropy(&input_pool, &crng->state[4],
				 sizeof(__u32) * 12, 0);
	else
830
		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
831 832
	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
833
		    !arch_get_random_long(&rv)) {
834
			rv = random_get_entropy();
835 836
			arch_init = 0;
		}
837 838
		crng->state[i] ^= rv;
	}
839 840 841
	if (trust_cpu && arch_init && crng == &primary_crng) {
		invalidate_batched_entropy();
		numa_crng_init();
842 843 844
		crng_init = 2;
		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
	}
845 846 847
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

848
#ifdef CONFIG_NUMA
849
static void do_numa_crng_init(struct work_struct *work)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
		crng_initialize(crng);
		pool[i] = crng;
	}
	mb();
	if (cmpxchg(&crng_node_pool, NULL, pool)) {
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
870 871 872 873 874 875 876

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
877 878 879 880
#else
static void numa_crng_init(void) {}
#endif

881 882 883 884
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
885 886 887 888 889 890 891
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
892
	if (crng_init != 0) {
893 894 895 896 897
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
898
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
899 900
		cp++; crng_init_cnt++; len--;
	}
901
	spin_unlock_irqrestore(&primary_crng.lock, flags);
902
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
903
		invalidate_batched_entropy();
904 905 906 907 908 909
		crng_init = 1;
		pr_notice("random: fast init done\n");
	}
	return 1;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
929
	unsigned		i, max = CHACHA_KEY_SIZE;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
947 948
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
949 950 951 952 953 954
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

955 956 957 958 959
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
960
		__u8	block[CHACHA_BLOCK_SIZE];
961 962 963 964 965 966 967
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
968
	} else {
969
		_extract_crng(&primary_crng, buf.block);
970
		_crng_backtrack_protect(&primary_crng, buf.block,
971
					CHACHA_KEY_SIZE);
972
	}
973
	spin_lock_irqsave(&crng->lock, flags);
974 975 976 977 978 979 980 981 982
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
983
	spin_unlock_irqrestore(&crng->lock, flags);
984
	if (crng == &primary_crng && crng_init < 2) {
985
		invalidate_batched_entropy();
986
		numa_crng_init();
987 988 989
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
990
		kill_fasync(&fasync, SIGIO, POLL_IN);
991
		pr_notice("random: crng init done\n");
992 993 994 995 996 997 998 999 1000 1001 1002 1003
		if (unseeded_warning.missed) {
			pr_notice("random: %d get_random_xx warning(s) missed "
				  "due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("random: %d urandom warning(s) missed "
				  "due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
1004 1005 1006
	}
}

1007
static void _extract_crng(struct crng_state *crng,
1008
			  __u8 out[CHACHA_BLOCK_SIZE])
1009 1010 1011
{
	unsigned long v, flags;

T
Theodore Ts'o 已提交
1012
	if (crng_ready() &&
1013 1014
	    (time_after(crng_global_init_time, crng->init_time) ||
	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1015
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1016 1017 1018 1019 1020 1021 1022 1023 1024
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1025
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

1038 1039 1040 1041 1042
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1043
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1044 1045 1046 1047 1048 1049
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1050
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1051 1052 1053 1054
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1055
	s = (__u32 *) &tmp[used];
1056 1057 1058 1059 1060 1061
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1062
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

1075 1076
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1077 1078
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1092
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1093 1094 1095 1096 1097 1098 1099 1100 1101
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1102
	crng_backtrack_protect(tmp, i);
1103 1104 1105 1106 1107 1108 1109 1110

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1120
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1121 1122
};

1123 1124
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1125
/*
1126 1127
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1128
 *
1129 1130 1131
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1132 1133 1134
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1135
	unsigned long time = random_get_entropy() ^ jiffies;
1136
	unsigned long flags;
1137

1138 1139
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1140

1141
	trace_add_device_randomness(size, _RET_IP_);
1142
	spin_lock_irqsave(&input_pool.lock, flags);
1143 1144
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1145
	spin_unlock_irqrestore(&input_pool.lock, flags);
1146 1147 1148
}
EXPORT_SYMBOL(add_device_randomness);

1149
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1150

L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1163
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1164 1165
	struct {
		long jiffies;
1166
		unsigned cycles;
L
Linus Torvalds 已提交
1167 1168 1169 1170 1171
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1172
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1173
	sample.num = num;
1174
	r = &input_pool;
1175
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	delta = sample.jiffies - state->last_time;
	state->last_time = sample.jiffies;

	delta2 = delta - state->last_delta;
	state->last_delta = delta;

	delta3 = delta2 - state->last_delta2;
	state->last_delta2 = delta2;

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1201

1202 1203 1204 1205 1206 1207
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
	 * and limit entropy entimate to 12 bits.
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1208 1209
}

1210
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1222
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1223
}
1224
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1225

1226 1227
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1249 1250 1251
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1252
	unsigned int idx;
1253 1254 1255

	if (regs == NULL)
		return 0;
1256 1257 1258 1259 1260
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1261
	return *ptr;
1262 1263
}

1264
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1265
{
1266
	struct entropy_store	*r;
1267
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1268 1269
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1270
	cycles_t		cycles = random_get_entropy();
1271
	__u32			c_high, j_high;
1272
	__u64			ip;
1273
	unsigned long		seed;
1274
	int			credit = 0;
1275

1276 1277
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1278 1279
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1280 1281
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1282
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1283
	fast_pool->pool[2] ^= ip;
1284 1285
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1286

1287 1288
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1289

T
Theodore Ts'o 已提交
1290
	if (unlikely(crng_init == 0)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1300 1301
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1302 1303
		return;

1304
	r = &input_pool;
1305
	if (!spin_trylock(&r->lock))
1306
		return;
1307

1308
	fast_pool->last = now;
1309
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1310 1311 1312

	/*
	 * If we have architectural seed generator, produce a seed and
1313 1314 1315
	 * add it to the pool.  For the sake of paranoia don't let the
	 * architectural seed generator dominate the input from the
	 * interrupt noise.
1316 1317
	 */
	if (arch_get_random_seed_long(&seed)) {
1318
		__mix_pool_bytes(r, &seed, sizeof(seed));
1319
		credit = 1;
1320
	}
1321
	spin_unlock(&r->lock);
1322

1323
	fast_pool->count = 0;
1324

1325 1326
	/* award one bit for the contents of the fast pool */
	credit_entropy_bits(r, credit + 1);
L
Linus Torvalds 已提交
1327
}
1328
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1329

1330
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1336
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1337
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1338
}
1339
EXPORT_SYMBOL_GPL(add_disk_randomness);
1340
#endif
L
Linus Torvalds 已提交
1341 1342 1343 1344 1345 1346 1347 1348

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1349 1350
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1351 1352 1353 1354
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1355
	int entropy_count, orig, have_bytes;
1356
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1357

1358
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1359 1360

	/* Can we pull enough? */
1361
retry:
1362
	entropy_count = orig = READ_ONCE(r->entropy_count);
1363
	ibytes = nbytes;
S
Stephan Müller 已提交
1364 1365
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1366

S
Stephan Müller 已提交
1367 1368 1369
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1370
	if (ibytes < min)
1371
		ibytes = 0;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (unlikely(entropy_count < 0)) {
		pr_warn("random: negative entropy count: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1383
		entropy_count = 0;
1384

G
Greg Price 已提交
1385 1386
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1387

1388
	trace_debit_entropy(r->name, 8 * ibytes);
G
Greg Price 已提交
1389
	if (ibytes &&
1390
	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1391
		wake_up_interruptible(&random_write_wait);
1392 1393 1394
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1395
	return ibytes;
L
Linus Torvalds 已提交
1396 1397
}

G
Greg Price 已提交
1398 1399 1400 1401 1402 1403
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1404 1405
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1406
	int i;
1407 1408
	union {
		__u32 w[5];
1409
		unsigned long l[LONGS(20)];
1410 1411
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1412
	unsigned long flags;
L
Linus Torvalds 已提交
1413

1414
	/*
1415
	 * If we have an architectural hardware random number
1416
	 * generator, use it for SHA's initial vector
1417
	 */
1418
	sha_init(hash.w);
1419 1420 1421 1422
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1423
		hash.l[i] = v;
1424 1425
	}

1426 1427 1428 1429 1430
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
1431
	/*
1432 1433 1434 1435 1436 1437 1438
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1439
	 */
1440
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1441
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1442

1443
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1444 1445

	/*
1446 1447 1448
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1449
	 */
1450 1451 1452 1453 1454
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1455
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1497
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1498
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1499 1500
{
	__u8 tmp[EXTRACT_SIZE];
1501
	unsigned long flags;
L
Linus Torvalds 已提交
1502

1503
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1504 1505 1506
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1507
			r->last_data_init = 1;
1508 1509
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1510
					      ENTROPY_BITS(r), _RET_IP_);
1511 1512 1513 1514 1515 1516
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1517

1518
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1519 1520
	nbytes = account(r, nbytes, min, reserved);

1521
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1544
	if (__ratelimit(&unseeded_warning))
1545 1546 1547
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1548 1549
}

L
Linus Torvalds 已提交
1550 1551
/*
 * This function is the exported kernel interface.  It returns some
1552
 * number of good random numbers, suitable for key generation, seeding
1553 1554
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1555 1556 1557 1558
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1559
 */
1560
static void _get_random_bytes(void *buf, int nbytes)
1561
{
1562
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1563

1564
	trace_get_random_bytes(nbytes, _RET_IP_);
1565

1566
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1567
		extract_crng(buf);
1568 1569
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1570 1571 1572 1573 1574
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1575 1576
		crng_backtrack_protect(tmp, nbytes);
	} else
1577
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1578
	memzero_explicit(tmp, sizeof(tmp));
1579
}
1580 1581 1582 1583 1584 1585 1586 1587

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1588 1589
EXPORT_SYMBOL(get_random_bytes);

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1665 1666 1667
}
EXPORT_SYMBOL(wait_for_random_bytes);

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1697
	if (crng_ready())
1698 1699 1700 1701 1702 1703 1704
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1705
	if (crng_ready())
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1741 1742 1743 1744 1745 1746 1747 1748 1749
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1750 1751
 *
 * Return number of bytes filled in.
1752
 */
1753
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1754
{
1755
	int left = nbytes;
1756 1757
	char *p = buf;

1758 1759
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1760
		unsigned long v;
1761
		int chunk = min_t(int, left, sizeof(unsigned long));
1762

1763 1764
		if (!arch_get_random_long(&v))
			break;
1765

L
Luck, Tony 已提交
1766
		memcpy(p, &v, chunk);
1767
		p += chunk;
1768
		left -= chunk;
1769 1770
	}

1771
	return nbytes - left;
L
Linus Torvalds 已提交
1772
}
1773 1774
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1784
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1785
{
1786
	int i;
1787 1788
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1789

1790
	mix_pool_bytes(r, &now, sizeof(now));
1791
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1792 1793
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1794
			rv = random_get_entropy();
1795
		mix_pool_bytes(r, &rv, sizeof(rv));
1796
	}
1797
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1810
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1811 1812
{
	init_std_data(&input_pool);
1813
	crng_initialize(&primary_crng);
1814
	crng_global_init_time = jiffies;
1815 1816 1817 1818
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1819 1820 1821
	return 0;
}

1822
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1828
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1829 1830
	 * source.
	 */
1831
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1832 1833
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1834
		disk->random = state;
1835
	}
L
Linus Torvalds 已提交
1836
}
1837
#endif
L
Linus Torvalds 已提交
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1851
static ssize_t
1852
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1853
{
1854
	unsigned long flags;
1855
	static int maxwarn = 10;
1856

1857
	if (!crng_ready() && maxwarn > 0) {
1858
		maxwarn--;
1859 1860 1861 1862
		if (__ratelimit(&urandom_warning))
			printk(KERN_NOTICE "random: %s: uninitialized "
			       "urandom read (%zd bytes read)\n",
			       current->comm, nbytes);
1863 1864 1865
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1866
	}
1867 1868

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1882
static __poll_t
1883
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1884
{
1885
	__poll_t mask;
L
Linus Torvalds 已提交
1886

1887
	poll_wait(file, &crng_init_wait, wait);
1888 1889
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1890
	if (crng_ready())
1891
		mask |= EPOLLIN | EPOLLRDNORM;
1892
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1893
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1894 1895 1896
	return mask;
}

1897 1898
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1899 1900
{
	size_t bytes;
1901
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1902 1903
	const char __user *p = buffer;

1904
	while (count > 0) {
1905 1906
		int b, i = 0;

1907 1908 1909
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1910

1911 1912 1913 1914 1915 1916
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1917
		count -= bytes;
L
Linus Torvalds 已提交
1918 1919
		p += bytes;

1920
		mix_pool_bytes(r, buf, bytes);
1921
		cond_resched();
L
Linus Torvalds 已提交
1922
	}
1923 1924 1925 1926

	return 0;
}

1927 1928
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1929 1930 1931
{
	size_t ret;

1932
	ret = write_pool(&input_pool, buffer, count);
1933 1934 1935 1936
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1937 1938
}

M
Matt Mackall 已提交
1939
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945 1946
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1947
		/* inherently racy, no point locking */
1948 1949
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955 1956
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1957
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1967 1968
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1969 1970
		if (retval < 0)
			return retval;
1971
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1972 1973
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1974 1975 1976 1977
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1978 1979
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1980
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1981
		return 0;
1982 1983 1984 1985 1986 1987 1988 1989
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
		crng_reseed(&primary_crng, NULL);
		crng_global_init_time = jiffies - 1;
		return 0;
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994
	default:
		return -EINVAL;
	}
}

1995 1996 1997 1998 1999
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

2000
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
2001 2002
	.read  = random_read,
	.write = random_write,
2003
	.poll  = random_poll,
M
Matt Mackall 已提交
2004
	.unlocked_ioctl = random_ioctl,
2005
	.compat_ioctl = compat_ptr_ioctl,
2006
	.fasync = random_fasync,
2007
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2008 2009
};

2010
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
2011 2012
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
2013
	.unlocked_ioctl = random_ioctl,
2014
	.compat_ioctl = compat_ptr_ioctl,
2015
	.fasync = random_fasync,
2016
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2017 2018
};

2019 2020 2021
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2022 2023
	int ret;

2024 2025 2026 2027 2028 2029 2030 2031
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2032 2033 2034 2035 2036
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2037
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2038 2039
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2040 2041 2042
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2043
	}
2044
	return urandom_read_nowarn(NULL, buf, count, NULL);
2045 2046
}

L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

static int min_read_thresh = 8, min_write_thresh;
2058
static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
L
Linus Torvalds 已提交
2059
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2060
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2061 2062 2063
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2064
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2065 2066 2067
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2068 2069 2070
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2071
 */
2072
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
2073 2074
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
2075
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2082 2083 2084 2085 2086 2087 2088 2089
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2090

J
Joe Perches 已提交
2091 2092
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2093 2094 2095
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2096
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2097 2098
}

2099 2100 2101
/*
 * Return entropy available scaled to integral bits
 */
2102
static int proc_do_entropy(struct ctl_table *table, int write,
2103 2104
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
2105
	struct ctl_table fake_table;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2116
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2117 2118
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2124
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2130
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2131 2132 2133 2134
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "read_wakeup_threshold",
2135
		.data		= &random_read_wakeup_bits,
L
Linus Torvalds 已提交
2136 2137
		.maxlen		= sizeof(int),
		.mode		= 0644,
2138
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2139 2140 2141 2142 2143
		.extra1		= &min_read_thresh,
		.extra2		= &max_read_thresh,
	},
	{
		.procname	= "write_wakeup_threshold",
2144
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2145 2146
		.maxlen		= sizeof(int),
		.mode		= 0644,
2147
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2148 2149 2150
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2151 2152 2153 2154 2155 2156 2157
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2163
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2169
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2170
	},
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2187
	{ }
L
Linus Torvalds 已提交
2188 2189 2190
};
#endif 	/* CONFIG_SYSCTL */

2191 2192
struct batched_entropy {
	union {
2193 2194
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2195 2196
	};
	unsigned int position;
2197
	spinlock_t batch_lock;
2198
};
2199

L
Linus Torvalds 已提交
2200
/*
2201 2202
 * Get a random word for internal kernel use only. The quality of the random
 * number is either as good as RDRAND or as good as /dev/urandom, with the
2203 2204 2205 2206
 * goal of being quite fast and not depleting entropy. In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
2207
 */
2208 2209 2210 2211
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2212
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2213
{
2214
	u64 ret;
2215
	unsigned long flags;
2216
	struct batched_entropy *batch;
2217
	static void *previous;
2218

2219 2220
#if BITS_PER_LONG == 64
	if (arch_get_random_long((unsigned long *)&ret))
2221
		return ret;
2222 2223 2224 2225 2226
#else
	if (arch_get_random_long((unsigned long *)&ret) &&
	    arch_get_random_long((unsigned long *)&ret + 1))
	    return ret;
#endif
2227

2228
	warn_unseeded_randomness(&previous);
2229

2230 2231
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2232
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2233
		extract_crng((u8 *)batch->entropy_u64);
2234 2235
		batch->position = 0;
	}
2236
	ret = batch->entropy_u64[batch->position++];
2237
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2238
	return ret;
L
Linus Torvalds 已提交
2239
}
2240
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2241

2242 2243 2244
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2245
u32 get_random_u32(void)
2246
{
2247
	u32 ret;
2248
	unsigned long flags;
2249
	struct batched_entropy *batch;
2250
	static void *previous;
2251

2252
	if (arch_get_random_int(&ret))
2253 2254
		return ret;

2255
	warn_unseeded_randomness(&previous);
2256

2257 2258
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2259
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2260
		extract_crng((u8 *)batch->entropy_u32);
2261 2262
		batch->position = 0;
	}
2263
	ret = batch->entropy_u32[batch->position++];
2264
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2265 2266
	return ret;
}
2267
EXPORT_SYMBOL(get_random_u32);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2290 2291 2292
	}
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2326 2327 2328 2329 2330 2331 2332 2333 2334
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2335
	if (unlikely(crng_init == 0)) {
2336 2337
		crng_fast_load(buffer, count);
		return;
2338
	}
2339 2340 2341 2342 2343

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2344
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2345
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2346 2347 2348 2349
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2363
EXPORT_SYMBOL_GPL(add_bootloader_randomness);