random.c 68.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq, int irq_flags);
204
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
205
 *
206 207 208 209 210 211 212 213
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
214 215 216
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
217 218 219
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
220 221 222 223 224 225
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
323
#include <linux/mm.h>
324
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
325
#include <linux/spinlock.h>
326
#include <linux/kthread.h>
L
Linus Torvalds 已提交
327 328
#include <linux/percpu.h>
#include <linux/cryptohash.h>
329
#include <linux/fips.h>
330
#include <linux/ptrace.h>
331
#include <linux/workqueue.h>
332
#include <linux/irq.h>
333
#include <linux/ratelimit.h>
334 335
#include <linux/syscalls.h>
#include <linux/completion.h>
336
#include <linux/uuid.h>
337
#include <crypto/chacha.h>
338

L
Linus Torvalds 已提交
339
#include <asm/processor.h>
340
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
341
#include <asm/irq.h>
342
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
343 344
#include <asm/io.h>

345 346 347
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

348 349
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
350 351 352
/*
 * Configuration information
 */
353 354 355 356 357
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
358 359


360 361
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

362
/*
T
Theodore Ts'o 已提交
363 364
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
365
 *
366
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
367
 * credit_entropy_bits() needs to be 64 bits wide.
368 369 370 371
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
372 373 374 375 376
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
377
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
378 379

/*
380 381 382 383 384 385 386 387 388 389
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
390
 * GFSR generators II.  ACM Transactions on Modeling and Computer
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
423
 */
424
static const struct poolinfo {
425 426
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
427 428
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
429 430 431 432 433 434
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
435 436
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
437
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
438 439

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
440
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
441 442

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
443
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
444 445

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
446
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
447 448

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
449
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
450
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
451
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
452 453

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
454
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
455 456

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
457
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
458 459

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
460
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
461 462 463 464 465 466
#endif
};

/*
 * Static global variables
 */
467
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
468
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
469

470 471 472
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

473 474 475 476 477 478
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

479
static struct crng_state primary_crng = {
480 481 482 483 484 485 486 487 488 489 490 491
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
492
#define crng_ready() (likely(crng_init > 1))
493
static int crng_init_cnt = 0;
494
static unsigned long crng_global_init_time = 0;
495 496
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
497
static void _crng_backtrack_protect(struct crng_state *crng,
498
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
499
static void process_random_ready_list(void);
500
static void _get_random_bytes(void *buf, int nbytes);
501

502 503 504 505 506 507 508 509 510 511
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
512 513 514 515 516 517 518 519 520
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
521
	/* read-only data: */
522
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
523 524 525 526
	__u32 *pool;
	const char *name;

	/* read-write data: */
527
	spinlock_t lock;
528 529
	unsigned short add_ptr;
	unsigned short input_rotate;
530
	int entropy_count;
531
	unsigned int initialized:1;
532
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
533
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
534 535
};

536 537 538 539 540 541
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
542
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
543 544 545 546

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
547
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
548 549 550
	.pool = input_pool_data
};

551 552 553 554
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
555
/*
556
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
557
 * update the entropy estimate.  The caller should call
558
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
559 560 561 562 563 564
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
565
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
566
			    int nbytes)
L
Linus Torvalds 已提交
567
{
568
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
569
	int input_rotate;
L
Linus Torvalds 已提交
570
	int wordmask = r->poolinfo->poolwords - 1;
571
	const char *bytes = in;
572
	__u32 w;
L
Linus Torvalds 已提交
573 574 575 576 577 578 579

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

580 581
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
582

583 584
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
585
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
586
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
587 588

		/* XOR in the various taps */
M
Matt Mackall 已提交
589
		w ^= r->pool[i];
L
Linus Torvalds 已提交
590 591 592 593 594
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
595 596

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
597
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
598 599 600 601 602 603 604

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
605
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
606 607
	}

608 609
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
610 611
}

612
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
613
			     int nbytes)
614 615
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
616
	_mix_pool_bytes(r, in, nbytes);
617 618 619
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
620
			   int nbytes)
L
Linus Torvalds 已提交
621
{
622 623
	unsigned long flags;

624
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
625
	spin_lock_irqsave(&r->lock, flags);
626
	_mix_pool_bytes(r, in, nbytes);
627
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
628 629
}

630 631 632
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
633
	unsigned short	reg_idx;
634
	unsigned char	count;
635 636 637 638 639 640 641
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
642
static void fast_mix(struct fast_pool *f)
643
{
644 645 646 647
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
648
	b = rol32(b, 6);	d = rol32(d, 27);
649 650 651
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
652
	b = rol32(b, 16);	d = rol32(d, 14);
653 654 655
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
656
	b = rol32(b, 6);	d = rol32(d, 27);
657 658 659
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
660
	b = rol32(b, 16);	d = rol32(d, 14);
661 662 663 664
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
665
	f->count++;
666 667
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
684
/*
685 686 687
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
688
 */
689
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
690
{
691
	int entropy_count, orig, has_initialized = 0;
692 693
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
694

695 696 697
	if (!nbits)
		return;

698
retry:
699
	entropy_count = orig = READ_ONCE(r->entropy_count);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
738

739
	if (WARN_ON(entropy_count < 0)) {
740 741
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
742
		entropy_count = 0;
743 744
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
745 746
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
747

748
	if (has_initialized) {
749
		r->initialized = 1;
750 751
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
752

753
	trace_credit_entropy_bits(r->name, nbits,
754
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
755

756
	if (r == &input_pool) {
757
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
758

759 760 761
		if (crng_init < 2) {
			if (entropy_bits < 128)
				return;
762 763 764
			crng_reseed(&primary_crng, r);
			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
		}
765
	}
L
Linus Torvalds 已提交
766 767
}

768
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
769
{
770
	const int nbits_max = r->poolinfo->poolwords * 32;
771

772 773 774
	if (nbits < 0)
		return -EINVAL;

775 776 777 778
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
779
	return 0;
780 781
}

782 783 784 785 786 787 788 789 790 791
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

792 793 794 795 796 797 798 799 800 801
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

802
static void invalidate_batched_entropy(void);
803
static void numa_crng_init(void);
804

805 806 807 808 809 810 811
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

812 813 814
static void crng_initialize(struct crng_state *crng)
{
	int		i;
815
	int		arch_init = 1;
816 817 818 819 820 821 822
	unsigned long	rv;

	memcpy(&crng->state[0], "expand 32-byte k", 16);
	if (crng == &primary_crng)
		_extract_entropy(&input_pool, &crng->state[4],
				 sizeof(__u32) * 12, 0);
	else
823
		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
824 825
	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
826
		    !arch_get_random_long(&rv)) {
827
			rv = random_get_entropy();
828 829
			arch_init = 0;
		}
830 831
		crng->state[i] ^= rv;
	}
832 833 834
	if (trust_cpu && arch_init && crng == &primary_crng) {
		invalidate_batched_entropy();
		numa_crng_init();
835 836 837
		crng_init = 2;
		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
	}
838 839 840
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

841
#ifdef CONFIG_NUMA
842
static void do_numa_crng_init(struct work_struct *work)
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
		crng_initialize(crng);
		pool[i] = crng;
	}
	mb();
	if (cmpxchg(&crng_node_pool, NULL, pool)) {
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
863 864 865 866 867 868 869

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
870 871 872 873
#else
static void numa_crng_init(void) {}
#endif

874 875 876 877
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
878 879 880 881 882 883 884
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
885
	if (crng_init != 0) {
886 887 888 889 890
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
891
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
892 893
		cp++; crng_init_cnt++; len--;
	}
894
	spin_unlock_irqrestore(&primary_crng.lock, flags);
895
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
896
		invalidate_batched_entropy();
897 898 899 900 901 902
		crng_init = 1;
		pr_notice("random: fast init done\n");
	}
	return 1;
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
922
	unsigned		i, max = CHACHA_KEY_SIZE;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
940 941
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
942 943 944 945 946 947
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

948 949 950 951 952
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
953
		__u8	block[CHACHA_BLOCK_SIZE];
954 955 956 957 958 959 960
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
961
	} else {
962
		_extract_crng(&primary_crng, buf.block);
963
		_crng_backtrack_protect(&primary_crng, buf.block,
964
					CHACHA_KEY_SIZE);
965
	}
966
	spin_lock_irqsave(&crng->lock, flags);
967 968 969 970 971 972 973 974 975
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
976
	spin_unlock_irqrestore(&crng->lock, flags);
977
	if (crng == &primary_crng && crng_init < 2) {
978
		invalidate_batched_entropy();
979
		numa_crng_init();
980 981 982
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
983
		kill_fasync(&fasync, SIGIO, POLL_IN);
984
		pr_notice("random: crng init done\n");
985 986 987 988 989 990 991 992 993 994 995 996
		if (unseeded_warning.missed) {
			pr_notice("random: %d get_random_xx warning(s) missed "
				  "due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("random: %d urandom warning(s) missed "
				  "due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
997 998 999
	}
}

1000
static void _extract_crng(struct crng_state *crng,
1001
			  __u8 out[CHACHA_BLOCK_SIZE])
1002 1003 1004
{
	unsigned long v, flags;

T
Theodore Ts'o 已提交
1005
	if (crng_ready() &&
1006 1007
	    (time_after(crng_global_init_time, crng->init_time) ||
	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1008
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1009 1010 1011 1012 1013 1014 1015 1016 1017
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1018
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

1031 1032 1033 1034 1035
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1036
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1037 1038 1039 1040 1041 1042
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1043
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1044 1045 1046 1047
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1048
	s = (__u32 *) &tmp[used];
1049 1050 1051 1052 1053 1054
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1055
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

1068 1069
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1070 1071
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1085
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1086 1087 1088 1089 1090 1091 1092 1093 1094
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1095
	crng_backtrack_protect(tmp, i);
1096 1097 1098 1099 1100 1101 1102 1103

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1113
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1114 1115
};

1116 1117
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1118
/*
1119 1120
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1121
 *
1122 1123 1124
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1125 1126 1127
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1128
	unsigned long time = random_get_entropy() ^ jiffies;
1129
	unsigned long flags;
1130

1131 1132
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1133

1134
	trace_add_device_randomness(size, _RET_IP_);
1135
	spin_lock_irqsave(&input_pool.lock, flags);
1136 1137
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1138
	spin_unlock_irqrestore(&input_pool.lock, flags);
1139 1140 1141
}
EXPORT_SYMBOL(add_device_randomness);

1142
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1143

L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1156
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1157 1158
	struct {
		long jiffies;
1159
		unsigned cycles;
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1165
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1166
	sample.num = num;
1167
	r = &input_pool;
1168
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1169 1170 1171 1172 1173 1174

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	delta = sample.jiffies - state->last_time;
	state->last_time = sample.jiffies;

	delta2 = delta - state->last_delta;
	state->last_delta = delta;

	delta3 = delta2 - state->last_delta2;
	state->last_delta2 = delta2;

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1194

1195 1196 1197 1198 1199 1200
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
	 * and limit entropy entimate to 12 bits.
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1201 1202
}

1203
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1215
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1216
}
1217
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1218

1219 1220
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1242 1243 1244
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1245
	unsigned int idx;
1246 1247 1248

	if (regs == NULL)
		return 0;
1249 1250 1251 1252 1253
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1254
	return *ptr;
1255 1256
}

1257
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1258
{
1259
	struct entropy_store	*r;
1260
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1261 1262
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1263
	cycles_t		cycles = random_get_entropy();
1264
	__u32			c_high, j_high;
1265
	__u64			ip;
1266
	unsigned long		seed;
1267
	int			credit = 0;
1268

1269 1270
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1271 1272
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1273 1274
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1275
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1276
	fast_pool->pool[2] ^= ip;
1277 1278
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1279

1280 1281
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1282

T
Theodore Ts'o 已提交
1283
	if (unlikely(crng_init == 0)) {
1284 1285 1286 1287 1288 1289 1290 1291 1292
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1293 1294
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1295 1296
		return;

1297
	r = &input_pool;
1298
	if (!spin_trylock(&r->lock))
1299
		return;
1300

1301
	fast_pool->last = now;
1302
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1303 1304 1305

	/*
	 * If we have architectural seed generator, produce a seed and
1306 1307 1308
	 * add it to the pool.  For the sake of paranoia don't let the
	 * architectural seed generator dominate the input from the
	 * interrupt noise.
1309 1310
	 */
	if (arch_get_random_seed_long(&seed)) {
1311
		__mix_pool_bytes(r, &seed, sizeof(seed));
1312
		credit = 1;
1313
	}
1314
	spin_unlock(&r->lock);
1315

1316
	fast_pool->count = 0;
1317

1318 1319
	/* award one bit for the contents of the fast pool */
	credit_entropy_bits(r, credit + 1);
L
Linus Torvalds 已提交
1320
}
1321
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1322

1323
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1329
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1330
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1331
}
1332
EXPORT_SYMBOL_GPL(add_disk_randomness);
1333
#endif
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338 1339 1340 1341

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1342 1343
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1344 1345 1346 1347
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1348
	int entropy_count, orig, have_bytes;
1349
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1350

1351
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1352 1353

	/* Can we pull enough? */
1354
retry:
1355
	entropy_count = orig = READ_ONCE(r->entropy_count);
1356
	ibytes = nbytes;
S
Stephan Müller 已提交
1357 1358
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1359

S
Stephan Müller 已提交
1360 1361 1362
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1363
	if (ibytes < min)
1364
		ibytes = 0;
1365

1366
	if (WARN_ON(entropy_count < 0)) {
1367 1368 1369 1370 1371 1372 1373 1374
		pr_warn("random: negative entropy count: pool %s count %d\n",
			r->name, entropy_count);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1375
		entropy_count = 0;
1376

G
Greg Price 已提交
1377 1378
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1379

1380
	trace_debit_entropy(r->name, 8 * ibytes);
G
Greg Price 已提交
1381
	if (ibytes &&
1382
	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1383
		wake_up_interruptible(&random_write_wait);
1384 1385 1386
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1387
	return ibytes;
L
Linus Torvalds 已提交
1388 1389
}

G
Greg Price 已提交
1390 1391 1392 1393 1394 1395
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1396 1397
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1398
	int i;
1399 1400
	union {
		__u32 w[5];
1401
		unsigned long l[LONGS(20)];
1402 1403
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1404
	unsigned long flags;
L
Linus Torvalds 已提交
1405

1406
	/*
1407
	 * If we have an architectural hardware random number
1408
	 * generator, use it for SHA's initial vector
1409
	 */
1410
	sha_init(hash.w);
1411 1412 1413 1414
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1415
		hash.l[i] = v;
1416 1417
	}

1418 1419 1420 1421 1422
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
1423
	/*
1424 1425 1426 1427 1428 1429 1430
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1431
	 */
1432
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1433
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1434

1435
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1436 1437

	/*
1438 1439 1440
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1441
	 */
1442 1443 1444 1445 1446
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1447
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1489
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1490
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1491 1492
{
	__u8 tmp[EXTRACT_SIZE];
1493
	unsigned long flags;
L
Linus Torvalds 已提交
1494

1495
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1496 1497 1498
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1499
			r->last_data_init = 1;
1500 1501
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1502
					      ENTROPY_BITS(r), _RET_IP_);
1503 1504 1505 1506 1507 1508
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1509

1510
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1511 1512
	nbytes = account(r, nbytes, min, reserved);

1513
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1536
	if (__ratelimit(&unseeded_warning))
1537 1538 1539
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1540 1541
}

L
Linus Torvalds 已提交
1542 1543
/*
 * This function is the exported kernel interface.  It returns some
1544
 * number of good random numbers, suitable for key generation, seeding
1545 1546
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1547 1548 1549 1550
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1551
 */
1552
static void _get_random_bytes(void *buf, int nbytes)
1553
{
1554
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1555

1556
	trace_get_random_bytes(nbytes, _RET_IP_);
1557

1558
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1559
		extract_crng(buf);
1560 1561
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1562 1563 1564 1565 1566
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1567 1568
		crng_backtrack_protect(tmp, nbytes);
	} else
1569
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1570
	memzero_explicit(tmp, sizeof(tmp));
1571
}
1572 1573 1574 1575 1576 1577 1578 1579

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1580 1581
EXPORT_SYMBOL(get_random_bytes);

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1657 1658 1659
}
EXPORT_SYMBOL(wait_for_random_bytes);

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1689
	if (crng_ready())
1690 1691 1692 1693 1694 1695 1696
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1697
	if (crng_ready())
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1742 1743
 *
 * Return number of bytes filled in.
1744
 */
1745
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1746
{
1747
	int left = nbytes;
1748 1749
	char *p = buf;

1750 1751
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1752
		unsigned long v;
1753
		int chunk = min_t(int, left, sizeof(unsigned long));
1754

1755 1756
		if (!arch_get_random_long(&v))
			break;
1757

L
Luck, Tony 已提交
1758
		memcpy(p, &v, chunk);
1759
		p += chunk;
1760
		left -= chunk;
1761 1762
	}

1763
	return nbytes - left;
L
Linus Torvalds 已提交
1764
}
1765 1766
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1776
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1777
{
1778
	int i;
1779 1780
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1781

1782
	mix_pool_bytes(r, &now, sizeof(now));
1783
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1784 1785
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1786
			rv = random_get_entropy();
1787
		mix_pool_bytes(r, &rv, sizeof(rv));
1788
	}
1789
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1790 1791
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1802
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1803 1804
{
	init_std_data(&input_pool);
1805
	crng_initialize(&primary_crng);
1806
	crng_global_init_time = jiffies;
1807 1808 1809 1810
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1811 1812 1813
	return 0;
}

1814
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1820
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1821 1822
	 * source.
	 */
1823
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1824 1825
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1826
		disk->random = state;
1827
	}
L
Linus Torvalds 已提交
1828
}
1829
#endif
L
Linus Torvalds 已提交
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1843
static ssize_t
1844
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1845
{
1846
	unsigned long flags;
1847
	static int maxwarn = 10;
1848

1849
	if (!crng_ready() && maxwarn > 0) {
1850
		maxwarn--;
1851 1852 1853 1854
		if (__ratelimit(&urandom_warning))
			printk(KERN_NOTICE "random: %s: uninitialized "
			       "urandom read (%zd bytes read)\n",
			       current->comm, nbytes);
1855 1856 1857
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1858
	}
1859 1860

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1874
static __poll_t
1875
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1876
{
1877
	__poll_t mask;
L
Linus Torvalds 已提交
1878

1879
	poll_wait(file, &crng_init_wait, wait);
1880 1881
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1882
	if (crng_ready())
1883
		mask |= EPOLLIN | EPOLLRDNORM;
1884
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1885
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1886 1887 1888
	return mask;
}

1889 1890
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1891 1892
{
	size_t bytes;
1893
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1894 1895
	const char __user *p = buffer;

1896
	while (count > 0) {
1897 1898
		int b, i = 0;

1899 1900 1901
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1902

1903 1904 1905 1906 1907 1908
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1909
		count -= bytes;
L
Linus Torvalds 已提交
1910 1911
		p += bytes;

1912
		mix_pool_bytes(r, buf, bytes);
1913
		cond_resched();
L
Linus Torvalds 已提交
1914
	}
1915 1916 1917 1918

	return 0;
}

1919 1920
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1921 1922 1923
{
	size_t ret;

1924
	ret = write_pool(&input_pool, buffer, count);
1925 1926 1927 1928
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1929 1930
}

M
Matt Mackall 已提交
1931
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1939
		/* inherently racy, no point locking */
1940 1941
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1949
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1959 1960
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1961 1962
		if (retval < 0)
			return retval;
1963
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1964 1965
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1966 1967 1968 1969
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1970 1971
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1972
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1973
		return 0;
1974 1975 1976 1977 1978 1979 1980 1981
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
		crng_reseed(&primary_crng, NULL);
		crng_global_init_time = jiffies - 1;
		return 0;
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986
	default:
		return -EINVAL;
	}
}

1987 1988 1989 1990 1991
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1992
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1993 1994
	.read  = random_read,
	.write = random_write,
1995
	.poll  = random_poll,
M
Matt Mackall 已提交
1996
	.unlocked_ioctl = random_ioctl,
1997
	.compat_ioctl = compat_ptr_ioctl,
1998
	.fasync = random_fasync,
1999
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2000 2001
};

2002
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
2003 2004
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
2005
	.unlocked_ioctl = random_ioctl,
2006
	.compat_ioctl = compat_ptr_ioctl,
2007
	.fasync = random_fasync,
2008
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2009 2010
};

2011 2012 2013
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2014 2015
	int ret;

2016 2017 2018 2019 2020 2021 2022 2023
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2024 2025 2026 2027 2028
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2029
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2030 2031
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2032 2033 2034
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2035
	}
2036
	return urandom_read_nowarn(NULL, buf, count, NULL);
2037 2038
}

L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

2049
static int min_write_thresh;
L
Linus Torvalds 已提交
2050
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2051
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2052 2053 2054
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2055
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2056 2057 2058
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2059 2060 2061
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2062
 */
2063
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
2064 2065
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
2066
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2073 2074 2075 2076 2077 2078 2079 2080
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2081

J
Joe Perches 已提交
2082 2083
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2084 2085 2086
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2087
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2088 2089
}

2090 2091 2092
/*
 * Return entropy available scaled to integral bits
 */
2093
static int proc_do_entropy(struct ctl_table *table, int write,
2094 2095
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
2096
	struct ctl_table fake_table;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2107
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2108 2109
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2115
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2121
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2122 2123 2124 2125
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2126
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2127 2128
		.maxlen		= sizeof(int),
		.mode		= 0644,
2129
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2130 2131 2132
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2133 2134 2135 2136 2137 2138 2139
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2145
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2151
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2152
	},
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2169
	{ }
L
Linus Torvalds 已提交
2170 2171 2172
};
#endif 	/* CONFIG_SYSCTL */

2173 2174
struct batched_entropy {
	union {
2175 2176
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2177 2178
	};
	unsigned int position;
2179
	spinlock_t batch_lock;
2180
};
2181

L
Linus Torvalds 已提交
2182
/*
2183 2184
 * Get a random word for internal kernel use only. The quality of the random
 * number is either as good as RDRAND or as good as /dev/urandom, with the
2185 2186 2187 2188
 * goal of being quite fast and not depleting entropy. In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
2189
 */
2190 2191 2192 2193
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2194
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2195
{
2196
	u64 ret;
2197
	unsigned long flags;
2198
	struct batched_entropy *batch;
2199
	static void *previous;
2200

2201 2202
#if BITS_PER_LONG == 64
	if (arch_get_random_long((unsigned long *)&ret))
2203
		return ret;
2204 2205 2206 2207 2208
#else
	if (arch_get_random_long((unsigned long *)&ret) &&
	    arch_get_random_long((unsigned long *)&ret + 1))
	    return ret;
#endif
2209

2210
	warn_unseeded_randomness(&previous);
2211

2212 2213
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2214
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2215
		extract_crng((u8 *)batch->entropy_u64);
2216 2217
		batch->position = 0;
	}
2218
	ret = batch->entropy_u64[batch->position++];
2219
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2220
	return ret;
L
Linus Torvalds 已提交
2221
}
2222
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2223

2224 2225 2226
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2227
u32 get_random_u32(void)
2228
{
2229
	u32 ret;
2230
	unsigned long flags;
2231
	struct batched_entropy *batch;
2232
	static void *previous;
2233

2234
	if (arch_get_random_int(&ret))
2235 2236
		return ret;

2237
	warn_unseeded_randomness(&previous);
2238

2239 2240
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2241
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2242
		extract_crng((u8 *)batch->entropy_u32);
2243 2244
		batch->position = 0;
	}
2245
	ret = batch->entropy_u32[batch->position++];
2246
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2247 2248
	return ret;
}
2249
EXPORT_SYMBOL(get_random_u32);
2250

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2272 2273 2274
	}
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2308 2309 2310 2311 2312 2313 2314 2315 2316
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2317
	if (unlikely(crng_init == 0)) {
2318 2319
		crng_fast_load(buffer, count);
		return;
2320
	}
2321 2322 2323 2324 2325

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2326
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2327
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2328 2329 2330 2331
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2345
EXPORT_SYMBOL_GPL(add_bootloader_randomness);