random.c 68.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq, int irq_flags);
204
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
205
 *
206 207 208 209 210 211 212 213
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
214 215 216
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
217 218 219
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
220 221 222 223 224 225
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
323
#include <linux/mm.h>
324
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
325
#include <linux/spinlock.h>
326
#include <linux/kthread.h>
L
Linus Torvalds 已提交
327 328
#include <linux/percpu.h>
#include <linux/cryptohash.h>
329
#include <linux/fips.h>
330
#include <linux/ptrace.h>
331
#include <linux/workqueue.h>
332
#include <linux/irq.h>
333
#include <linux/ratelimit.h>
334 335
#include <linux/syscalls.h>
#include <linux/completion.h>
336
#include <linux/uuid.h>
337
#include <crypto/chacha.h>
338

L
Linus Torvalds 已提交
339
#include <asm/processor.h>
340
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
341
#include <asm/irq.h>
342
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
343 344
#include <asm/io.h>

345 346 347
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

348 349
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
350 351 352
/*
 * Configuration information
 */
353 354 355 356 357
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
358 359


360 361
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

362
/*
T
Theodore Ts'o 已提交
363 364
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
365
 *
366
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
367
 * credit_entropy_bits() needs to be 64 bits wide.
368 369 370 371
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
372 373 374 375 376
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
377
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
378 379

/*
380 381 382 383 384 385 386 387 388 389
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
390
 * GFSR generators II.  ACM Transactions on Modeling and Computer
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
423
 */
424
static const struct poolinfo {
425 426
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
427 428
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
429 430 431 432 433 434
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
435 436
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
437
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
438 439

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
440
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
441 442

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
443
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
444 445

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
446
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
447 448

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
449
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
450
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
451
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
452 453

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
454
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
455 456

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
457
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
458 459

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
460
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
461 462 463 464 465 466
#endif
};

/*
 * Static global variables
 */
467
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
468
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
469

470 471 472
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

473 474 475 476 477 478
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

479
static struct crng_state primary_crng = {
480 481 482 483 484 485 486 487 488 489 490 491
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
492
#define crng_ready() (likely(crng_init > 1))
493
static int crng_init_cnt = 0;
494
static unsigned long crng_global_init_time = 0;
495 496
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
497
static void _crng_backtrack_protect(struct crng_state *crng,
498
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
499
static void process_random_ready_list(void);
500
static void _get_random_bytes(void *buf, int nbytes);
501

502 503 504 505 506 507 508 509 510 511
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
512 513 514 515 516 517 518 519 520
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
521
	/* read-only data: */
522
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
523 524 525 526
	__u32 *pool;
	const char *name;

	/* read-write data: */
527
	spinlock_t lock;
528 529
	unsigned short add_ptr;
	unsigned short input_rotate;
530
	int entropy_count;
531
	unsigned int initialized:1;
532
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
533
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
534 535
};

536 537 538 539 540 541
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
542
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
543 544 545 546

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
547
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
548 549 550
	.pool = input_pool_data
};

551 552 553 554
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
555
/*
556
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
557
 * update the entropy estimate.  The caller should call
558
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
559 560 561 562 563 564
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
565
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
566
			    int nbytes)
L
Linus Torvalds 已提交
567
{
568
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
569
	int input_rotate;
L
Linus Torvalds 已提交
570
	int wordmask = r->poolinfo->poolwords - 1;
571
	const char *bytes = in;
572
	__u32 w;
L
Linus Torvalds 已提交
573 574 575 576 577 578 579

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

580 581
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
582

583 584
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
585
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
586
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
587 588

		/* XOR in the various taps */
M
Matt Mackall 已提交
589
		w ^= r->pool[i];
L
Linus Torvalds 已提交
590 591 592 593 594
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
595 596

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
597
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
598 599 600 601 602 603 604

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
605
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
606 607
	}

608 609
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
610 611
}

612
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
613
			     int nbytes)
614 615
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
616
	_mix_pool_bytes(r, in, nbytes);
617 618 619
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
620
			   int nbytes)
L
Linus Torvalds 已提交
621
{
622 623
	unsigned long flags;

624
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
625
	spin_lock_irqsave(&r->lock, flags);
626
	_mix_pool_bytes(r, in, nbytes);
627
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
628 629
}

630 631 632
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
633
	unsigned short	reg_idx;
634
	unsigned char	count;
635 636 637 638 639 640 641
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
642
static void fast_mix(struct fast_pool *f)
643
{
644 645 646 647
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
648
	b = rol32(b, 6);	d = rol32(d, 27);
649 650 651
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
652
	b = rol32(b, 16);	d = rol32(d, 14);
653 654 655
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
656
	b = rol32(b, 6);	d = rol32(d, 27);
657 658 659
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
660
	b = rol32(b, 16);	d = rol32(d, 14);
661 662 663 664
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
665
	f->count++;
666 667
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
684
/*
685 686 687
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
688
 */
689
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
690
{
691
	int entropy_count, orig, has_initialized = 0;
692 693
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
694

695 696 697
	if (!nbits)
		return;

698
retry:
699
	entropy_count = orig = READ_ONCE(r->entropy_count);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
738

739
	if (unlikely(entropy_count < 0)) {
740 741 742
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
743
		entropy_count = 0;
744 745
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
746 747
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
748

749
	if (has_initialized) {
750
		r->initialized = 1;
751 752
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
753

754
	trace_credit_entropy_bits(r->name, nbits,
755
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
756

757
	if (r == &input_pool) {
758
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
759

760 761 762
		if (crng_init < 2) {
			if (entropy_bits < 128)
				return;
763 764 765
			crng_reseed(&primary_crng, r);
			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
		}
766
	}
L
Linus Torvalds 已提交
767 768
}

769
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
770
{
771
	const int nbits_max = r->poolinfo->poolwords * 32;
772

773 774 775
	if (nbits < 0)
		return -EINVAL;

776 777 778 779
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
780
	return 0;
781 782
}

783 784 785 786 787 788 789 790 791 792
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

793 794 795 796 797 798 799 800 801 802
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

803
static void invalidate_batched_entropy(void);
804
static void numa_crng_init(void);
805

806 807 808 809 810 811 812
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

813 814 815
static void crng_initialize(struct crng_state *crng)
{
	int		i;
816
	int		arch_init = 1;
817 818 819 820 821 822 823
	unsigned long	rv;

	memcpy(&crng->state[0], "expand 32-byte k", 16);
	if (crng == &primary_crng)
		_extract_entropy(&input_pool, &crng->state[4],
				 sizeof(__u32) * 12, 0);
	else
824
		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
825 826
	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
827
		    !arch_get_random_long(&rv)) {
828
			rv = random_get_entropy();
829 830
			arch_init = 0;
		}
831 832
		crng->state[i] ^= rv;
	}
833 834 835
	if (trust_cpu && arch_init && crng == &primary_crng) {
		invalidate_batched_entropy();
		numa_crng_init();
836 837 838
		crng_init = 2;
		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
	}
839 840 841
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

842
#ifdef CONFIG_NUMA
843
static void do_numa_crng_init(struct work_struct *work)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
		crng_initialize(crng);
		pool[i] = crng;
	}
	mb();
	if (cmpxchg(&crng_node_pool, NULL, pool)) {
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
864 865 866 867 868 869 870

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
871 872 873 874
#else
static void numa_crng_init(void) {}
#endif

875 876 877 878
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
879 880 881 882 883 884 885
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
886
	if (crng_init != 0) {
887 888 889 890 891
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
892
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
893 894
		cp++; crng_init_cnt++; len--;
	}
895
	spin_unlock_irqrestore(&primary_crng.lock, flags);
896
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
897
		invalidate_batched_entropy();
898 899 900 901 902 903
		crng_init = 1;
		pr_notice("random: fast init done\n");
	}
	return 1;
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
923
	unsigned		i, max = CHACHA_KEY_SIZE;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
941 942
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
943 944 945 946 947 948
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

949 950 951 952 953
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
954
		__u8	block[CHACHA_BLOCK_SIZE];
955 956 957 958 959 960 961
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
962
	} else {
963
		_extract_crng(&primary_crng, buf.block);
964
		_crng_backtrack_protect(&primary_crng, buf.block,
965
					CHACHA_KEY_SIZE);
966
	}
967
	spin_lock_irqsave(&crng->lock, flags);
968 969 970 971 972 973 974 975 976
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
977
	spin_unlock_irqrestore(&crng->lock, flags);
978
	if (crng == &primary_crng && crng_init < 2) {
979
		invalidate_batched_entropy();
980
		numa_crng_init();
981 982 983
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
984
		kill_fasync(&fasync, SIGIO, POLL_IN);
985
		pr_notice("random: crng init done\n");
986 987 988 989 990 991 992 993 994 995 996 997
		if (unseeded_warning.missed) {
			pr_notice("random: %d get_random_xx warning(s) missed "
				  "due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("random: %d urandom warning(s) missed "
				  "due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
998 999 1000
	}
}

1001
static void _extract_crng(struct crng_state *crng,
1002
			  __u8 out[CHACHA_BLOCK_SIZE])
1003 1004 1005
{
	unsigned long v, flags;

T
Theodore Ts'o 已提交
1006
	if (crng_ready() &&
1007 1008
	    (time_after(crng_global_init_time, crng->init_time) ||
	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1009
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1010 1011 1012 1013 1014 1015 1016 1017 1018
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1019
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

1032 1033 1034 1035 1036
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1037
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1038 1039 1040 1041 1042 1043
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1044
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1045 1046 1047 1048
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1049
	s = (__u32 *) &tmp[used];
1050 1051 1052 1053 1054 1055
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1056
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

1069 1070
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1071 1072
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1086
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1087 1088 1089 1090 1091 1092 1093 1094 1095
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1096
	crng_backtrack_protect(tmp, i);
1097 1098 1099 1100 1101 1102 1103 1104

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1114
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1115 1116
};

1117 1118
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1119
/*
1120 1121
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1122
 *
1123 1124 1125
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1126 1127 1128
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1129
	unsigned long time = random_get_entropy() ^ jiffies;
1130
	unsigned long flags;
1131

1132 1133
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1134

1135
	trace_add_device_randomness(size, _RET_IP_);
1136
	spin_lock_irqsave(&input_pool.lock, flags);
1137 1138
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1139
	spin_unlock_irqrestore(&input_pool.lock, flags);
1140 1141 1142
}
EXPORT_SYMBOL(add_device_randomness);

1143
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1144

L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1157
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1158 1159
	struct {
		long jiffies;
1160
		unsigned cycles;
L
Linus Torvalds 已提交
1161 1162 1163 1164 1165
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1166
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1167
	sample.num = num;
1168
	r = &input_pool;
1169
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1170 1171 1172 1173 1174 1175

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	delta = sample.jiffies - state->last_time;
	state->last_time = sample.jiffies;

	delta2 = delta - state->last_delta;
	state->last_delta = delta;

	delta3 = delta2 - state->last_delta2;
	state->last_delta2 = delta2;

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1195

1196 1197 1198 1199 1200 1201
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
	 * and limit entropy entimate to 12 bits.
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1202 1203
}

1204
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1216
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1217
}
1218
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1219

1220 1221
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1243 1244 1245
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1246
	unsigned int idx;
1247 1248 1249

	if (regs == NULL)
		return 0;
1250 1251 1252 1253 1254
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1255
	return *ptr;
1256 1257
}

1258
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1259
{
1260
	struct entropy_store	*r;
1261
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1262 1263
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1264
	cycles_t		cycles = random_get_entropy();
1265
	__u32			c_high, j_high;
1266
	__u64			ip;
1267
	unsigned long		seed;
1268
	int			credit = 0;
1269

1270 1271
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1272 1273
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1274 1275
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1276
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1277
	fast_pool->pool[2] ^= ip;
1278 1279
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1280

1281 1282
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1283

T
Theodore Ts'o 已提交
1284
	if (unlikely(crng_init == 0)) {
1285 1286 1287 1288 1289 1290 1291 1292 1293
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1294 1295
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1296 1297
		return;

1298
	r = &input_pool;
1299
	if (!spin_trylock(&r->lock))
1300
		return;
1301

1302
	fast_pool->last = now;
1303
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1304 1305 1306

	/*
	 * If we have architectural seed generator, produce a seed and
1307 1308 1309
	 * add it to the pool.  For the sake of paranoia don't let the
	 * architectural seed generator dominate the input from the
	 * interrupt noise.
1310 1311
	 */
	if (arch_get_random_seed_long(&seed)) {
1312
		__mix_pool_bytes(r, &seed, sizeof(seed));
1313
		credit = 1;
1314
	}
1315
	spin_unlock(&r->lock);
1316

1317
	fast_pool->count = 0;
1318

1319 1320
	/* award one bit for the contents of the fast pool */
	credit_entropy_bits(r, credit + 1);
L
Linus Torvalds 已提交
1321
}
1322
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1323

1324
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1325 1326 1327 1328 1329
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1330
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1331
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1332
}
1333
EXPORT_SYMBOL_GPL(add_disk_randomness);
1334
#endif
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1343 1344
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1345 1346 1347 1348
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1349
	int entropy_count, orig, have_bytes;
1350
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1351

1352
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1353 1354

	/* Can we pull enough? */
1355
retry:
1356
	entropy_count = orig = READ_ONCE(r->entropy_count);
1357
	ibytes = nbytes;
S
Stephan Müller 已提交
1358 1359
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1360

S
Stephan Müller 已提交
1361 1362 1363
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1364
	if (ibytes < min)
1365
		ibytes = 0;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	if (unlikely(entropy_count < 0)) {
		pr_warn("random: negative entropy count: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1377
		entropy_count = 0;
1378

G
Greg Price 已提交
1379 1380
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1381

1382
	trace_debit_entropy(r->name, 8 * ibytes);
G
Greg Price 已提交
1383
	if (ibytes &&
1384
	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1385
		wake_up_interruptible(&random_write_wait);
1386 1387 1388
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1389
	return ibytes;
L
Linus Torvalds 已提交
1390 1391
}

G
Greg Price 已提交
1392 1393 1394 1395 1396 1397
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1398 1399
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1400
	int i;
1401 1402
	union {
		__u32 w[5];
1403
		unsigned long l[LONGS(20)];
1404 1405
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1406
	unsigned long flags;
L
Linus Torvalds 已提交
1407

1408
	/*
1409
	 * If we have an architectural hardware random number
1410
	 * generator, use it for SHA's initial vector
1411
	 */
1412
	sha_init(hash.w);
1413 1414 1415 1416
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1417
		hash.l[i] = v;
1418 1419
	}

1420 1421 1422 1423 1424
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
1425
	/*
1426 1427 1428 1429 1430 1431 1432
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1433
	 */
1434
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1435
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1436

1437
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1438 1439

	/*
1440 1441 1442
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1443
	 */
1444 1445 1446 1447 1448
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1449
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1491
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1492
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1493 1494
{
	__u8 tmp[EXTRACT_SIZE];
1495
	unsigned long flags;
L
Linus Torvalds 已提交
1496

1497
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1498 1499 1500
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1501
			r->last_data_init = 1;
1502 1503
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1504
					      ENTROPY_BITS(r), _RET_IP_);
1505 1506 1507 1508 1509 1510
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1511

1512
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1513 1514
	nbytes = account(r, nbytes, min, reserved);

1515
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1538
	if (__ratelimit(&unseeded_warning))
1539 1540 1541
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1542 1543
}

L
Linus Torvalds 已提交
1544 1545
/*
 * This function is the exported kernel interface.  It returns some
1546
 * number of good random numbers, suitable for key generation, seeding
1547 1548
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1549 1550 1551 1552
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1553
 */
1554
static void _get_random_bytes(void *buf, int nbytes)
1555
{
1556
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1557

1558
	trace_get_random_bytes(nbytes, _RET_IP_);
1559

1560
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1561
		extract_crng(buf);
1562 1563
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1564 1565 1566 1567 1568
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1569 1570
		crng_backtrack_protect(tmp, nbytes);
	} else
1571
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1572
	memzero_explicit(tmp, sizeof(tmp));
1573
}
1574 1575 1576 1577 1578 1579 1580 1581

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1582 1583
EXPORT_SYMBOL(get_random_bytes);

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1659 1660 1661
}
EXPORT_SYMBOL(wait_for_random_bytes);

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1691
	if (crng_ready())
1692 1693 1694 1695 1696 1697 1698
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1699
	if (crng_ready())
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1735 1736 1737 1738 1739 1740 1741 1742 1743
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1744 1745
 *
 * Return number of bytes filled in.
1746
 */
1747
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1748
{
1749
	int left = nbytes;
1750 1751
	char *p = buf;

1752 1753
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1754
		unsigned long v;
1755
		int chunk = min_t(int, left, sizeof(unsigned long));
1756

1757 1758
		if (!arch_get_random_long(&v))
			break;
1759

L
Luck, Tony 已提交
1760
		memcpy(p, &v, chunk);
1761
		p += chunk;
1762
		left -= chunk;
1763 1764
	}

1765
	return nbytes - left;
L
Linus Torvalds 已提交
1766
}
1767 1768
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1778
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1779
{
1780
	int i;
1781 1782
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1783

1784
	mix_pool_bytes(r, &now, sizeof(now));
1785
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1786 1787
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1788
			rv = random_get_entropy();
1789
		mix_pool_bytes(r, &rv, sizeof(rv));
1790
	}
1791
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1804
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1805 1806
{
	init_std_data(&input_pool);
1807
	crng_initialize(&primary_crng);
1808
	crng_global_init_time = jiffies;
1809 1810 1811 1812
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1813 1814 1815
	return 0;
}

1816
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1822
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1823 1824
	 * source.
	 */
1825
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1826 1827
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1828
		disk->random = state;
1829
	}
L
Linus Torvalds 已提交
1830
}
1831
#endif
L
Linus Torvalds 已提交
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1845
static ssize_t
1846
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1847
{
1848
	unsigned long flags;
1849
	static int maxwarn = 10;
1850

1851
	if (!crng_ready() && maxwarn > 0) {
1852
		maxwarn--;
1853 1854 1855 1856
		if (__ratelimit(&urandom_warning))
			printk(KERN_NOTICE "random: %s: uninitialized "
			       "urandom read (%zd bytes read)\n",
			       current->comm, nbytes);
1857 1858 1859
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1860
	}
1861 1862

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1863 1864
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1876
static __poll_t
1877
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1878
{
1879
	__poll_t mask;
L
Linus Torvalds 已提交
1880

1881
	poll_wait(file, &crng_init_wait, wait);
1882 1883
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1884
	if (crng_ready())
1885
		mask |= EPOLLIN | EPOLLRDNORM;
1886
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1887
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1888 1889 1890
	return mask;
}

1891 1892
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1893 1894
{
	size_t bytes;
1895
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1896 1897
	const char __user *p = buffer;

1898
	while (count > 0) {
1899 1900
		int b, i = 0;

1901 1902 1903
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1904

1905 1906 1907 1908 1909 1910
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1911
		count -= bytes;
L
Linus Torvalds 已提交
1912 1913
		p += bytes;

1914
		mix_pool_bytes(r, buf, bytes);
1915
		cond_resched();
L
Linus Torvalds 已提交
1916
	}
1917 1918 1919 1920

	return 0;
}

1921 1922
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1923 1924 1925
{
	size_t ret;

1926
	ret = write_pool(&input_pool, buffer, count);
1927 1928 1929 1930
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1931 1932
}

M
Matt Mackall 已提交
1933
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1941
		/* inherently racy, no point locking */
1942 1943
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949 1950
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1951
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1961 1962
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1963 1964
		if (retval < 0)
			return retval;
1965
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1966 1967
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1968 1969 1970 1971
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1972 1973
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1974
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1975
		return 0;
1976 1977 1978 1979 1980 1981 1982 1983
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
		crng_reseed(&primary_crng, NULL);
		crng_global_init_time = jiffies - 1;
		return 0;
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988
	default:
		return -EINVAL;
	}
}

1989 1990 1991 1992 1993
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1994
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1995 1996
	.read  = random_read,
	.write = random_write,
1997
	.poll  = random_poll,
M
Matt Mackall 已提交
1998
	.unlocked_ioctl = random_ioctl,
1999
	.compat_ioctl = compat_ptr_ioctl,
2000
	.fasync = random_fasync,
2001
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2002 2003
};

2004
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
2005 2006
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
2007
	.unlocked_ioctl = random_ioctl,
2008
	.compat_ioctl = compat_ptr_ioctl,
2009
	.fasync = random_fasync,
2010
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2011 2012
};

2013 2014 2015
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2016 2017
	int ret;

2018 2019 2020 2021 2022 2023 2024 2025
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2026 2027 2028 2029 2030
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2031
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2032 2033
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2034 2035 2036
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2037
	}
2038
	return urandom_read_nowarn(NULL, buf, count, NULL);
2039 2040
}

L
Linus Torvalds 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

2051
static int min_write_thresh;
L
Linus Torvalds 已提交
2052
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2053
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2054 2055 2056
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2057
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2058 2059 2060
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2061 2062 2063
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2064
 */
2065
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
2066 2067
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
2068
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2075 2076 2077 2078 2079 2080 2081 2082
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2083

J
Joe Perches 已提交
2084 2085
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2086 2087 2088
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2089
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2090 2091
}

2092 2093 2094
/*
 * Return entropy available scaled to integral bits
 */
2095
static int proc_do_entropy(struct ctl_table *table, int write,
2096 2097
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
2098
	struct ctl_table fake_table;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2109
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2110 2111
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2117
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2118 2119 2120 2121 2122
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2123
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2124 2125 2126 2127
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2128
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2129 2130
		.maxlen		= sizeof(int),
		.mode		= 0644,
2131
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2132 2133 2134
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2135 2136 2137 2138 2139 2140 2141
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2147
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2153
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2154
	},
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2171
	{ }
L
Linus Torvalds 已提交
2172 2173 2174
};
#endif 	/* CONFIG_SYSCTL */

2175 2176
struct batched_entropy {
	union {
2177 2178
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2179 2180
	};
	unsigned int position;
2181
	spinlock_t batch_lock;
2182
};
2183

L
Linus Torvalds 已提交
2184
/*
2185 2186
 * Get a random word for internal kernel use only. The quality of the random
 * number is either as good as RDRAND or as good as /dev/urandom, with the
2187 2188 2189 2190
 * goal of being quite fast and not depleting entropy. In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
2191
 */
2192 2193 2194 2195
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2196
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2197
{
2198
	u64 ret;
2199
	unsigned long flags;
2200
	struct batched_entropy *batch;
2201
	static void *previous;
2202

2203 2204
#if BITS_PER_LONG == 64
	if (arch_get_random_long((unsigned long *)&ret))
2205
		return ret;
2206 2207 2208 2209 2210
#else
	if (arch_get_random_long((unsigned long *)&ret) &&
	    arch_get_random_long((unsigned long *)&ret + 1))
	    return ret;
#endif
2211

2212
	warn_unseeded_randomness(&previous);
2213

2214 2215
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2216
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2217
		extract_crng((u8 *)batch->entropy_u64);
2218 2219
		batch->position = 0;
	}
2220
	ret = batch->entropy_u64[batch->position++];
2221
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2222
	return ret;
L
Linus Torvalds 已提交
2223
}
2224
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2225

2226 2227 2228
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2229
u32 get_random_u32(void)
2230
{
2231
	u32 ret;
2232
	unsigned long flags;
2233
	struct batched_entropy *batch;
2234
	static void *previous;
2235

2236
	if (arch_get_random_int(&ret))
2237 2238
		return ret;

2239
	warn_unseeded_randomness(&previous);
2240

2241 2242
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2243
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2244
		extract_crng((u8 *)batch->entropy_u32);
2245 2246
		batch->position = 0;
	}
2247
	ret = batch->entropy_u32[batch->position++];
2248
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2249 2250
	return ret;
}
2251
EXPORT_SYMBOL(get_random_u32);
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2274 2275 2276
	}
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2319
	if (unlikely(crng_init == 0)) {
2320 2321
		crng_fast_load(buffer, count);
		return;
2322
	}
2323 2324 2325 2326 2327

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2328
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2329
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2330 2331 2332 2333
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2347
EXPORT_SYMBOL_GPL(add_bootloader_randomness);