random.c 67.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq, int irq_flags);
204
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
205
 *
206 207 208 209 210 211 212 213
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
214 215 216
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
217 218 219
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
220 221 222 223 224 225
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

Y
Yangtao Li 已提交
310 311
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
325
#include <linux/mm.h>
326
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
327
#include <linux/spinlock.h>
328
#include <linux/kthread.h>
L
Linus Torvalds 已提交
329
#include <linux/percpu.h>
330
#include <linux/fips.h>
331
#include <linux/ptrace.h>
332
#include <linux/workqueue.h>
333
#include <linux/irq.h>
334
#include <linux/ratelimit.h>
335 336
#include <linux/syscalls.h>
#include <linux/completion.h>
337
#include <linux/uuid.h>
338
#include <crypto/chacha.h>
339
#include <crypto/sha1.h>
340

L
Linus Torvalds 已提交
341
#include <asm/processor.h>
342
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
343
#include <asm/irq.h>
344
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
345 346
#include <asm/io.h>

347 348 349
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

350 351
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
352 353 354
/*
 * Configuration information
 */
355 356 357 358 359
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
360 361


362 363
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

364
/*
T
Theodore Ts'o 已提交
365 366
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
367
 *
368
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369
 * credit_entropy_bits() needs to be 64 bits wide.
370 371 372 373
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
374 375 376 377 378
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
379
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
380 381

/*
382 383 384 385 386 387 388 389 390 391
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
392
 * GFSR generators II.  ACM Transactions on Modeling and Computer
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
425
 */
426
static const struct poolinfo {
427 428
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
429 430
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
431 432 433
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
L
Linus Torvalds 已提交
434 435 436 437 438
};

/*
 * Static global variables
 */
439
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
441

442 443 444
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

445 446 447 448 449 450
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

451
static struct crng_state primary_crng = {
452 453 454 455 456 457 458 459 460 461 462 463
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
464
#define crng_ready() (likely(crng_init > 1))
465
static int crng_init_cnt = 0;
466
static unsigned long crng_global_init_time = 0;
467 468
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469
static void _crng_backtrack_protect(struct crng_state *crng,
470
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471
static void process_random_ready_list(void);
472
static void _get_random_bytes(void *buf, int nbytes);
473

474 475 476 477 478 479 480 481 482 483
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
484 485 486 487 488 489 490 491 492
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
493
	/* read-only data: */
494
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
495 496 497 498
	__u32 *pool;
	const char *name;

	/* read-write data: */
499
	spinlock_t lock;
500 501
	unsigned short add_ptr;
	unsigned short input_rotate;
502
	int entropy_count;
503
	unsigned int initialized:1;
504
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
505
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
506 507
};

508 509 510 511 512 513
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
514
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
515 516 517 518

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
519
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
520 521 522
	.pool = input_pool_data
};

523 524 525 526
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
527
/*
528
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
529
 * update the entropy estimate.  The caller should call
530
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
531 532 533 534 535 536
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
537
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
538
			    int nbytes)
L
Linus Torvalds 已提交
539
{
540
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
541
	int input_rotate;
L
Linus Torvalds 已提交
542
	int wordmask = r->poolinfo->poolwords - 1;
543
	const char *bytes = in;
544
	__u32 w;
L
Linus Torvalds 已提交
545 546 547 548 549 550 551

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

552 553
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
554

555 556
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
557
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
558
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
559 560

		/* XOR in the various taps */
M
Matt Mackall 已提交
561
		w ^= r->pool[i];
L
Linus Torvalds 已提交
562 563 564 565 566
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
567 568

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
569
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
570 571 572 573 574 575 576

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
577
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
578 579
	}

580 581
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
582 583
}

584
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
585
			     int nbytes)
586 587
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
588
	_mix_pool_bytes(r, in, nbytes);
589 590 591
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
592
			   int nbytes)
L
Linus Torvalds 已提交
593
{
594 595
	unsigned long flags;

596
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
597
	spin_lock_irqsave(&r->lock, flags);
598
	_mix_pool_bytes(r, in, nbytes);
599
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
600 601
}

602 603 604
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
605
	unsigned short	reg_idx;
606
	unsigned char	count;
607 608 609 610 611 612 613
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
614
static void fast_mix(struct fast_pool *f)
615
{
616 617 618 619
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
620
	b = rol32(b, 6);	d = rol32(d, 27);
621 622 623
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
624
	b = rol32(b, 16);	d = rol32(d, 14);
625 626 627
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
628
	b = rol32(b, 6);	d = rol32(d, 27);
629 630 631
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
632
	b = rol32(b, 16);	d = rol32(d, 14);
633 634 635 636
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
637
	f->count++;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
656
/*
657 658 659
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
660
 */
661
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
662
{
663
	int entropy_count, orig, has_initialized = 0;
664 665
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
666

667 668 669
	if (!nbits)
		return;

670
retry:
671
	entropy_count = orig = READ_ONCE(r->entropy_count);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
710

711
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
712
		pr_warn("negative entropy/overflow: pool %s count %d\n",
713
			r->name, entropy_count);
714
		entropy_count = 0;
715 716
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
717 718
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
719

720
	if (has_initialized) {
721
		r->initialized = 1;
722 723
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
724

725
	trace_credit_entropy_bits(r->name, nbits,
726
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
727

728
	if (r == &input_pool) {
729
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
730

731 732 733
		if (crng_init < 2) {
			if (entropy_bits < 128)
				return;
734
			crng_reseed(&primary_crng, r);
735
			entropy_bits = ENTROPY_BITS(r);
736
		}
737
	}
L
Linus Torvalds 已提交
738 739
}

740
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
741
{
742
	const int nbits_max = r->poolinfo->poolwords * 32;
743

744 745 746
	if (nbits < 0)
		return -EINVAL;

747 748 749 750
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
751
	return 0;
752 753
}

754 755 756 757 758 759 760 761 762 763
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

764 765 766 767 768 769 770 771 772 773
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

774
static void invalidate_batched_entropy(void);
775
static void numa_crng_init(void);
776

777 778 779 780 781 782 783
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

784
static bool crng_init_try_arch(struct crng_state *crng)
785 786
{
	int		i;
787
	bool		arch_init = true;
788 789 790 791
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
792
		    !arch_get_random_long(&rv)) {
793
			rv = random_get_entropy();
794
			arch_init = false;
795
		}
796 797
		crng->state[i] ^= rv;
	}
798 799 800 801

	return arch_init;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
	int		i;
	bool		arch_init = true;
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		crng->state[i] ^= rv;
	}

	return arch_init;
}

820
static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
821 822 823 824 825 826 827 828 829 830 831
{
	memcpy(&crng->state[0], "expand 32-byte k", 16);
	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static void __init crng_initialize_primary(struct crng_state *crng)
{
	memcpy(&crng->state[0], "expand 32-byte k", 16);
	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
832
	if (crng_init_try_arch_early(crng) && trust_cpu) {
833 834
		invalidate_batched_entropy();
		numa_crng_init();
835
		crng_init = 2;
Y
Yangtao Li 已提交
836
		pr_notice("crng done (trusting CPU's manufacturer)\n");
837
	}
838 839 840
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

841
#ifdef CONFIG_NUMA
842
static void do_numa_crng_init(struct work_struct *work)
843 844 845 846 847 848 849 850 851 852
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
853
		crng_initialize_secondary(crng);
854 855 856 857 858 859 860 861 862
		pool[i] = crng;
	}
	mb();
	if (cmpxchg(&crng_node_pool, NULL, pool)) {
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
863 864 865 866 867 868 869

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
870 871 872 873
#else
static void numa_crng_init(void) {}
#endif

874 875 876 877
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
878 879 880 881 882 883 884
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
885
	if (crng_init != 0) {
886 887 888 889 890
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
891
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
892 893
		cp++; crng_init_cnt++; len--;
	}
894
	spin_unlock_irqrestore(&primary_crng.lock, flags);
895
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
896
		invalidate_batched_entropy();
897
		crng_init = 1;
Y
Yangtao Li 已提交
898
		pr_notice("fast init done\n");
899 900 901 902
	}
	return 1;
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
922
	unsigned		i, max = CHACHA_KEY_SIZE;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
940 941
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
942 943 944 945 946 947
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

948 949 950 951 952
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
953
		__u8	block[CHACHA_BLOCK_SIZE];
954 955 956 957 958 959 960
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
961
	} else {
962
		_extract_crng(&primary_crng, buf.block);
963
		_crng_backtrack_protect(&primary_crng, buf.block,
964
					CHACHA_KEY_SIZE);
965
	}
966
	spin_lock_irqsave(&crng->lock, flags);
967 968 969 970 971 972 973 974 975
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
976
	spin_unlock_irqrestore(&crng->lock, flags);
977
	if (crng == &primary_crng && crng_init < 2) {
978
		invalidate_batched_entropy();
979
		numa_crng_init();
980 981 982
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
983
		kill_fasync(&fasync, SIGIO, POLL_IN);
Y
Yangtao Li 已提交
984
		pr_notice("crng init done\n");
985
		if (unseeded_warning.missed) {
Y
Yangtao Li 已提交
986
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
987 988 989 990
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
Y
Yangtao Li 已提交
991
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
992 993 994
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
995 996 997
	}
}

998
static void _extract_crng(struct crng_state *crng,
999
			  __u8 out[CHACHA_BLOCK_SIZE])
1000 1001 1002
{
	unsigned long v, flags;

T
Theodore Ts'o 已提交
1003
	if (crng_ready() &&
1004 1005
	    (time_after(crng_global_init_time, crng->init_time) ||
	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007 1008 1009 1010 1011 1012 1013 1014 1015
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1016
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

1029 1030 1031 1032 1033
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1034
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1035 1036 1037 1038 1039 1040
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1041
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042 1043 1044 1045
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1046
	s = (__u32 *) &tmp[used];
1047 1048 1049 1050 1051 1052
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1053
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

1066 1067
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1068 1069
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1083
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084 1085 1086 1087 1088 1089 1090 1091 1092
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1093
	crng_backtrack_protect(tmp, i);
1094 1095 1096 1097 1098 1099 1100 1101

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1111
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1112 1113
};

1114 1115
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1116
/*
1117 1118
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1119
 *
1120 1121 1122
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1123 1124 1125
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1126
	unsigned long time = random_get_entropy() ^ jiffies;
1127
	unsigned long flags;
1128

1129 1130
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1131

1132
	trace_add_device_randomness(size, _RET_IP_);
1133
	spin_lock_irqsave(&input_pool.lock, flags);
1134 1135
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1136
	spin_unlock_irqrestore(&input_pool.lock, flags);
1137 1138 1139
}
EXPORT_SYMBOL(add_device_randomness);

1140
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1141

L
Linus Torvalds 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1154
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1155 1156
	struct {
		long jiffies;
1157
		unsigned cycles;
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1163
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1164
	sample.num = num;
1165
	r = &input_pool;
1166
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1167 1168 1169 1170 1171 1172

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1173 1174
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1175

1176 1177
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1178

1179 1180
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1192

1193 1194 1195
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1196
	 * and limit entropy estimate to 12 bits.
1197 1198
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1199 1200
}

1201
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1213
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1214
}
1215
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1216

1217 1218
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1240 1241 1242
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1243
	unsigned int idx;
1244 1245 1246

	if (regs == NULL)
		return 0;
1247 1248 1249 1250 1251
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1252
	return *ptr;
1253 1254
}

1255
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1256
{
1257
	struct entropy_store	*r;
1258
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1259 1260
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1261
	cycles_t		cycles = random_get_entropy();
1262
	__u32			c_high, j_high;
1263
	__u64			ip;
1264

1265 1266
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1267 1268
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1269 1270
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1271
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1272
	fast_pool->pool[2] ^= ip;
1273 1274
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1275

1276 1277
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1278

T
Theodore Ts'o 已提交
1279
	if (unlikely(crng_init == 0)) {
1280 1281 1282 1283 1284 1285 1286 1287 1288
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1289 1290
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1291 1292
		return;

1293
	r = &input_pool;
1294
	if (!spin_trylock(&r->lock))
1295
		return;
1296

1297
	fast_pool->last = now;
1298
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1299
	spin_unlock(&r->lock);
1300

1301
	fast_pool->count = 0;
1302

1303
	/* award one bit for the contents of the fast pool */
1304
	credit_entropy_bits(r, 1);
L
Linus Torvalds 已提交
1305
}
1306
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1307

1308
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1314
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1315
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1316
}
1317
EXPORT_SYMBOL_GPL(add_disk_randomness);
1318
#endif
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325 1326

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1327 1328
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1329 1330 1331 1332
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1333
	int entropy_count, orig, have_bytes;
1334
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1335

1336
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1337 1338

	/* Can we pull enough? */
1339
retry:
1340
	entropy_count = orig = READ_ONCE(r->entropy_count);
1341
	ibytes = nbytes;
S
Stephan Müller 已提交
1342 1343
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1344

S
Stephan Müller 已提交
1345 1346 1347
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1348
	if (ibytes < min)
1349
		ibytes = 0;
1350

1351
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
1352
		pr_warn("negative entropy count: pool %s count %d\n",
1353 1354 1355 1356 1357 1358 1359
			r->name, entropy_count);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1360
		entropy_count = 0;
1361

G
Greg Price 已提交
1362 1363
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1364

1365
	trace_debit_entropy(r->name, 8 * ibytes);
1366
	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1367
		wake_up_interruptible(&random_write_wait);
1368 1369 1370
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1371
	return ibytes;
L
Linus Torvalds 已提交
1372 1373
}

G
Greg Price 已提交
1374 1375 1376 1377 1378 1379
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1380 1381
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1382
	int i;
1383 1384
	union {
		__u32 w[5];
1385
		unsigned long l[LONGS(20)];
1386
	} hash;
1387
	__u32 workspace[SHA1_WORKSPACE_WORDS];
1388
	unsigned long flags;
L
Linus Torvalds 已提交
1389

1390
	/*
1391
	 * If we have an architectural hardware random number
1392
	 * generator, use it for SHA's initial vector
1393
	 */
1394
	sha1_init(hash.w);
1395 1396 1397 1398
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1399
		hash.l[i] = v;
1400 1401
	}

1402 1403 1404
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1405
		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1406

L
Linus Torvalds 已提交
1407
	/*
1408 1409 1410 1411 1412 1413 1414
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1415
	 */
1416
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1417
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1418

1419
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1420 1421

	/*
1422 1423 1424
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1425
	 */
1426 1427 1428 1429 1430
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1431
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1473
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1474
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1475 1476
{
	__u8 tmp[EXTRACT_SIZE];
1477
	unsigned long flags;
L
Linus Torvalds 已提交
1478

1479
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1480 1481 1482
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1483
			r->last_data_init = 1;
1484 1485
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1486
					      ENTROPY_BITS(r), _RET_IP_);
1487 1488 1489 1490 1491 1492
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1493

1494
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1495 1496
	nbytes = account(r, nbytes, min, reserved);

1497
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1520
	if (__ratelimit(&unseeded_warning))
1521 1522 1523
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1524 1525
}

L
Linus Torvalds 已提交
1526 1527
/*
 * This function is the exported kernel interface.  It returns some
1528
 * number of good random numbers, suitable for key generation, seeding
1529 1530
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1531 1532 1533 1534
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1535
 */
1536
static void _get_random_bytes(void *buf, int nbytes)
1537
{
1538
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1539

1540
	trace_get_random_bytes(nbytes, _RET_IP_);
1541

1542
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1543
		extract_crng(buf);
1544 1545
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1546 1547 1548 1549 1550
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1551 1552
		crng_backtrack_protect(tmp, nbytes);
	} else
1553
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1554
	memzero_explicit(tmp, sizeof(tmp));
1555
}
1556 1557 1558 1559 1560 1561 1562 1563

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1564 1565
EXPORT_SYMBOL(get_random_bytes);

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1641 1642 1643
}
EXPORT_SYMBOL(wait_for_random_bytes);

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1673
	if (crng_ready())
1674 1675 1676 1677 1678 1679 1680
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1681
	if (crng_ready())
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1717 1718 1719 1720 1721 1722 1723 1724 1725
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1726 1727
 *
 * Return number of bytes filled in.
1728
 */
1729
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1730
{
1731
	int left = nbytes;
1732 1733
	char *p = buf;

1734 1735
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1736
		unsigned long v;
1737
		int chunk = min_t(int, left, sizeof(unsigned long));
1738

1739 1740
		if (!arch_get_random_long(&v))
			break;
1741

L
Luck, Tony 已提交
1742
		memcpy(p, &v, chunk);
1743
		p += chunk;
1744
		left -= chunk;
1745 1746
	}

1747
	return nbytes - left;
L
Linus Torvalds 已提交
1748
}
1749 1750
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1760
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1761
{
1762
	int i;
1763 1764
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1765

1766
	mix_pool_bytes(r, &now, sizeof(now));
1767
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1768 1769
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1770
			rv = random_get_entropy();
1771
		mix_pool_bytes(r, &rv, sizeof(rv));
1772
	}
1773
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1774 1775
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1786
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1787 1788
{
	init_std_data(&input_pool);
1789
	crng_initialize_primary(&primary_crng);
1790
	crng_global_init_time = jiffies;
1791 1792 1793 1794
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1795 1796 1797
	return 0;
}

1798
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1804
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1805 1806
	 * source.
	 */
1807
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1808 1809
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1810
		disk->random = state;
1811
	}
L
Linus Torvalds 已提交
1812
}
1813
#endif
L
Linus Torvalds 已提交
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1827
static ssize_t
1828
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1829
{
1830
	unsigned long flags;
1831
	static int maxwarn = 10;
1832

1833
	if (!crng_ready() && maxwarn > 0) {
1834
		maxwarn--;
1835
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1836 1837
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1838 1839 1840
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1841
	}
1842 1843

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1844 1845
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1857
static __poll_t
1858
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1859
{
1860
	__poll_t mask;
L
Linus Torvalds 已提交
1861

1862
	poll_wait(file, &crng_init_wait, wait);
1863 1864
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1865
	if (crng_ready())
1866
		mask |= EPOLLIN | EPOLLRDNORM;
1867
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1868
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1869 1870 1871
	return mask;
}

1872 1873
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1874 1875
{
	size_t bytes;
1876
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1877 1878
	const char __user *p = buffer;

1879
	while (count > 0) {
1880 1881
		int b, i = 0;

1882 1883 1884
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1885

1886 1887 1888 1889 1890 1891
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1892
		count -= bytes;
L
Linus Torvalds 已提交
1893 1894
		p += bytes;

1895
		mix_pool_bytes(r, buf, bytes);
1896
		cond_resched();
L
Linus Torvalds 已提交
1897
	}
1898 1899 1900 1901

	return 0;
}

1902 1903
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1904 1905 1906
{
	size_t ret;

1907
	ret = write_pool(&input_pool, buffer, count);
1908 1909 1910 1911
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1912 1913
}

M
Matt Mackall 已提交
1914
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1922
		/* inherently racy, no point locking */
1923 1924
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1932
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1942 1943
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1944 1945
		if (retval < 0)
			return retval;
1946
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1947 1948
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1949 1950 1951 1952
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1953 1954
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1955
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1956
		return 0;
1957 1958 1959 1960 1961
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1962
		crng_reseed(&primary_crng, &input_pool);
1963 1964
		crng_global_init_time = jiffies - 1;
		return 0;
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969
	default:
		return -EINVAL;
	}
}

1970 1971 1972 1973 1974
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1975
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1976 1977
	.read  = random_read,
	.write = random_write,
1978
	.poll  = random_poll,
M
Matt Mackall 已提交
1979
	.unlocked_ioctl = random_ioctl,
1980
	.compat_ioctl = compat_ptr_ioctl,
1981
	.fasync = random_fasync,
1982
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1983 1984
};

1985
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1986 1987
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1988
	.unlocked_ioctl = random_ioctl,
1989
	.compat_ioctl = compat_ptr_ioctl,
1990
	.fasync = random_fasync,
1991
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1992 1993
};

1994 1995 1996
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
1997 1998
	int ret;

1999 2000 2001 2002 2003 2004 2005 2006
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2007 2008 2009 2010 2011
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2012
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2013 2014
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2015 2016 2017
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2018
	}
2019
	return urandom_read_nowarn(NULL, buf, count, NULL);
2020 2021
}

L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

2032
static int min_write_thresh;
L
Linus Torvalds 已提交
2033
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2034
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2035 2036 2037
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2038
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2039 2040 2041
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2042 2043 2044
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2045
 */
2046
static int proc_do_uuid(struct ctl_table *table, int write,
2047
			void *buffer, size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
2048
{
2049
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2056 2057 2058 2059 2060 2061 2062 2063
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2064

J
Joe Perches 已提交
2065 2066
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2067 2068 2069
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2070
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2071 2072
}

2073 2074 2075
/*
 * Return entropy available scaled to integral bits
 */
2076
static int proc_do_entropy(struct ctl_table *table, int write,
2077
			   void *buffer, size_t *lenp, loff_t *ppos)
2078
{
2079
	struct ctl_table fake_table;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2090
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2091 2092
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2098
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2104
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2105 2106 2107 2108
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2109
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2110 2111
		.maxlen		= sizeof(int),
		.mode		= 0644,
2112
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2113 2114 2115
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2116 2117 2118 2119 2120 2121 2122
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2123 2124 2125 2126 2127
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2128
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2134
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2135
	},
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2152
	{ }
L
Linus Torvalds 已提交
2153 2154 2155
};
#endif 	/* CONFIG_SYSCTL */

2156 2157
struct batched_entropy {
	union {
2158 2159
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2160 2161
	};
	unsigned int position;
2162
	spinlock_t batch_lock;
2163
};
2164

L
Linus Torvalds 已提交
2165
/*
2166
 * Get a random word for internal kernel use only. The quality of the random
2167 2168
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
2169
 * that the randomness provided by this function is okay, the function
2170 2171
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
2172
 */
2173 2174 2175 2176
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2177
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2178
{
2179
	u64 ret;
2180
	unsigned long flags;
2181
	struct batched_entropy *batch;
2182
	static void *previous;
2183

2184
	warn_unseeded_randomness(&previous);
2185

2186 2187
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2188
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2189
		extract_crng((u8 *)batch->entropy_u64);
2190 2191
		batch->position = 0;
	}
2192
	ret = batch->entropy_u64[batch->position++];
2193
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2194
	return ret;
L
Linus Torvalds 已提交
2195
}
2196
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2197

2198 2199 2200
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2201
u32 get_random_u32(void)
2202
{
2203
	u32 ret;
2204
	unsigned long flags;
2205
	struct batched_entropy *batch;
2206
	static void *previous;
2207

2208
	warn_unseeded_randomness(&previous);
2209

2210 2211
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2212
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2213
		extract_crng((u8 *)batch->entropy_u32);
2214 2215
		batch->position = 0;
	}
2216
	ret = batch->entropy_u32[batch->position++];
2217
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2218 2219
	return ret;
}
2220
EXPORT_SYMBOL(get_random_u32);
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2243 2244 2245
	}
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2288
	if (unlikely(crng_init == 0)) {
2289 2290
		crng_fast_load(buffer, count);
		return;
2291
	}
2292 2293 2294 2295 2296

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2297
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2298
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2299 2300 2301 2302
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2316
EXPORT_SYMBOL_GPL(add_bootloader_randomness);