random.c 73.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq, int irq_flags);
204
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
205
 *
206 207 208 209 210 211 212 213
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
214 215 216
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
217 218 219
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
220 221 222 223 224 225
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
323
#include <linux/mm.h>
324
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
325
#include <linux/spinlock.h>
326
#include <linux/kthread.h>
L
Linus Torvalds 已提交
327 328
#include <linux/percpu.h>
#include <linux/cryptohash.h>
329
#include <linux/fips.h>
330
#include <linux/ptrace.h>
331
#include <linux/workqueue.h>
332
#include <linux/irq.h>
333
#include <linux/ratelimit.h>
334 335
#include <linux/syscalls.h>
#include <linux/completion.h>
336
#include <linux/uuid.h>
337
#include <crypto/chacha.h>
338

L
Linus Torvalds 已提交
339
#include <asm/processor.h>
340
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
341
#include <asm/irq.h>
342
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
343 344
#include <asm/io.h>

345 346 347
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

348 349
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
350 351 352
/*
 * Configuration information
 */
353 354 355 356 357 358
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define SEC_XFER_SIZE		512
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
359 360


361 362
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

363
/*
T
Theodore Ts'o 已提交
364 365
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
366
 *
367
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
368
 * credit_entropy_bits() needs to be 64 bits wide.
369 370 371 372
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
373 374 375 376
/*
 * The minimum number of bits of entropy before we wake up a read on
 * /dev/random.  Should be enough to do a significant reseed.
 */
377
static int random_read_wakeup_bits = 64;
L
Linus Torvalds 已提交
378 379 380 381 382 383

/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
384
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
385 386

/*
387 388 389 390 391 392 393 394 395 396
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
397
 * GFSR generators II.  ACM Transactions on Modeling and Computer
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
430
 */
431
static const struct poolinfo {
432 433
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
434 435
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
436 437 438 439 440 441
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
442 443
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
444
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
445 446

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
447
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
448 449

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
450
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
451 452

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
453
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
454 455

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
456
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
457
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
458
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
459 460

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
461
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
462 463

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
464
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
465 466

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
467
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
468 469 470 471 472 473
#endif
};

/*
 * Static global variables
 */
474 475
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
476
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
477

478 479 480
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

481 482 483 484 485 486
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

487
static struct crng_state primary_crng = {
488 489 490 491 492 493 494 495 496 497 498 499
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
500
#define crng_ready() (likely(crng_init > 1))
501
static int crng_init_cnt = 0;
502
static unsigned long crng_global_init_time = 0;
503 504
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
505
static void _crng_backtrack_protect(struct crng_state *crng,
506
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
507
static void process_random_ready_list(void);
508
static void _get_random_bytes(void *buf, int nbytes);
509

510 511 512 513 514 515 516 517 518 519
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
529
	/* read-only data: */
530
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
531 532 533
	__u32 *pool;
	const char *name;
	struct entropy_store *pull;
534
	struct work_struct push_work;
L
Linus Torvalds 已提交
535 536

	/* read-write data: */
537
	unsigned long last_pulled;
538
	spinlock_t lock;
539 540
	unsigned short add_ptr;
	unsigned short input_rotate;
541
	int entropy_count;
542
	unsigned int initialized:1;
543
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
544
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
545 546
};

547 548 549 550 551 552
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
553
static void push_to_pool(struct work_struct *work);
554 555
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
556 557 558 559

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
560
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
561 562 563 564 565 566 567
	.pool = input_pool_data
};

static struct entropy_store blocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "blocking",
	.pull = &input_pool,
568
	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
569 570 571
	.pool = blocking_pool_data,
	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
					push_to_pool),
L
Linus Torvalds 已提交
572 573
};

574 575 576 577
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
578
/*
579
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
580
 * update the entropy estimate.  The caller should call
581
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
582 583 584 585 586 587
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
588
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
589
			    int nbytes)
L
Linus Torvalds 已提交
590
{
591
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
592
	int input_rotate;
L
Linus Torvalds 已提交
593
	int wordmask = r->poolinfo->poolwords - 1;
594
	const char *bytes = in;
595
	__u32 w;
L
Linus Torvalds 已提交
596 597 598 599 600 601 602

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

603 604
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
605

606 607
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
608
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
609
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
610 611

		/* XOR in the various taps */
M
Matt Mackall 已提交
612
		w ^= r->pool[i];
L
Linus Torvalds 已提交
613 614 615 616 617
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
618 619

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
620
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
621 622 623 624 625 626 627

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
628
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
629 630
	}

631 632
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
633 634
}

635
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
636
			     int nbytes)
637 638
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
639
	_mix_pool_bytes(r, in, nbytes);
640 641 642
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
643
			   int nbytes)
L
Linus Torvalds 已提交
644
{
645 646
	unsigned long flags;

647
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
648
	spin_lock_irqsave(&r->lock, flags);
649
	_mix_pool_bytes(r, in, nbytes);
650
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
651 652
}

653 654 655
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
656
	unsigned short	reg_idx;
657
	unsigned char	count;
658 659 660 661 662 663 664
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
665
static void fast_mix(struct fast_pool *f)
666
{
667 668 669 670
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
671
	b = rol32(b, 6);	d = rol32(d, 27);
672 673 674
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
675
	b = rol32(b, 16);	d = rol32(d, 14);
676 677 678
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
679
	b = rol32(b, 6);	d = rol32(d, 27);
680 681 682
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
683
	b = rol32(b, 16);	d = rol32(d, 14);
684 685 686 687
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
688
	f->count++;
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
707
/*
708 709 710
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
711
 */
712
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
713
{
714
	int entropy_count, orig, has_initialized = 0;
715 716
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
717

718 719 720
	if (!nbits)
		return;

721
retry:
722
	entropy_count = orig = READ_ONCE(r->entropy_count);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
761

762
	if (unlikely(entropy_count < 0)) {
763 764 765
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
766
		entropy_count = 0;
767 768
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
769 770 771
	if ((r == &blocking_pool) && !r->initialized &&
	    (entropy_count >> ENTROPY_SHIFT) > 128)
		has_initialized = 1;
772 773
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
774

775
	if (has_initialized) {
776
		r->initialized = 1;
777 778 779
		wake_up_interruptible(&random_read_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
780

781
	trace_credit_entropy_bits(r->name, nbits,
782
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
783

784
	if (r == &input_pool) {
785
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
786
		struct entropy_store *other = &blocking_pool;
787

788 789 790
		if (crng_init < 2) {
			if (entropy_bits < 128)
				return;
791 792 793 794
			crng_reseed(&primary_crng, r);
			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
		}

795 796 797 798 799 800 801
		/* initialize the blocking pool if necessary */
		if (entropy_bits >= random_read_wakeup_bits &&
		    !other->initialized) {
			schedule_work(&other->push_work);
			return;
		}

802
		/* should we wake readers? */
803
		if (entropy_bits >= random_read_wakeup_bits &&
804 805
		    wq_has_sleeper(&random_read_wait)) {
			wake_up_interruptible(&random_read_wait);
806 807
			kill_fasync(&fasync, SIGIO, POLL_IN);
		}
808 809 810
		/* If the input pool is getting full, and the blocking
		 * pool has room, send some entropy to the blocking
		 * pool.
811
		 */
812 813 814 815
		if (!work_pending(&other->push_work) &&
		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
			schedule_work(&other->push_work);
816
	}
L
Linus Torvalds 已提交
817 818
}

819
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
820
{
821
	const int nbits_max = r->poolinfo->poolwords * 32;
822

823 824 825
	if (nbits < 0)
		return -EINVAL;

826 827 828 829
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
830
	return 0;
831 832
}

833 834 835 836 837 838 839 840 841 842
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

843 844 845 846 847 848 849 850 851 852
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

853
static void invalidate_batched_entropy(void);
854
static void numa_crng_init(void);
855

856 857 858 859 860 861 862
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

863 864 865
static void crng_initialize(struct crng_state *crng)
{
	int		i;
866
	int		arch_init = 1;
867 868 869 870 871 872 873
	unsigned long	rv;

	memcpy(&crng->state[0], "expand 32-byte k", 16);
	if (crng == &primary_crng)
		_extract_entropy(&input_pool, &crng->state[4],
				 sizeof(__u32) * 12, 0);
	else
874
		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
875 876
	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
877
		    !arch_get_random_long(&rv)) {
878
			rv = random_get_entropy();
879 880
			arch_init = 0;
		}
881 882
		crng->state[i] ^= rv;
	}
883 884 885
	if (trust_cpu && arch_init && crng == &primary_crng) {
		invalidate_batched_entropy();
		numa_crng_init();
886 887 888
		crng_init = 2;
		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
	}
889 890 891
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

892
#ifdef CONFIG_NUMA
893
static void do_numa_crng_init(struct work_struct *work)
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
		crng_initialize(crng);
		pool[i] = crng;
	}
	mb();
	if (cmpxchg(&crng_node_pool, NULL, pool)) {
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
914 915 916 917 918 919 920

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
921 922 923 924
#else
static void numa_crng_init(void) {}
#endif

925 926 927 928
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
929 930 931 932 933 934 935
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
936
	if (crng_init != 0) {
937 938 939 940 941
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
942
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
943 944
		cp++; crng_init_cnt++; len--;
	}
945
	spin_unlock_irqrestore(&primary_crng.lock, flags);
946
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
947
		invalidate_batched_entropy();
948 949 950 951 952 953 954
		crng_init = 1;
		wake_up_interruptible(&crng_init_wait);
		pr_notice("random: fast init done\n");
	}
	return 1;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
974
	unsigned		i, max = CHACHA_KEY_SIZE;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
992 993
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
994 995 996 997 998 999
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

1000 1001 1002 1003 1004
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
1005
		__u8	block[CHACHA_BLOCK_SIZE];
1006 1007 1008 1009 1010 1011 1012
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
1013
	} else {
1014
		_extract_crng(&primary_crng, buf.block);
1015
		_crng_backtrack_protect(&primary_crng, buf.block,
1016
					CHACHA_KEY_SIZE);
1017
	}
1018
	spin_lock_irqsave(&crng->lock, flags);
1019 1020 1021 1022 1023 1024 1025 1026 1027
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
1028
	spin_unlock_irqrestore(&crng->lock, flags);
1029
	if (crng == &primary_crng && crng_init < 2) {
1030
		invalidate_batched_entropy();
1031
		numa_crng_init();
1032 1033 1034 1035
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		pr_notice("random: crng init done\n");
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		if (unseeded_warning.missed) {
			pr_notice("random: %d get_random_xx warning(s) missed "
				  "due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("random: %d urandom warning(s) missed "
				  "due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
1048 1049 1050
	}
}

1051
static void _extract_crng(struct crng_state *crng,
1052
			  __u8 out[CHACHA_BLOCK_SIZE])
1053 1054 1055
{
	unsigned long v, flags;

T
Theodore Ts'o 已提交
1056
	if (crng_ready() &&
1057 1058
	    (time_after(crng_global_init_time, crng->init_time) ||
	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1059
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1060 1061 1062 1063 1064 1065 1066 1067 1068
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1069
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

1082 1083 1084 1085 1086
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1087
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1088 1089 1090 1091 1092 1093
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1094
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1095 1096 1097 1098
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1099
	s = (__u32 *) &tmp[used];
1100 1101 1102 1103 1104 1105
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1106
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

1119 1120
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1121 1122
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1136
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1137 1138 1139 1140 1141 1142 1143 1144 1145
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1146
	crng_backtrack_protect(tmp, i);
1147 1148 1149 1150 1151 1152 1153 1154

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1164
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1165 1166
};

1167 1168
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1169
/*
1170 1171
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1172
 *
1173 1174 1175
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1176 1177 1178
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1179
	unsigned long time = random_get_entropy() ^ jiffies;
1180
	unsigned long flags;
1181

1182 1183
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1184

1185
	trace_add_device_randomness(size, _RET_IP_);
1186
	spin_lock_irqsave(&input_pool.lock, flags);
1187 1188
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1189
	spin_unlock_irqrestore(&input_pool.lock, flags);
1190 1191 1192
}
EXPORT_SYMBOL(add_device_randomness);

1193
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1194

L
Linus Torvalds 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1207
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1208 1209
	struct {
		long jiffies;
1210
		unsigned cycles;
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1216
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1217
	sample.num = num;
1218
	r = &input_pool;
1219
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	delta = sample.jiffies - state->last_time;
	state->last_time = sample.jiffies;

	delta2 = delta - state->last_delta;
	state->last_delta = delta;

	delta3 = delta2 - state->last_delta2;
	state->last_delta2 = delta2;

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1245

1246 1247 1248 1249 1250 1251
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
	 * and limit entropy entimate to 12 bits.
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1252 1253
}

1254
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1266
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1267
}
1268
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1269

1270 1271
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1293 1294 1295
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1296
	unsigned int idx;
1297 1298 1299

	if (regs == NULL)
		return 0;
1300 1301 1302 1303 1304
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1305
	return *ptr;
1306 1307
}

1308
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1309
{
1310
	struct entropy_store	*r;
1311
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1312 1313
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1314
	cycles_t		cycles = random_get_entropy();
1315
	__u32			c_high, j_high;
1316
	__u64			ip;
1317
	unsigned long		seed;
1318
	int			credit = 0;
1319

1320 1321
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1322 1323
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1324 1325
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1326
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1327
	fast_pool->pool[2] ^= ip;
1328 1329
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1330

1331 1332
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1333

T
Theodore Ts'o 已提交
1334
	if (unlikely(crng_init == 0)) {
1335 1336 1337 1338 1339 1340 1341 1342 1343
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1344 1345
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1346 1347
		return;

1348
	r = &input_pool;
1349
	if (!spin_trylock(&r->lock))
1350
		return;
1351

1352
	fast_pool->last = now;
1353
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1354 1355 1356

	/*
	 * If we have architectural seed generator, produce a seed and
1357 1358 1359
	 * add it to the pool.  For the sake of paranoia don't let the
	 * architectural seed generator dominate the input from the
	 * interrupt noise.
1360 1361
	 */
	if (arch_get_random_seed_long(&seed)) {
1362
		__mix_pool_bytes(r, &seed, sizeof(seed));
1363
		credit = 1;
1364
	}
1365
	spin_unlock(&r->lock);
1366

1367
	fast_pool->count = 0;
1368

1369 1370
	/* award one bit for the contents of the fast pool */
	credit_entropy_bits(r, credit + 1);
L
Linus Torvalds 已提交
1371
}
1372
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1373

1374
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1380
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1381
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1382
}
1383
EXPORT_SYMBOL_GPL(add_disk_randomness);
1384
#endif
L
Linus Torvalds 已提交
1385 1386 1387 1388 1389 1390 1391 1392

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
L
Lucas De Marchi 已提交
1393
 * This utility inline function is responsible for transferring entropy
L
Linus Torvalds 已提交
1394 1395 1396
 * from the primary pool to the secondary extraction pool. We make
 * sure we pull enough for a 'catastrophic reseed'.
 */
1397
static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
L
Linus Torvalds 已提交
1398 1399
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
1400 1401 1402 1403 1404 1405
	if (!r->pull ||
	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
	    r->entropy_count > r->poolinfo->poolfracbits)
		return;

	_xfer_secondary_pool(r, nbytes);
1406 1407 1408 1409 1410 1411 1412 1413
}

static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
	__u32	tmp[OUTPUT_POOL_WORDS];

	int bytes = nbytes;

1414 1415
	/* pull at least as much as a wakeup */
	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1416 1417 1418
	/* but never more than the buffer size */
	bytes = min_t(int, bytes, sizeof(tmp));

1419 1420
	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1421
	bytes = extract_entropy(r->pull, tmp, bytes,
S
Stephan Müller 已提交
1422
				random_read_wakeup_bits / 8, 0);
1423
	mix_pool_bytes(r, tmp, bytes);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	credit_entropy_bits(r, bytes*8);
}

/*
 * Used as a workqueue function so that when the input pool is getting
 * full, we can "spill over" some entropy to the output pools.  That
 * way the output pools can store some of the excess entropy instead
 * of letting it go to waste.
 */
static void push_to_pool(struct work_struct *work)
{
	struct entropy_store *r = container_of(work, struct entropy_store,
					      push_work);
	BUG_ON(!r);
1438
	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1439 1440
	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
			   r->pull->entropy_count >> ENTROPY_SHIFT);
L
Linus Torvalds 已提交
1441 1442 1443
}

/*
G
Greg Price 已提交
1444 1445
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1446 1447 1448 1449
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1450
	int entropy_count, orig, have_bytes;
1451
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1452

1453
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1454 1455

	/* Can we pull enough? */
1456
retry:
1457
	entropy_count = orig = READ_ONCE(r->entropy_count);
1458
	ibytes = nbytes;
S
Stephan Müller 已提交
1459 1460
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1461

S
Stephan Müller 已提交
1462 1463 1464
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1465
	if (ibytes < min)
1466
		ibytes = 0;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	if (unlikely(entropy_count < 0)) {
		pr_warn("random: negative entropy count: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1478
		entropy_count = 0;
1479

G
Greg Price 已提交
1480 1481
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1482

1483
	trace_debit_entropy(r->name, 8 * ibytes);
G
Greg Price 已提交
1484
	if (ibytes &&
1485
	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1486
		wake_up_interruptible(&random_write_wait);
1487 1488 1489
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1490
	return ibytes;
L
Linus Torvalds 已提交
1491 1492
}

G
Greg Price 已提交
1493 1494 1495 1496 1497 1498
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1499 1500
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1501
	int i;
1502 1503
	union {
		__u32 w[5];
1504
		unsigned long l[LONGS(20)];
1505 1506
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1507
	unsigned long flags;
L
Linus Torvalds 已提交
1508

1509
	/*
1510
	 * If we have an architectural hardware random number
1511
	 * generator, use it for SHA's initial vector
1512
	 */
1513
	sha_init(hash.w);
1514 1515 1516 1517
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1518
		hash.l[i] = v;
1519 1520
	}

1521 1522 1523 1524 1525
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
1526
	/*
1527 1528 1529 1530 1531 1532 1533
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1534
	 */
1535
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1536
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1537

1538
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1539 1540

	/*
1541 1542 1543
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1544
	 */
1545 1546 1547 1548 1549
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1550
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1592
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1593
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1594 1595
{
	__u8 tmp[EXTRACT_SIZE];
1596
	unsigned long flags;
L
Linus Torvalds 已提交
1597

1598
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1599 1600 1601
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1602
			r->last_data_init = 1;
1603 1604
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1605
					      ENTROPY_BITS(r), _RET_IP_);
1606 1607 1608 1609 1610 1611 1612
			xfer_secondary_pool(r, EXTRACT_SIZE);
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1613

1614
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1615 1616 1617
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, min, reserved);

1618
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1619 1620
}

G
Greg Price 已提交
1621 1622 1623 1624
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a userspace buffer.
 */
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629
static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
				    size_t nbytes)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
1630
	int large_request = (nbytes > 256);
L
Linus Torvalds 已提交
1631

1632
	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1633 1634 1635 1636 1637
	if (!r->initialized && r->pull) {
		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
		if (!r->initialized)
			return 0;
	}
L
Linus Torvalds 已提交
1638 1639 1640 1641
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, 0, 0);

	while (nbytes) {
1642
		if (large_request && need_resched()) {
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_buf(r, tmp);
		i = min_t(int, nbytes, EXTRACT_SIZE);
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
1664
	memzero_explicit(tmp, sizeof(tmp));
L
Linus Torvalds 已提交
1665 1666 1667 1668

	return ret;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1689 1690 1691
	if (__ratelimit(&unseeded_warning))
		pr_notice("random: %s called from %pS with crng_init=%d\n",
			  func_name, caller, crng_init);
1692 1693
}

L
Linus Torvalds 已提交
1694 1695
/*
 * This function is the exported kernel interface.  It returns some
1696
 * number of good random numbers, suitable for key generation, seeding
1697 1698
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1699 1700 1701 1702
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1703
 */
1704
static void _get_random_bytes(void *buf, int nbytes)
1705
{
1706
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1707

1708
	trace_get_random_bytes(nbytes, _RET_IP_);
1709

1710
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1711
		extract_crng(buf);
1712 1713
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1714 1715 1716 1717 1718
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1719 1720
		crng_backtrack_protect(tmp, nbytes);
	} else
1721
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1722
	memzero_explicit(tmp, sizeof(tmp));
1723
}
1724 1725 1726 1727 1728 1729 1730 1731

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1732 1733
EXPORT_SYMBOL(get_random_bytes);

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1809 1810 1811
}
EXPORT_SYMBOL(wait_for_random_bytes);

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1841
	if (crng_ready())
1842 1843 1844 1845 1846 1847 1848
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1849
	if (crng_ready())
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1885 1886 1887 1888 1889 1890 1891 1892 1893
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1894 1895
 *
 * Return number of bytes filled in.
1896
 */
1897
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1898
{
1899
	int left = nbytes;
1900 1901
	char *p = buf;

1902 1903
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1904
		unsigned long v;
1905
		int chunk = min_t(int, left, sizeof(unsigned long));
1906

1907 1908
		if (!arch_get_random_long(&v))
			break;
1909

L
Luck, Tony 已提交
1910
		memcpy(p, &v, chunk);
1911
		p += chunk;
1912
		left -= chunk;
1913 1914
	}

1915
	return nbytes - left;
L
Linus Torvalds 已提交
1916
}
1917 1918
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1928
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1929
{
1930
	int i;
1931 1932
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1933

1934
	r->last_pulled = jiffies;
1935
	mix_pool_bytes(r, &now, sizeof(now));
1936
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1937 1938
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1939
			rv = random_get_entropy();
1940
		mix_pool_bytes(r, &rv, sizeof(rv));
1941
	}
1942
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1955
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1956 1957 1958
{
	init_std_data(&input_pool);
	init_std_data(&blocking_pool);
1959
	crng_initialize(&primary_crng);
1960
	crng_global_init_time = jiffies;
1961 1962 1963 1964
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1965 1966 1967
	return 0;
}

1968
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1974
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1975 1976
	 * source.
	 */
1977
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1978 1979
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1980
		disk->random = state;
1981
	}
L
Linus Torvalds 已提交
1982
}
1983
#endif
L
Linus Torvalds 已提交
1984 1985

static ssize_t
1986
_random_read(int nonblock, char __user *buf, size_t nbytes)
L
Linus Torvalds 已提交
1987
{
1988
	ssize_t n;
L
Linus Torvalds 已提交
1989 1990 1991 1992

	if (nbytes == 0)
		return 0;

1993 1994 1995 1996 1997
	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
	while (1) {
		n = extract_entropy_user(&blocking_pool, buf, nbytes);
		if (n < 0)
			return n;
1998 1999 2000
		trace_random_read(n*8, (nbytes-n)*8,
				  ENTROPY_BITS(&blocking_pool),
				  ENTROPY_BITS(&input_pool));
2001 2002
		if (n > 0)
			return n;
2003

2004
		/* Pool is (near) empty.  Maybe wait and retry. */
2005
		if (nonblock)
2006 2007
			return -EAGAIN;

2008
		wait_event_interruptible(random_read_wait,
2009 2010
		    blocking_pool.initialized &&
		    (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits));
2011 2012
		if (signal_pending(current))
			return -ERESTARTSYS;
L
Linus Torvalds 已提交
2013 2014 2015
	}
}

2016 2017 2018 2019 2020 2021
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
}

L
Linus Torvalds 已提交
2022
static ssize_t
2023
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
2024
{
2025
	unsigned long flags;
2026
	static int maxwarn = 10;
2027 2028
	int ret;

2029
	if (!crng_ready() && maxwarn > 0) {
2030
		maxwarn--;
2031 2032 2033 2034
		if (__ratelimit(&urandom_warning))
			printk(KERN_NOTICE "random: %s: uninitialized "
			       "urandom read (%zd bytes read)\n",
			       current->comm, nbytes);
2035 2036 2037
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
2038
	}
2039
	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
2040 2041
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
2042
	return ret;
L
Linus Torvalds 已提交
2043 2044
}

2045
static __poll_t
2046
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
2047
{
2048
	__poll_t mask;
L
Linus Torvalds 已提交
2049

2050 2051 2052
	poll_wait(file, &random_read_wait, wait);
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
2053
	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
2054
		mask |= EPOLLIN | EPOLLRDNORM;
2055
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
2056
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
2057 2058 2059
	return mask;
}

2060 2061
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
2062 2063
{
	size_t bytes;
2064
	__u32 t, buf[16];
L
Linus Torvalds 已提交
2065 2066
	const char __user *p = buffer;

2067
	while (count > 0) {
2068 2069
		int b, i = 0;

2070 2071 2072
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
2073

2074 2075 2076 2077 2078 2079
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

2080
		count -= bytes;
L
Linus Torvalds 已提交
2081 2082
		p += bytes;

2083
		mix_pool_bytes(r, buf, bytes);
2084
		cond_resched();
L
Linus Torvalds 已提交
2085
	}
2086 2087 2088 2089

	return 0;
}

2090 2091
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
2092 2093 2094
{
	size_t ret;

2095
	ret = write_pool(&input_pool, buffer, count);
2096 2097 2098 2099
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
2100 2101
}

M
Matt Mackall 已提交
2102
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108 2109
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
2110
		/* inherently racy, no point locking */
2111 2112
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
2120
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
2130 2131
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
2132 2133
		if (retval < 0)
			return retval;
2134
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
2135 2136
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
2137 2138 2139 2140
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
2141 2142
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
2143 2144
		input_pool.entropy_count = 0;
		blocking_pool.entropy_count = 0;
L
Linus Torvalds 已提交
2145
		return 0;
2146 2147 2148 2149 2150 2151 2152 2153
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
		crng_reseed(&primary_crng, NULL);
		crng_global_init_time = jiffies - 1;
		return 0;
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158
	default:
		return -EINVAL;
	}
}

2159 2160 2161 2162 2163
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

2164
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
2165 2166
	.read  = random_read,
	.write = random_write,
2167
	.poll  = random_poll,
M
Matt Mackall 已提交
2168
	.unlocked_ioctl = random_ioctl,
2169
	.compat_ioctl = compat_ptr_ioctl,
2170
	.fasync = random_fasync,
2171
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2172 2173
};

2174
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
2175 2176
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
2177
	.unlocked_ioctl = random_ioctl,
2178
	.fasync = random_fasync,
2179
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
2180 2181
};

2182 2183 2184
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2185 2186
	int ret;

2187 2188 2189 2190 2191 2192 2193 2194 2195
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

	if (flags & GRND_RANDOM)
		return _random_read(flags & GRND_NONBLOCK, buf, count);

2196
	if (!crng_ready()) {
2197 2198
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2199 2200 2201
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2202 2203 2204 2205
	}
	return urandom_read(NULL, buf, count, NULL);
}

L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

static int min_read_thresh = 8, min_write_thresh;
2217
static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
L
Linus Torvalds 已提交
2218
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2219
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2220 2221 2222
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2223
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2224 2225 2226
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2227 2228 2229
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2230
 */
2231
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
2232 2233
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
2234
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2241 2242 2243 2244 2245 2246 2247 2248
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2249

J
Joe Perches 已提交
2250 2251
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2252 2253 2254
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2255
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2256 2257
}

2258 2259 2260
/*
 * Return entropy available scaled to integral bits
 */
2261
static int proc_do_entropy(struct ctl_table *table, int write,
2262 2263
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
2264
	struct ctl_table fake_table;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2275
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2276 2277
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2283
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2289
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2290 2291 2292 2293
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "read_wakeup_threshold",
2294
		.data		= &random_read_wakeup_bits,
L
Linus Torvalds 已提交
2295 2296
		.maxlen		= sizeof(int),
		.mode		= 0644,
2297
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302
		.extra1		= &min_read_thresh,
		.extra2		= &max_read_thresh,
	},
	{
		.procname	= "write_wakeup_threshold",
2303
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2304 2305
		.maxlen		= sizeof(int),
		.mode		= 0644,
2306
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2307 2308 2309
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2310 2311 2312 2313 2314 2315 2316
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2322
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2328
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2329
	},
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2346
	{ }
L
Linus Torvalds 已提交
2347 2348 2349
};
#endif 	/* CONFIG_SYSCTL */

2350 2351
struct batched_entropy {
	union {
2352 2353
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2354 2355
	};
	unsigned int position;
2356
	spinlock_t batch_lock;
2357
};
2358

L
Linus Torvalds 已提交
2359
/*
2360 2361
 * Get a random word for internal kernel use only. The quality of the random
 * number is either as good as RDRAND or as good as /dev/urandom, with the
2362 2363 2364 2365
 * goal of being quite fast and not depleting entropy. In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
2366
 */
2367 2368 2369 2370
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2371
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2372
{
2373
	u64 ret;
2374
	unsigned long flags;
2375
	struct batched_entropy *batch;
2376
	static void *previous;
2377

2378 2379
#if BITS_PER_LONG == 64
	if (arch_get_random_long((unsigned long *)&ret))
2380
		return ret;
2381 2382 2383 2384 2385
#else
	if (arch_get_random_long((unsigned long *)&ret) &&
	    arch_get_random_long((unsigned long *)&ret + 1))
	    return ret;
#endif
2386

2387
	warn_unseeded_randomness(&previous);
2388

2389 2390
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2391
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2392
		extract_crng((u8 *)batch->entropy_u64);
2393 2394
		batch->position = 0;
	}
2395
	ret = batch->entropy_u64[batch->position++];
2396
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2397
	return ret;
L
Linus Torvalds 已提交
2398
}
2399
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2400

2401 2402 2403
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2404
u32 get_random_u32(void)
2405
{
2406
	u32 ret;
2407
	unsigned long flags;
2408
	struct batched_entropy *batch;
2409
	static void *previous;
2410

2411
	if (arch_get_random_int(&ret))
2412 2413
		return ret;

2414
	warn_unseeded_randomness(&previous);
2415

2416 2417
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2418
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2419
		extract_crng((u8 *)batch->entropy_u32);
2420 2421
		batch->position = 0;
	}
2422
	ret = batch->entropy_u32[batch->position++];
2423
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2424 2425
	return ret;
}
2426
EXPORT_SYMBOL(get_random_u32);
2427

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2449 2450 2451
	}
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2485 2486 2487 2488 2489 2490 2491 2492 2493
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2494
	if (unlikely(crng_init == 0)) {
2495 2496
		crng_fast_load(buffer, count);
		return;
2497
	}
2498 2499 2500 2501 2502

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2503
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2504
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2505 2506 2507 2508
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2522
EXPORT_SYMBOL_GPL(add_bootloader_randomness);