numa.c 38.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 */
7 8
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
9
#include <linux/threads.h>
M
Mike Rapoport 已提交
10
#include <linux/memblock.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16 17
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
18
#include <linux/of.h>
19
#include <linux/pfn.h>
20 21
#include <linux/cpuset.h>
#include <linux/node.h>
22
#include <linux/stop_machine.h>
23 24 25
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
26
#include <linux/slab.h>
27
#include <asm/cputhreads.h>
28
#include <asm/sparsemem.h>
29
#include <asm/prom.h>
P
Paul Mackerras 已提交
30
#include <asm/smp.h>
31
#include <asm/topology.h>
32 33
#include <asm/firmware.h>
#include <asm/paca.h>
34
#include <asm/hvcall.h>
35
#include <asm/setup.h>
36
#include <asm/vdso.h>
37
#include <asm/drmem.h>
L
Linus Torvalds 已提交
38 39 40

static int numa_enabled = 1;

41 42
static char *cmdline __initdata;

L
Linus Torvalds 已提交
43 44 45
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

46
int numa_cpu_lookup_table[NR_CPUS];
47
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
48
struct pglist_data *node_data[MAX_NUMNODES];
49 50

EXPORT_SYMBOL(numa_cpu_lookup_table);
51
EXPORT_SYMBOL(node_to_cpumask_map);
52 53
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
54
static int min_common_depth;
55
static int n_mem_addr_cells, n_mem_size_cells;
56 57 58 59
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
60
static const __be32 *distance_ref_points;
61
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
62

63 64 65 66
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
67
 * Note: cpumask_of_node() is not valid until after this is done.
68 69 70
 */
static void __init setup_node_to_cpumask_map(void)
{
71
	unsigned int node;
72 73

	/* setup nr_node_ids if not done yet */
74 75
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
76 77

	/* allocate the map */
78
	for_each_node(node)
79 80 81
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
82
	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 84
}

85
static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

132 133 134 135 136 137 138 139 140 141 142
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
143

144 145
	dbg("adding cpu %d to node %d\n", cpu, node);

146 147
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
148 149
}

150
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
151 152 153 154 155 156
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

157
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
159 160 161 162 163
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
164
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	int dist = 0;

	int i, index;

	for (i = 0; i < distance_ref_points_depth; i++) {
		index = be32_to_cpu(distance_ref_points[i]);
		if (cpu1_assoc[index] == cpu2_assoc[index])
			break;
		dist++;
	}

	return dist;
}

L
Linus Torvalds 已提交
182
/* must hold reference to node during call */
183
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
184
{
185
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
186 187
}

188 189 190 191 192 193
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
194
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195 196 197 198 199 200 201 202 203 204 205

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
206
EXPORT_SYMBOL(__node_distance);
207 208

static void initialize_distance_lookup_table(int nid,
209
		const __be32 *associativity)
210 211 212 213 214 215 216
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
217 218
		const __be32 *entry;

219
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 222 223
	}
}

224 225 226
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
227
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
228
{
229
	int nid = NUMA_NO_NODE;
L
Linus Torvalds 已提交
230

231
	if (!numa_enabled)
232
		goto out;
L
Linus Torvalds 已提交
233

234 235
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
236 237

	/* POWER4 LPAR uses 0xffff as invalid node */
238
	if (nid == 0xffff || nid >= MAX_NUMNODES)
239
		nid = NUMA_NO_NODE;
240

241
	if (nid > 0 &&
242 243 244 245 246 247
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
248

249
out:
250
	return nid;
L
Linus Torvalds 已提交
251 252
}

253 254 255 256 257
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
258
	int nid = NUMA_NO_NODE;
259
	const __be32 *tmp;
260 261 262 263 264 265 266

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

267 268 269
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
270
	int nid = NUMA_NO_NODE;
271 272 273 274 275 276 277

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

278
		device = of_get_next_parent(device);
279 280 281 282 283
	}
	of_node_put(device);

	return nid;
}
284
EXPORT_SYMBOL(of_node_to_nid);
285

L
Linus Torvalds 已提交
286 287
static int __init find_min_common_depth(void)
{
288
	int depth;
289
	struct device_node *root;
L
Linus Torvalds 已提交
290

291 292 293 294
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
295 296
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
297 298

	/*
299 300 301 302 303 304 305 306 307 308
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
309
	 */
310
	distance_ref_points = of_get_property(root,
311 312 313 314 315 316 317 318 319
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
320

321 322 323
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
324
		form1_affinity = 1;
325 326
	}

327
	if (form1_affinity) {
328
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
329
	} else {
330 331 332 333 334 335
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

336
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
337 338
	}

339 340 341 342 343 344 345 346 347 348
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

349
	of_node_put(root);
L
Linus Torvalds 已提交
350
	return depth;
351 352

err:
353
	of_node_put(root);
354
	return -1;
L
Linus Torvalds 已提交
355 356
}

357
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
358 359 360 361
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
362
	if (!memory)
363
		panic("numa.c: No memory nodes found!");
364

365
	*n_addr_cells = of_n_addr_cells(memory);
366
	*n_size_cells = of_n_size_cells(memory);
367
	of_node_put(memory);
L
Linus Torvalds 已提交
368 369
}

370
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
371 372 373 374
{
	unsigned long result = 0;

	while (n--) {
375
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
376 377 378 379 380
		(*buf)++;
	}
	return result;
}

381 382 383
struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
384
	const __be32 *arrays;
385 386 387
};

/*
L
Lucas De Marchi 已提交
388
 * Retrieve and validate the list of associativity arrays for drconf
389 390 391 392 393 394 395 396
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
397
static int of_get_assoc_arrays(struct assoc_arrays *aa)
398
{
399
	struct device_node *memory;
400
	const __be32 *prop;
401 402
	u32 len;

403 404 405 406
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

407
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
408 409
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
410
		return -1;
411
	}
412

413 414
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
415

416 417
	of_node_put(memory);

418
	/* Now that we know the number of arrays and size of each array,
419 420 421 422 423 424 425 426 427 428 429 430 431
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
432
static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
433
{
434
	struct assoc_arrays aa = { .arrays = NULL };
435
	int default_nid = NUMA_NO_NODE;
436
	int nid = default_nid;
437 438
	int rc, index;

439
	if ((min_common_depth < 0) || !numa_enabled)
440 441
		return default_nid;

442 443 444
	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;
445

446 447
	if (min_common_depth <= aa.array_sz &&
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
448
		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
449
		nid = of_read_number(&aa.arrays[index], 1);
450 451 452

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
453 454

		if (nid > 0) {
455
			index = lmb->aa_index * aa.array_sz;
456
			initialize_distance_lookup_table(nid,
457
							&aa.arrays[index]);
458
		}
459 460 461 462 463
	}

	return nid;
}

L
Linus Torvalds 已提交
464 465 466 467
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
468
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
469
{
470
	int nid = NUMA_NO_NODE;
471 472 473 474 475 476 477 478 479 480 481 482 483
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
484 485 486

	if (!cpu) {
		WARN_ON(1);
487 488 489 490
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
491 492
	}

493
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
494

495
out_present:
496
	if (nid < 0 || !node_possible(nid))
497
		nid = first_online_node;
L
Linus Torvalds 已提交
498

499
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
500
	of_node_put(cpu);
501
out:
502
	return nid;
L
Linus Torvalds 已提交
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

526 527 528 529 530 531 532 533 534 535 536 537
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
538
#ifdef CONFIG_HOTPLUG_CPU
539
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
540
#endif
541
	return 0;
L
Linus Torvalds 已提交
542 543 544 545 546 547 548 549
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
550
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
551
 */
552 553
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
554 555
{
	/*
Y
Yinghai Lu 已提交
556
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
557
	 * we've already adjusted it for the limit and it takes care of
558 559
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
560 561
	 */

Y
Yinghai Lu 已提交
562
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
563 564
		return size;

Y
Yinghai Lu 已提交
565
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
566 567
		return 0;

Y
Yinghai Lu 已提交
568
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
569 570
}

571 572 573 574
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
575
static inline int __init read_usm_ranges(const __be32 **usm)
576 577
{
	/*
578
	 * For each lmb in ibm,dynamic-memory a corresponding
579 580 581 582 583 584 585
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

586 587 588 589
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
590 591
static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm)
592
{
593 594
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
595 596
	int nid;

597 598 599 600 601 602
	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
603 604
		return;

605
	if (*usm)
606 607
		is_kexec_kdump = 1;

608 609 610
	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;
611

612 613 614 615 616
	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return;
	}
617

618
	do {
619
		if (is_kexec_kdump) {
620 621
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
622
		}
623 624 625 626 627 628 629 630 631

		nid = of_drconf_to_nid_single(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);
632 633
}

L
Linus Torvalds 已提交
634 635
static int __init parse_numa_properties(void)
{
636
	struct device_node *memory;
637
	int default_nid = 0;
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645 646
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

647 648 649 650 651 652
	if (min_common_depth < 0) {
		/*
		 * if we fail to parse min_common_depth from device tree
		 * mark the numa disabled, boot with numa disabled.
		 */
		numa_enabled = false;
L
Linus Torvalds 已提交
653
		return min_common_depth;
654
	}
L
Linus Torvalds 已提交
655

656 657
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
658
	/*
659 660 661
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
662
	 */
663
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
664
		struct device_node *cpu;
665
		int nid;
L
Linus Torvalds 已提交
666

667
		cpu = of_get_cpu_node(i, NULL);
668
		BUG_ON(!cpu);
669
		nid = of_node_to_nid_single(cpu);
670
		of_node_put(cpu);
L
Linus Torvalds 已提交
671

672 673 674 675 676 677 678 679
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
680 681
	}

682
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
683 684

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
685 686
		unsigned long start;
		unsigned long size;
687
		int nid;
L
Linus Torvalds 已提交
688
		int ranges;
689
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
690 691
		unsigned int len;

692
		memcell_buf = of_get_property(memory,
693 694
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
695
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
696 697 698
		if (!memcell_buf || len <= 0)
			continue;

699 700
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
701 702
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
703 704
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
705

706 707 708 709 710
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
711
		nid = of_node_to_nid_single(memory);
712 713
		if (nid < 0)
			nid = default_nid;
714 715

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
716
		node_set_online(nid);
L
Linus Torvalds 已提交
717

718 719 720
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
721 722 723 724 725

		if (--ranges)
			goto new_range;
	}

726
	/*
A
Anton Blanchard 已提交
727 728 729
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
730 731
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
732 733 734 735
	if (memory) {
		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
		of_node_put(memory);
	}
736

L
Linus Torvalds 已提交
737 738 739 740 741
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
742 743
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
744
	unsigned long start_pfn, end_pfn;
745 746
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
747

748
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
749
	       top_of_ram, total_ram);
750
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
751 752
	       (top_of_ram - total_ram) >> 20);

753
	for_each_memblock(memory, reg) {
754 755
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
756 757

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
758
		memblock_set_node(PFN_PHYS(start_pfn),
759 760
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
761
		node_set_online(nid);
762
	}
L
Linus Torvalds 已提交
763 764
}

765 766 767 768 769
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

770
	if (!numa_enabled)
771 772 773
		return;

	for_each_online_node(node) {
774
		pr_info("Node %d CPUs:", node);
775 776 777 778 779 780

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
781 782 783
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
784
				if (count == 0)
785
					pr_cont(" %u", cpu);
786 787 788
				++count;
			} else {
				if (count > 1)
789
					pr_cont("-%u", cpu - 1);
790 791 792 793 794
				count = 0;
			}
		}

		if (count > 1)
795 796
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
797 798 799
	}
}

800 801
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
802
{
803 804 805 806 807
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
808

809
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
810 811 812 813
	if (!nd_pa)
		panic("Cannot allocate %zu bytes for node %d data\n",
		      nd_size, nid);

814
	nd = __va(nd_pa);
815

816 817 818 819 820 821
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
822

823 824 825 826 827 828
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
829

830 831 832 833 834
static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	u32 numnodes, i;

835
	if (!numa_enabled)
836 837 838 839 840 841 842 843 844 845 846 847
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	if (of_property_read_u32_index(rtas,
				"ibm,max-associativity-domains",
				min_common_depth, &numnodes))
		goto out;

	for (i = 0; i < numnodes; i++) {
848
		if (!node_possible(i))
849 850 851 852 853 854 855
			node_set(i, node_possible_map);
	}

out:
	of_node_put(rtas);
}

856
void __init mem_topology_setup(void)
L
Linus Torvalds 已提交
857
{
858
	int cpu;
L
Linus Torvalds 已提交
859 860 861 862

	if (parse_numa_properties())
		setup_nonnuma();

863
	/*
864 865 866 867
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
868 869 870
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

871 872
	find_possible_nodes();

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	setup_node_to_cpumask_map();

	reset_numa_cpu_lookup_table();

	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
}

void __init initmem_init(void)
{
	int nid;

	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	memblock_dump_all();

L
Linus Torvalds 已提交
890
	for_each_online_node(nid) {
891
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
892

893
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
894
		setup_node_data(nid, start_pfn, end_pfn);
895
		sparse_memory_present_with_active_regions(nid);
896
	}
897

898
	sparse_init();
899

900 901 902 903
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
904 905
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
906
	 */
T
Thomas Gleixner 已提交
907
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
908
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
L
Linus Torvalds 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

922 923 924 925
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
926 927 928
	return 0;
}
early_param("numa", early_numa);
929

930 931 932 933 934 935 936
/*
 * The platform can inform us through one of several mechanisms
 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
 * assignment of a resource has changed. This controls whether we act
 * on that. Disabled by default.
 */
static bool topology_updates_enabled;
937 938 939 940 941 942

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

943 944 945
	if (!strcmp(p, "on")) {
		pr_warn("Caution: enabling topology updates\n");
		topology_updates_enabled = true;
946 947 948 949 950 951
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

952
#ifdef CONFIG_MEMORY_HOTPLUG
953
/*
954 955 956
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
957
 */
958
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
959
{
960
	struct drmem_lmb *lmb;
961
	unsigned long lmb_size;
962
	int nid = NUMA_NO_NODE;
963

964
	lmb_size = drmem_lmb_size();
965

966
	for_each_drmem_lmb(lmb) {
967 968
		/* skip this block if it is reserved or not assigned to
		 * this partition */
969 970
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
971 972
			continue;

973 974
		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
975 976
			continue;

977
		nid = of_drconf_to_nid_single(lmb);
978 979 980 981 982 983 984 985 986
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
987
 * each memblock.
988
 */
989
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
990
{
991
	struct device_node *memory;
992
	int nid = NUMA_NO_NODE;
993

994
	for_each_node_by_type(memory, "memory") {
995 996
		unsigned long start, size;
		int ranges;
997
		const __be32 *memcell_buf;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1017

1018 1019
		if (nid >= 0)
			break;
1020 1021
	}

1022 1023
	of_node_put(memory);

1024
	return nid;
1025 1026
}

1027 1028
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1029 1030
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1031 1032 1033 1034
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1035
	int nid;
1036

1037
	if (!numa_enabled)
1038
		return first_online_node;
1039 1040 1041

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
1042
		nid = hot_add_drconf_scn_to_nid(scn_addr);
1043
		of_node_put(memory);
1044 1045
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1046
	}
1047

1048
	if (nid < 0 || !node_possible(nid))
1049
		nid = first_online_node;
1050

1051
	return nid;
1052
}
1053

1054 1055
static u64 hot_add_drconf_memory_max(void)
{
1056
	struct device_node *memory = NULL;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1067

1068 1069 1070
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
1071
		return drmem_lmb_memory_max();
1072
	}
1073
	return 0;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1086
#endif /* CONFIG_MEMORY_HOTPLUG */
1087

1088
/* Virtual Processor Home Node (VPHN) support */
1089
#ifdef CONFIG_PPC_SPLPAR
1090 1091 1092 1093 1094 1095 1096
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1097 1098
#define TOPOLOGY_DEF_TIMER_SECS	60

1099
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100 1101
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1102 1103
static int prrn_enabled;
static void reset_topology_timer(void);
1104
static int topology_timer_secs = 1;
1105
static int topology_inited;
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1123 1124 1125 1126 1127 1128 1129

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1130
	int cpu;
1131

1132 1133 1134
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1135
	for_each_possible_cpu(cpu) {
1136
		int i;
1137
		u8 *counts = vphn_cpu_change_counts[cpu];
1138
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139

1140
		for (i = 0; i < distance_ref_points_depth; i++)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1158
	int cpu;
1159 1160 1161 1162 1163
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
1164
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165

1166
		for (i = 0; i < distance_ref_points_depth; i++) {
1167
			if (hypervisor_counts[i] != counts[i]) {
1168 1169 1170 1171 1172
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1173 1174
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1175 1176 1177
		}
	}

1178
	return cpumask_weight(changes);
1179 1180 1181 1182 1183 1184 1185
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long vphn_get_associativity(unsigned long cpu,
1186
					__be32 *associativity)
1187
{
1188
	long rc;
1189

1190 1191
	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
				VPHN_FLAG_VCPU, associativity);
1192 1193

	switch (rc) {
1194 1195 1196 1197 1198
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
		timed_topology_update(0);
		goto out;

1199
	case H_FUNCTION:
1200
		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1201 1202
		break;
	case H_HARDWARE:
1203
		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1204
			"preventing VPHN. Disabling polling...\n");
1205
		break;
1206 1207 1208 1209 1210 1211 1212
	case H_PARAMETER:
		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
			"Disabling polling...\n");
		break;
	default:
		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
			, rc);
1213
		break;
1214 1215
	}

1216 1217
	stop_topology_update();
out:
1218 1219 1220
	return rc;
}

1221
int find_and_online_cpu_nid(int cpu)
1222 1223 1224 1225 1226
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int new_nid;

	/* Use associativity from first thread for all siblings */
1227 1228 1229
	if (vphn_get_associativity(cpu, associativity))
		return cpu_to_node(cpu);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	new_nid = associativity_to_nid(associativity);
	if (new_nid < 0 || !node_possible(new_nid))
		new_nid = first_online_node;

	if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
		/*
		 * Need to ensure that NODE_DATA is initialized for a node from
		 * available memory (see memblock_alloc_try_nid). If unable to
		 * init the node, then default to nearest node that has memory
1240 1241
		 * installed. Skip onlining a node if the subsystems are not
		 * yet initialized.
1242
		 */
1243
		if (!topology_inited || try_online_node(new_nid))
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			new_nid = first_online_node;
#else
		/*
		 * Default to using the nearest node that has memory installed.
		 * Otherwise, it would be necessary to patch the kernel MM code
		 * to deal with more memoryless-node error conditions.
		 */
		new_nid = first_online_node;
#endif
	}

1255 1256
	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
		cpu, new_nid);
1257 1258 1259
	return new_nid;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1273
	cpu = smp_processor_id();
1274 1275

	for (update = data; update; update = update->next) {
1276
		int new_nid = update->new_nid;
1277 1278 1279
		if (cpu != update->cpu)
			continue;

1280
		unmap_cpu_from_node(cpu);
1281 1282 1283
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1284
		vdso_getcpu_init();
1285 1286 1287 1288 1289
	}

	return 0;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1317 1318
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1319
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1320 1321
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1322
 */
1323
int numa_update_cpu_topology(bool cpus_locked)
1324
{
1325
	unsigned int cpu, sibling, changed = 0;
1326
	struct topology_update_data *updates, *ud;
1327
	cpumask_t updated_cpus;
1328
	struct device *dev;
1329
	int weight, new_nid, i = 0;
1330

1331
	if (!prrn_enabled && !vphn_enabled && topology_inited)
1332 1333
		return 0;

1334 1335 1336 1337
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

K
Kees Cook 已提交
1338
	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1339 1340
	if (!updates)
		return 0;
1341

1342 1343
	cpumask_clear(&updated_cpus);

1344
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1360

1361
		new_nid = find_and_online_cpu_nid(cpu);
1362 1363 1364 1365 1366

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1367 1368
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1369 1370 1371
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1372

1373 1374
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1375
			ud->next = &updates[i];
1376 1377 1378 1379 1380 1381
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1382 1383
	}

1384 1385 1386 1387 1388 1389 1390
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1391 1392 1393 1394 1395 1396 1397 1398 1399
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1414 1415 1416 1417 1418
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1419

1420 1421 1422 1423 1424
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1425 1426
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1427
					cpumask_of(raw_smp_processor_id()));
1428 1429 1430
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1431

1432
	for (ud = &updates[0]; ud; ud = ud->next) {
1433 1434 1435
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1436
		dev = get_cpu_device(ud->cpu);
1437 1438
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1439
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1440
		changed = 1;
1441 1442
	}

1443
out:
1444
	kfree(updates);
1445
	return changed;
1446 1447
}

1448 1449 1450 1451 1452
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1453 1454 1455 1456 1457 1458
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1459
static void topology_schedule_update(void)
1460 1461 1462 1463
{
	schedule_work(&topology_work);
}

1464
static void topology_timer_fn(struct timer_list *unused)
1465
{
1466
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1467
		topology_schedule_update();
1468 1469 1470 1471 1472
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1473
}
1474
static struct timer_list topology_timer;
1475

1476
static void reset_topology_timer(void)
1477
{
1478 1479
	if (vphn_enabled)
		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1480 1481
}

1482 1483
#ifdef CONFIG_SMP

1484 1485 1486
static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1487
	struct of_reconfig_data *update = data;
1488 1489 1490 1491
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1492
		if (of_node_is_type(update->dn, "cpu") &&
1493
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1494 1495
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
1496
			rc = dlpar_cpu_readd(core_id);
1497 1498 1499 1500 1501 1502
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1503 1504
}

1505 1506 1507 1508
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1509 1510
#endif

1511
/*
1512
 * Start polling for associativity changes.
1513 1514 1515 1516 1517
 */
int start_topology_update(void)
{
	int rc = 0;

1518 1519 1520
	if (!topology_updates_enabled)
		return 0;

1521 1522 1523
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1524
#ifdef CONFIG_SMP
1525
			rc = of_reconfig_notifier_register(&dt_update_nb);
1526
#endif
1527
		}
1528 1529
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1530
		   lppaca_shared_proc(get_lppaca())) {
1531 1532 1533
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1534 1535
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1536 1537
			reset_topology_timer();
		}
1538 1539
	}

1540 1541 1542 1543
	pr_info("Starting topology update%s%s\n",
		(prrn_enabled ? " prrn_enabled" : ""),
		(vphn_enabled ? " vphn_enabled" : ""));

1544 1545 1546 1547 1548 1549 1550 1551
	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1552 1553
	int rc = 0;

1554 1555 1556
	if (!topology_updates_enabled)
		return 0;

1557 1558
	if (prrn_enabled) {
		prrn_enabled = 0;
1559
#ifdef CONFIG_SMP
1560
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1561
#endif
1562 1563
	}
	if (vphn_enabled) {
1564 1565 1566 1567
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

1568 1569
	pr_info("Stopping topology update\n");

1570
	return rc;
1571
}
1572 1573 1574 1575 1576 1577

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586
void __init shared_proc_topology_init(void)
{
	if (lppaca_shared_proc(get_lppaca())) {
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
			    nr_cpumask_bits);
		numa_update_cpu_topology(false);
	}
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

1614 1615
	if (!strncmp(kbuf, "on", 2)) {
		topology_updates_enabled = true;
1616
		start_topology_update();
1617
	} else if (!strncmp(kbuf, "off", 3)) {
1618
		stop_topology_update();
1619 1620
		topology_updates_enabled = false;
	} else
1621 1622 1623 1624 1625
		return -EINVAL;

	return count;
}

1626 1627 1628 1629 1630
static const struct proc_ops topology_proc_ops = {
	.proc_read	= seq_read,
	.proc_write	= topology_write,
	.proc_open	= topology_open,
	.proc_release	= single_release,
1631 1632 1633 1634
};

static int topology_update_init(void)
{
1635
	start_topology_update();
1636

1637 1638 1639
	if (vphn_enabled)
		topology_schedule_update();

1640
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_proc_ops))
1641
		return -ENOMEM;
1642

1643
	topology_inited = 1;
1644
	return 0;
1645
}
1646
device_initcall(topology_update_init);
1647
#endif /* CONFIG_PPC_SPLPAR */