numa.c 43.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26 27 28
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
29
#include <linux/slab.h>
30
#include <asm/cputhreads.h>
31
#include <asm/sparsemem.h>
32
#include <asm/prom.h>
P
Paul Mackerras 已提交
33
#include <asm/smp.h>
34 35
#include <asm/cputhreads.h>
#include <asm/topology.h>
36 37
#include <asm/firmware.h>
#include <asm/paca.h>
38
#include <asm/hvcall.h>
39
#include <asm/setup.h>
40
#include <asm/vdso.h>
L
Linus Torvalds 已提交
41 42 43

static int numa_enabled = 1;

44 45
static char *cmdline __initdata;

L
Linus Torvalds 已提交
46 47 48
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

49
int numa_cpu_lookup_table[NR_CPUS];
50
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
51
struct pglist_data *node_data[MAX_NUMNODES];
52 53

EXPORT_SYMBOL(numa_cpu_lookup_table);
54
EXPORT_SYMBOL(node_to_cpumask_map);
55 56
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
57
static int min_common_depth;
58
static int n_mem_addr_cells, n_mem_size_cells;
59 60 61 62
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
63
static const __be32 *distance_ref_points;
64
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
65

66 67 68 69
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
70
 * Note: cpumask_of_node() is not valid until after this is done.
71 72 73
 */
static void __init setup_node_to_cpumask_map(void)
{
74
	unsigned int node;
75 76

	/* setup nr_node_ids if not done yet */
77 78
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
79 80 81 82 83 84 85 86 87

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

88
static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

135
/*
136
 * get_node_active_region - Return active region containing pfn
137
 * Active range returned is empty if none found.
138 139
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
140
 */
141 142
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
143
{
144 145 146 147 148 149 150 151 152 153 154
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
155 156
}

157 158 159 160 161 162 163 164 165
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
166 167
{
	numa_cpu_lookup_table[cpu] = node;
168 169 170 171 172
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
173

174 175
	dbg("adding cpu %d to node %d\n", cpu, node);

176 177
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
178 179
}

180
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
181 182 183 184 185 186
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

187
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
189 190 191 192 193
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
194
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
195 196

/* must hold reference to node during call */
197
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
198
{
199
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
200 201
}

202 203 204 205 206
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
207
static const __be32 *of_get_usable_memory(struct device_node *memory)
208
{
209
	const __be32 *prop;
210 211 212
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
213
		return NULL;
214 215 216
	return prop;
}

217 218 219 220 221 222
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
223
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224 225 226 227 228 229 230 231 232 233 234

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
235
EXPORT_SYMBOL(__node_distance);
236 237

static void initialize_distance_lookup_table(int nid,
238
		const __be32 *associativity)
239 240 241 242 243 244 245
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
246 247 248 249
		const __be32 *entry;

		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
250 251 252
	}
}

253 254 255
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
256
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
257
{
258
	int nid = -1;
L
Linus Torvalds 已提交
259 260

	if (min_common_depth == -1)
261
		goto out;
L
Linus Torvalds 已提交
262

263 264
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
265 266

	/* POWER4 LPAR uses 0xffff as invalid node */
267 268
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
269

270 271
	if (nid > 0 &&
	    of_read_number(associativity, 1) >= distance_ref_points_depth)
272
		initialize_distance_lookup_table(nid, associativity);
273

274
out:
275
	return nid;
L
Linus Torvalds 已提交
276 277
}

278 279 280 281 282 283
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
284
	const __be32 *tmp;
285 286 287 288 289 290 291

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
314 315
static int __init find_min_common_depth(void)
{
316
	int depth;
317
	struct device_node *root;
L
Linus Torvalds 已提交
318

319 320 321 322
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
323 324
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
325 326

	/*
327 328 329 330 331 332 333 334 335 336
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
337
	 */
338
	distance_ref_points = of_get_property(root,
339 340 341 342 343 344 345 346 347
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
348

349 350 351
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
352
		form1_affinity = 1;
353 354
	}

355
	if (form1_affinity) {
356
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
357
	} else {
358 359 360 361 362 363
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

364
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
365 366
	}

367 368 369 370 371 372 373 374 375 376
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

377
	of_node_put(root);
L
Linus Torvalds 已提交
378
	return depth;
379 380

err:
381
	of_node_put(root);
382
	return -1;
L
Linus Torvalds 已提交
383 384
}

385
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
386 387 388 389
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
390
	if (!memory)
391
		panic("numa.c: No memory nodes found!");
392

393
	*n_addr_cells = of_n_addr_cells(memory);
394
	*n_size_cells = of_n_size_cells(memory);
395
	of_node_put(memory);
L
Linus Torvalds 已提交
396 397
}

398
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
399 400 401 402
{
	unsigned long result = 0;

	while (n--) {
403
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
404 405 406 407 408
		(*buf)++;
	}
	return result;
}

409
/*
Y
Yinghai Lu 已提交
410
 * Read the next memblock list entry from the ibm,dynamic-memory property
411 412
 * and return the information in the provided of_drconf_cell structure.
 */
413
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
414
{
415
	const __be32 *cp;
416 417 418 419

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
420 421 422 423
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
424 425 426 427 428

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
429
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
430
 *
Y
Yinghai Lu 已提交
431 432
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
433
 * contains information as laid out in the of_drconf_cell struct above.
434
 */
435
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
436
{
437
	const __be32 *prop;
438 439 440 441 442 443
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

444
	entries = of_read_number(prop++, 1);
445 446 447 448 449 450 451 452 453 454 455 456

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
457
 * Retrieve and validate the ibm,lmb-size property for drconf memory
458 459
 * from the device tree.
 */
460
static u64 of_get_lmb_size(struct device_node *memory)
461
{
462
	const __be32 *prop;
463 464
	u32 len;

465
	prop = of_get_property(memory, "ibm,lmb-size", &len);
466 467 468 469 470 471 472 473 474
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
475
	const __be32 *arrays;
476 477 478
};

/*
L
Lucas De Marchi 已提交
479
 * Retrieve and validate the list of associativity arrays for drconf
480 481 482 483 484 485 486 487 488 489 490
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
491
	const __be32 *prop;
492 493 494 495 496 497
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

498 499
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
500

501
	/* Now that we know the number of arrays and size of each array,
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
526
		nid = of_read_number(&aa->arrays[index], 1);
527 528 529 530 531 532 533 534

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
535 536 537 538
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
539
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
540
{
541 542 543 544 545 546 547 548 549 550 551 552 553 554
	int nid;
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
555 556 557

	if (!cpu) {
		WARN_ON(1);
558
		nid = 0;
L
Linus Torvalds 已提交
559 560 561
		goto out;
	}

562
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
563

564
	if (nid < 0 || !node_online(nid))
565
		nid = first_online_node;
L
Linus Torvalds 已提交
566
out:
567
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
568 569 570

	of_node_put(cpu);

571
	return nid;
L
Linus Torvalds 已提交
572 573
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

595
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
596 597 598
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
599
	int ret = NOTIFY_DONE, nid;
L
Linus Torvalds 已提交
600 601 602

	switch (action) {
	case CPU_UP_PREPARE:
603
	case CPU_UP_PREPARE_FROZEN:
604 605
		nid = numa_setup_cpu(lcpu);
		verify_cpu_node_mapping((int)lcpu, nid);
L
Linus Torvalds 已提交
606 607 608 609
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
610
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
611
	case CPU_UP_CANCELED:
612
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
613 614
		unmap_cpu_from_node(lcpu);
		ret = NOTIFY_OK;
615
		break;
L
Linus Torvalds 已提交
616 617 618 619 620 621 622 623 624 625 626
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
627
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
628
 */
629 630
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
631 632
{
	/*
Y
Yinghai Lu 已提交
633
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
634
	 * we've already adjusted it for the limit and it takes care of
635 636
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
637 638
	 */

Y
Yinghai Lu 已提交
639
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
640 641
		return size;

Y
Yinghai Lu 已提交
642
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
643 644
		return 0;

Y
Yinghai Lu 已提交
645
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
646 647
}

648 649 650 651
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
652
static inline int __init read_usm_ranges(const __be32 **usm)
653 654
{
	/*
655
	 * For each lmb in ibm,dynamic-memory a corresponding
656 657 658 659 660 661 662
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

663 664 665 666 667 668
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
669
	const __be32 *uninitialized_var(dm), *usm;
670
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
671
	unsigned long lmb_size, base, size, sz;
672
	int nid;
673
	struct assoc_arrays aa = { .arrays = NULL };
674 675 676

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
677 678
		return;

679 680
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
681 682 683 684
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
685 686
		return;

687 688 689 690 691
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

692
	for (; n != 0; --n) {
693 694 695 696 697 698 699 700
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
701
			continue;
702

703
		base = drmem.base_addr;
704
		size = lmb_size;
705
		ranges = 1;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
720
					   &nid);
721 722 723
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
724 725
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
726
		} while (--ranges);
727 728 729
	}
}

L
Linus Torvalds 已提交
730 731
static int __init parse_numa_properties(void)
{
732
	struct device_node *memory;
733
	int default_nid = 0;
L
Linus Torvalds 已提交
734 735 736 737 738 739 740 741 742 743 744 745
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

746 747
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
748
	/*
749 750 751
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
752
	 */
753
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
754
		struct device_node *cpu;
755
		int nid;
L
Linus Torvalds 已提交
756

757
		cpu = of_get_cpu_node(i, NULL);
758
		BUG_ON(!cpu);
759
		nid = of_node_to_nid_single(cpu);
760
		of_node_put(cpu);
L
Linus Torvalds 已提交
761

762 763 764 765 766 767 768 769
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
770 771
	}

772
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
773 774

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
775 776
		unsigned long start;
		unsigned long size;
777
		int nid;
L
Linus Torvalds 已提交
778
		int ranges;
779
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
780 781
		unsigned int len;

782
		memcell_buf = of_get_property(memory,
783 784
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
785
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
786 787 788
		if (!memcell_buf || len <= 0)
			continue;

789 790
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
791 792
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
793 794
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
795

796 797 798 799 800
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
801
		nid = of_node_to_nid_single(memory);
802 803
		if (nid < 0)
			nid = default_nid;
804 805

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
806
		node_set_online(nid);
L
Linus Torvalds 已提交
807

808
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
809 810 811 812 813 814
			if (--ranges)
				goto new_range;
			else
				continue;
		}

815
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
816 817 818 819 820

		if (--ranges)
			goto new_range;
	}

821
	/*
A
Anton Blanchard 已提交
822 823 824
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
825 826 827 828 829
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
830 831 832 833 834
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
835 836
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
837
	unsigned long start_pfn, end_pfn;
838 839
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
840

841
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
842
	       top_of_ram, total_ram);
843
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
844 845
	       (top_of_ram - total_ram) >> 20);

846
	for_each_memblock(memory, reg) {
847 848
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
849 850

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
851
		memblock_set_node(PFN_PHYS(start_pfn),
852 853
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
854
		node_set_online(nid);
855
	}
L
Linus Torvalds 已提交
856 857
}

858 859 860 861 862 863 864 865 866
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
867
		printk(KERN_DEBUG "Node %d CPUs:", node);
868 869 870 871 872 873

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
874 875 876
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
877 878 879 880 881 882 883 884 885 886 887
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
888
			printk("-%u", nr_cpu_ids - 1);
889 890 891 892 893
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
894 895 896 897 898 899 900 901 902 903
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

904
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
905 906 907

		count = 0;

Y
Yinghai Lu 已提交
908
		for (i = 0; i < memblock_end_of_DRAM();
909 910
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
928
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
929 930 931
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
932
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
933
 */
934
static void __init *careful_zallocation(int nid, unsigned long size,
935 936
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
937
{
938
	void *ret;
939
	int new_nid;
940 941
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
942
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
943 944

	/* retry over all memory */
945
	if (!ret_paddr)
Y
Yinghai Lu 已提交
946
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
947

948
	if (!ret_paddr)
949
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
950 951
		      size, nid);

952 953
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
954
	/*
955
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
956
	 * and hand over control from the MEMBLOCK allocator to the
957 958
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
959
	 * bootmem allocator instead of the MEMBLOCK allocator.
960 961 962
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
963
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
964
	 * since it would be useless.
L
Linus Torvalds 已提交
965
	 */
966
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
967
	if (new_nid < nid) {
968
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
969 970
				size, align, 0);

971
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
972 973
	}

974
	memset(ret, 0, size);
975
	return ret;
L
Linus Torvalds 已提交
976 977
}

978
static struct notifier_block ppc64_numa_nb = {
979 980 981 982
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

983
static void __init mark_reserved_regions_for_nid(int nid)
984 985
{
	struct pglist_data *node = NODE_DATA(nid);
986
	struct memblock_region *reg;
987

988 989 990
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
991
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
992
		unsigned long end_pfn = PFN_UP(physbase + size);
993
		struct node_active_region node_ar;
994
		unsigned long node_end_pfn = pgdat_end_pfn(node);
995 996

		/*
Y
Yinghai Lu 已提交
997
		 * Check to make sure that this memblock.reserved area is
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1017
					- physbase;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1050 1051
void __init do_init_bootmem(void)
{
1052
	int nid, cpu;
L
Linus Torvalds 已提交
1053 1054

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1055
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1056 1057 1058 1059 1060
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1061
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1062 1063

	for_each_online_node(nid) {
1064
		unsigned long start_pfn, end_pfn;
1065
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1066 1067
		unsigned long bootmap_pages;

1068
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1069

1070 1071 1072 1073 1074 1075 1076
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1077
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1078
					sizeof(struct pglist_data),
1079
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1080 1081 1082 1083

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1084
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1085 1086
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1087 1088 1089 1090

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1091 1092
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1093

1094
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1095
		bootmem_vaddr = careful_zallocation(nid,
1096 1097
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1098

1099
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1100

1101 1102
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1103
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1104

1105
		free_bootmem_with_active_regions(nid, end_pfn);
1106 1107
		/*
		 * Be very careful about moving this around.  Future
1108
		 * calls to careful_zallocation() depend on this getting
1109 1110 1111
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1112
		sparse_memory_present_with_active_regions(nid);
1113
	}
1114 1115

	init_bootmem_done = 1;
1116 1117 1118 1119 1120 1121 1122

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

1123
	reset_numa_cpu_lookup_table();
1124
	register_cpu_notifier(&ppc64_numa_nb);
1125 1126 1127 1128 1129
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
	 */
1130
	for_each_present_cpu(cpu) {
1131
		numa_setup_cpu((unsigned long)cpu);
1132
	}
L
Linus Torvalds 已提交
1133 1134 1135 1136
}

void __init paging_init(void)
{
1137 1138
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1139
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1140
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1154 1155 1156 1157
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1158 1159 1160
	return 0;
}
early_param("numa", early_numa);
1161 1162

#ifdef CONFIG_MEMORY_HOTPLUG
1163
/*
1164 1165 1166
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1167 1168 1169 1170
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
1171
	const __be32 *dm;
1172
	unsigned int drconf_cell_cnt, rc;
1173
	unsigned long lmb_size;
1174
	struct assoc_arrays aa;
1175
	int nid = -1;
1176

1177 1178 1179
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1180

1181 1182
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1183
		return -1;
1184 1185 1186

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1187
		return -1;
1188

1189
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1200
		if ((scn_addr < drmem.base_addr)
1201
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1202 1203
			continue;

1204
		nid = of_drconf_to_nid_single(&drmem, &aa);
1205 1206 1207 1208 1209 1210 1211 1212 1213
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1214
 * each memblock.
1215
 */
1216
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1217
{
1218
	struct device_node *memory;
1219 1220
	int nid = -1;

1221
	for_each_node_by_type(memory, "memory") {
1222 1223
		unsigned long start, size;
		int ranges;
1224
		const __be32 *memcell_buf;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1244

1245 1246
		if (nid >= 0)
			break;
1247 1248
	}

1249 1250
	of_node_put(memory);

1251
	return nid;
1252 1253
}

1254 1255
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1256 1257
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1258 1259 1260 1261
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1262
	int nid, found = 0;
1263 1264

	if (!numa_enabled || (min_common_depth < 0))
1265
		return first_online_node;
1266 1267 1268 1269 1270

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1271 1272
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1273
	}
1274

1275
	if (nid < 0 || !node_online(nid))
1276
		nid = first_online_node;
1277

1278 1279
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1280

1281 1282 1283 1284
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1285 1286
		}
	}
1287 1288 1289

	BUG_ON(!found);
	return nid;
1290
}
1291

1292 1293 1294 1295 1296
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
1297
	const __be32 *dm = NULL;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1318
#endif /* CONFIG_MEMORY_HOTPLUG */
1319

1320
/* Virtual Processor Home Node (VPHN) support */
1321
#ifdef CONFIG_PPC_SPLPAR
1322 1323 1324 1325 1326 1327 1328
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1329
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1330 1331
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1332 1333
static int prrn_enabled;
static void reset_topology_timer(void);
1334 1335 1336 1337 1338 1339 1340

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1341
	int cpu;
1342

1343 1344 1345
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1346
	for_each_possible_cpu(cpu) {
1347
		int i;
1348 1349 1350
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1351
		for (i = 0; i < distance_ref_points_depth; i++)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1369
	int cpu;
1370 1371 1372 1373 1374 1375 1376
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1377
		for (i = 0; i < distance_ref_points_depth; i++) {
1378
			if (hypervisor_counts[i] != counts[i]) {
1379 1380 1381 1382 1383
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1384 1385
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1386 1387 1388
		}
	}

1389
	return cpumask_weight(changes);
1390 1391
}

1392 1393 1394 1395 1396
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1397 1398 1399 1400 1401

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
1402
static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1403
{
1404
	int i, nr_assoc_doms = 0;
1405
	const __be16 *field = (const __be16 *) packed;
1406 1407 1408 1409 1410

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1411
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1412
		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1413 1414 1415 1416
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
1417
			unpacked[i] = *((__be32 *)field);
1418
			field += 2;
1419
		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1420
			/* Data is in the lower 15 bits of this field */
1421 1422
			unpacked[i] = cpu_to_be32(
				be16_to_cpup(field) & VPHN_FIELD_MASK);
1423 1424
			field++;
			nr_assoc_doms++;
1425
		} else {
1426 1427 1428
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
1429
			unpacked[i] = *((__be32 *)field);
1430 1431 1432 1433 1434
			field += 2;
			nr_assoc_doms++;
		}
	}

1435
	/* The first cell contains the length of the property */
1436
	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1437

1438 1439 1440 1441 1442 1443 1444
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1445
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1446
{
1447
	long rc;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1459
					__be32 *associativity)
1460
{
1461
	long rc;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1494
	cpu = smp_processor_id();
1495 1496 1497 1498 1499 1500 1501

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1502
		vdso_getcpu_init();
1503 1504 1505 1506 1507
	}

	return 0;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1535 1536
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1537
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1538 1539 1540
 */
int arch_update_cpu_topology(void)
{
1541
	unsigned int cpu, sibling, changed = 0;
1542
	struct topology_update_data *updates, *ud;
1543
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1544
	cpumask_t updated_cpus;
1545
	struct device *dev;
1546
	int weight, new_nid, i = 0;
1547

1548 1549 1550 1551 1552 1553 1554
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1555

1556 1557
	cpumask_clear(&updated_cpus);

1558
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1599 1600
	}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1615
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1616

1617 1618 1619 1620 1621 1622 1623 1624
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1625
	for (ud = &updates[0]; ud; ud = ud->next) {
1626 1627 1628
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1629
		dev = get_cpu_device(ud->cpu);
1630 1631
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1632
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1633
		changed = 1;
1634 1635
	}

1636
out:
1637
	kfree(updates);
1638
	return changed;
1639 1640 1641 1642 1643 1644 1645 1646
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1647
static void topology_schedule_update(void)
1648 1649 1650 1651 1652 1653
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1654
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1655
		topology_schedule_update();
1656 1657 1658 1659 1660
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1661 1662 1663 1664
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1665
static void reset_topology_timer(void)
1666 1667 1668
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1669
	mod_timer(&topology_timer, topology_timer.expires);
1670 1671
}

1672 1673
#ifdef CONFIG_SMP

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1690 1691
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1692 1693 1694 1695 1696 1697 1698 1699 1700
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1701 1702
}

1703 1704 1705 1706
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1707 1708
#endif

1709
/*
1710
 * Start polling for associativity changes.
1711 1712 1713 1714 1715
 */
int start_topology_update(void)
{
	int rc = 0;

1716 1717 1718 1719
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1720
#ifdef CONFIG_SMP
1721
			rc = of_reconfig_notifier_register(&dt_update_nb);
1722
#endif
1723
		}
1724
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1725
		   lppaca_shared_proc(get_lppaca())) {
1726 1727 1728 1729 1730 1731 1732
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1743 1744 1745 1746
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1747
#ifdef CONFIG_SMP
1748
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1749
#endif
1750 1751 1752 1753 1754 1755
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1756
}
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
	start_topology_update();
1810
	proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops);
1811 1812

	return 0;
1813
}
1814
device_initcall(topology_update_init);
1815
#endif /* CONFIG_PPC_SPLPAR */