numa.c 36.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/of.h>
24
#include <linux/pfn.h>
25 26
#include <linux/cpuset.h>
#include <linux/node.h>
27
#include <linux/stop_machine.h>
28 29 30
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
31
#include <linux/slab.h>
32
#include <asm/cputhreads.h>
33
#include <asm/sparsemem.h>
34
#include <asm/prom.h>
P
Paul Mackerras 已提交
35
#include <asm/smp.h>
36 37
#include <asm/cputhreads.h>
#include <asm/topology.h>
38 39
#include <asm/firmware.h>
#include <asm/paca.h>
40
#include <asm/hvcall.h>
41
#include <asm/setup.h>
42
#include <asm/vdso.h>
43
#include <asm/drmem.h>
L
Linus Torvalds 已提交
44 45 46

static int numa_enabled = 1;

47 48
static char *cmdline __initdata;

L
Linus Torvalds 已提交
49 50 51
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

52
int numa_cpu_lookup_table[NR_CPUS];
53
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
54
struct pglist_data *node_data[MAX_NUMNODES];
55 56

EXPORT_SYMBOL(numa_cpu_lookup_table);
57
EXPORT_SYMBOL(node_to_cpumask_map);
58 59
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
60
static int min_common_depth;
61
static int n_mem_addr_cells, n_mem_size_cells;
62 63 64 65
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
66
static const __be32 *distance_ref_points;
67
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
68

69 70 71 72
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
73
 * Note: cpumask_of_node() is not valid until after this is done.
74 75 76
 */
static void __init setup_node_to_cpumask_map(void)
{
77
	unsigned int node;
78 79

	/* setup nr_node_ids if not done yet */
80 81
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
82 83

	/* allocate the map */
84
	for_each_node(node)
85 86 87 88 89 90
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

91
static int __init fake_numa_create_new_node(unsigned long end_pfn,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

138 139 140 141 142 143 144 145 146
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
147 148
{
	numa_cpu_lookup_table[cpu] = node;
149 150 151 152 153
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
154

155 156
	dbg("adding cpu %d to node %d\n", cpu, node);

157 158
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
159 160
}

161
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
162 163 164 165 166 167
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

168
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
170 171 172 173 174
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
175
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
176 177

/* must hold reference to node during call */
178
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
179
{
180
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
181 182
}

183 184 185 186 187 188
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
189
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
190 191 192 193 194 195 196 197 198 199 200

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
201
EXPORT_SYMBOL(__node_distance);
202 203

static void initialize_distance_lookup_table(int nid,
204
		const __be32 *associativity)
205 206 207 208 209 210 211
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
212 213
		const __be32 *entry;

214
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
215
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
216 217 218
	}
}

219 220 221
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
222
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
223
{
224
	int nid = -1;
L
Linus Torvalds 已提交
225 226

	if (min_common_depth == -1)
227
		goto out;
L
Linus Torvalds 已提交
228

229 230
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
231 232

	/* POWER4 LPAR uses 0xffff as invalid node */
233 234
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
235

236
	if (nid > 0 &&
237 238 239 240 241 242
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
243

244
out:
245
	return nid;
L
Linus Torvalds 已提交
246 247
}

248 249 250 251 252 253
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
254
	const __be32 *tmp;
255 256 257 258 259 260 261

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

262 263 264 265 266 267 268 269 270 271 272
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

273
		device = of_get_next_parent(device);
274 275 276 277 278
	}
	of_node_put(device);

	return nid;
}
279
EXPORT_SYMBOL(of_node_to_nid);
280

L
Linus Torvalds 已提交
281 282
static int __init find_min_common_depth(void)
{
283
	int depth;
284
	struct device_node *root;
L
Linus Torvalds 已提交
285

286 287 288 289
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
290 291
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
292 293

	/*
294 295 296 297 298 299 300 301 302 303
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
304
	 */
305
	distance_ref_points = of_get_property(root,
306 307 308 309 310 311 312 313 314
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
315

316 317 318
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
319
		form1_affinity = 1;
320 321
	}

322
	if (form1_affinity) {
323
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
324
	} else {
325 326 327 328 329 330
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

331
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
332 333
	}

334 335 336 337 338 339 340 341 342 343
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

344
	of_node_put(root);
L
Linus Torvalds 已提交
345
	return depth;
346 347

err:
348
	of_node_put(root);
349
	return -1;
L
Linus Torvalds 已提交
350 351
}

352
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
353 354 355 356
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
357
	if (!memory)
358
		panic("numa.c: No memory nodes found!");
359

360
	*n_addr_cells = of_n_addr_cells(memory);
361
	*n_size_cells = of_n_size_cells(memory);
362
	of_node_put(memory);
L
Linus Torvalds 已提交
363 364
}

365
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
366 367 368 369
{
	unsigned long result = 0;

	while (n--) {
370
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
371 372 373 374 375
		(*buf)++;
	}
	return result;
}

376 377 378
struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
379
	const __be32 *arrays;
380 381 382
};

/*
L
Lucas De Marchi 已提交
383
 * Retrieve and validate the list of associativity arrays for drconf
384 385 386 387 388 389 390 391
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
392
static int of_get_assoc_arrays(struct assoc_arrays *aa)
393
{
394
	struct device_node *memory;
395
	const __be32 *prop;
396 397
	u32 len;

398 399 400 401
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

402
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
403 404
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
405
		return -1;
406
	}
407

408 409
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
410

411 412
	of_node_put(memory);

413
	/* Now that we know the number of arrays and size of each array,
414 415 416 417 418 419 420 421 422 423 424 425 426
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
427
static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
428
{
429
	struct assoc_arrays aa = { .arrays = NULL };
430 431
	int default_nid = 0;
	int nid = default_nid;
432 433 434 435 436
	int rc, index;

	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;
437

438
	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
439 440 441
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
	    lmb->aa_index < aa.n_arrays) {
		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
442
		nid = of_read_number(&aa.arrays[index], 1);
443 444 445

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
446 447

		if (nid > 0) {
448
			index = lmb->aa_index * aa.array_sz;
449
			initialize_distance_lookup_table(nid,
450
							&aa.arrays[index]);
451
		}
452 453 454 455 456
	}

	return nid;
}

L
Linus Torvalds 已提交
457 458 459 460
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
461
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
462
{
463
	int nid = -1;
464 465 466 467 468 469 470 471 472 473 474 475 476
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
477 478 479

	if (!cpu) {
		WARN_ON(1);
480 481 482 483
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
484 485
	}

486
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
487

488
out_present:
489
	if (nid < 0 || !node_online(nid))
490
		nid = first_online_node;
L
Linus Torvalds 已提交
491

492
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
493
	of_node_put(cpu);
494
out:
495
	return nid;
L
Linus Torvalds 已提交
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

519 520 521 522 523 524 525 526 527 528 529 530
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
531
#ifdef CONFIG_HOTPLUG_CPU
532
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
533
#endif
534
	return 0;
L
Linus Torvalds 已提交
535 536 537 538 539 540 541 542
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
543
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
544
 */
545 546
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
547 548
{
	/*
Y
Yinghai Lu 已提交
549
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
550
	 * we've already adjusted it for the limit and it takes care of
551 552
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
553 554
	 */

Y
Yinghai Lu 已提交
555
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
556 557
		return size;

Y
Yinghai Lu 已提交
558
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
559 560
		return 0;

Y
Yinghai Lu 已提交
561
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
562 563
}

564 565 566 567
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
568
static inline int __init read_usm_ranges(const __be32 **usm)
569 570
{
	/*
571
	 * For each lmb in ibm,dynamic-memory a corresponding
572 573 574 575 576 577 578
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

579 580 581 582
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
583 584
static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm)
585
{
586 587
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
588 589
	int nid;

590 591 592 593 594 595
	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
596 597
		return;

598
	if (*usm)
599 600
		is_kexec_kdump = 1;

601 602 603
	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;
604

605 606 607 608 609
	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return;
	}
610

611
	do {
612
		if (is_kexec_kdump) {
613 614
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
615
		}
616 617 618 619 620 621 622 623 624

		nid = of_drconf_to_nid_single(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);
625 626
}

L
Linus Torvalds 已提交
627 628
static int __init parse_numa_properties(void)
{
629
	struct device_node *memory;
630
	int default_nid = 0;
L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638 639 640 641 642
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

643 644
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
645
	/*
646 647 648
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
649
	 */
650
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
651
		struct device_node *cpu;
652
		int nid;
L
Linus Torvalds 已提交
653

654
		cpu = of_get_cpu_node(i, NULL);
655
		BUG_ON(!cpu);
656
		nid = of_node_to_nid_single(cpu);
657
		of_node_put(cpu);
L
Linus Torvalds 已提交
658

659 660 661 662 663 664 665 666
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
667 668
	}

669
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
670 671

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
672 673
		unsigned long start;
		unsigned long size;
674
		int nid;
L
Linus Torvalds 已提交
675
		int ranges;
676
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
677 678
		unsigned int len;

679
		memcell_buf = of_get_property(memory,
680 681
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
682
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
683 684 685
		if (!memcell_buf || len <= 0)
			continue;

686 687
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
688 689
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
690 691
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
692

693 694 695 696 697
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
698
		nid = of_node_to_nid_single(memory);
699 700
		if (nid < 0)
			nid = default_nid;
701 702

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
703
		node_set_online(nid);
L
Linus Torvalds 已提交
704

705 706 707
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
708 709 710 711 712

		if (--ranges)
			goto new_range;
	}

713
	/*
A
Anton Blanchard 已提交
714 715 716
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
717 718
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
719 720 721 722
	if (memory) {
		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
		of_node_put(memory);
	}
723

L
Linus Torvalds 已提交
724 725 726 727 728
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
729 730
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
731
	unsigned long start_pfn, end_pfn;
732 733
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
734

735
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
736
	       top_of_ram, total_ram);
737
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
738 739
	       (top_of_ram - total_ram) >> 20);

740
	for_each_memblock(memory, reg) {
741 742
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
743 744

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
745
		memblock_set_node(PFN_PHYS(start_pfn),
746 747
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
748
		node_set_online(nid);
749
	}
L
Linus Torvalds 已提交
750 751
}

752 753 754 755 756 757 758 759 760
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
761
		pr_info("Node %d CPUs:", node);
762 763 764 765 766 767

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
768 769 770
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
771
				if (count == 0)
772
					pr_cont(" %u", cpu);
773 774 775
				++count;
			} else {
				if (count > 1)
776
					pr_cont("-%u", cpu - 1);
777 778 779 780 781
				count = 0;
			}
		}

		if (count > 1)
782 783
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
784 785 786
	}
}

787 788
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
789
{
790 791 792 793 794
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
795

796 797
	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	nd = __va(nd_pa);
798

799 800 801 802 803 804
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
805

806 807 808 809 810 811
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	u32 numnodes, i;

	if (min_common_depth <= 0)
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	if (of_property_read_u32_index(rtas,
				"ibm,max-associativity-domains",
				min_common_depth, &numnodes))
		goto out;

	for (i = 0; i < numnodes; i++) {
		if (!node_possible(i)) {
			setup_node_data(i, 0, 0);
			node_set(i, node_possible_map);
		}
	}

out:
	of_node_put(rtas);
}

841
void __init initmem_init(void)
L
Linus Torvalds 已提交
842
{
843
	int nid, cpu;
L
Linus Torvalds 已提交
844

Y
Yinghai Lu 已提交
845
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
846 847 848 849 850
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();

851 852
	memblock_dump_all();

853
	/*
854 855 856 857
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
858 859 860
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

861 862
	find_possible_nodes();

L
Linus Torvalds 已提交
863
	for_each_online_node(nid) {
864
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
865

866
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
867
		setup_node_data(nid, start_pfn, end_pfn);
868
		sparse_memory_present_with_active_regions(nid);
869
	}
870

871
	sparse_init();
872 873 874

	setup_node_to_cpumask_map();

875
	reset_numa_cpu_lookup_table();
876

877 878 879 880
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
881 882
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
883
	 */
T
Thomas Gleixner 已提交
884
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
885 886 887
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
L
Linus Torvalds 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

901 902 903 904
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
905 906 907
	return 0;
}
early_param("numa", early_numa);
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

925
#ifdef CONFIG_MEMORY_HOTPLUG
926
/*
927 928 929
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
930
 */
931
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
932
{
933
	struct drmem_lmb *lmb;
934
	unsigned long lmb_size;
935
	int nid = -1;
936

937
	lmb_size = drmem_lmb_size();
938

939
	for_each_drmem_lmb(lmb) {
940 941
		/* skip this block if it is reserved or not assigned to
		 * this partition */
942 943
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
944 945
			continue;

946 947
		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
948 949
			continue;

950
		nid = of_drconf_to_nid_single(lmb);
951 952 953 954 955 956 957 958 959
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
960
 * each memblock.
961
 */
962
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
963
{
964
	struct device_node *memory;
965 966
	int nid = -1;

967
	for_each_node_by_type(memory, "memory") {
968 969
		unsigned long start, size;
		int ranges;
970
		const __be32 *memcell_buf;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
990

991 992
		if (nid >= 0)
			break;
993 994
	}

995 996
	of_node_put(memory);

997
	return nid;
998 999
}

1000 1001
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1002 1003
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1004 1005 1006 1007
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1008
	int nid;
1009 1010

	if (!numa_enabled || (min_common_depth < 0))
1011
		return first_online_node;
1012 1013 1014

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
1015
		nid = hot_add_drconf_scn_to_nid(scn_addr);
1016
		of_node_put(memory);
1017 1018
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1019
	}
1020

1021
	if (nid < 0 || !node_possible(nid))
1022
		nid = first_online_node;
1023

1024
	return nid;
1025
}
1026

1027 1028
static u64 hot_add_drconf_memory_max(void)
{
1029
	struct device_node *memory = NULL;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1040

1041 1042 1043
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
1044
		return drmem_lmb_memory_max();
1045
	}
1046
	return 0;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1059
#endif /* CONFIG_MEMORY_HOTPLUG */
1060

1061
/* Virtual Processor Home Node (VPHN) support */
1062
#ifdef CONFIG_PPC_SPLPAR
1063 1064 1065

#include "vphn.h"

1066 1067 1068 1069 1070 1071 1072
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1073 1074
#define TOPOLOGY_DEF_TIMER_SECS	60

1075
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1076 1077
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1078 1079
static int prrn_enabled;
static void reset_topology_timer(void);
1080
static int topology_timer_secs = 1;
1081 1082
static int topology_inited;
static int topology_update_needed;
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1100 1101 1102 1103 1104 1105 1106

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1107
	int cpu;
1108

1109 1110 1111
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1112
	for_each_possible_cpu(cpu) {
1113
		int i;
1114 1115 1116
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1117
		for (i = 0; i < distance_ref_points_depth; i++)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1135
	int cpu;
1136 1137 1138 1139 1140 1141 1142
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1143
		for (i = 0; i < distance_ref_points_depth; i++) {
1144
			if (hypervisor_counts[i] != counts[i]) {
1145 1146 1147 1148 1149
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1150 1151
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1152 1153 1154
		}
	}

1155
	return cpumask_weight(changes);
1156 1157 1158 1159 1160 1161
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1162
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1163
{
1164
	long rc;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1176
					__be32 *associativity)
1177
{
1178
	long rc;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
1193 1194 1195
		break;
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
1196
		timed_topology_update(0);
1197
		break;
1198 1199 1200 1201 1202
	}

	return rc;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1216
	cpu = smp_processor_id();
1217 1218

	for (update = data; update; update = update->next) {
1219
		int new_nid = update->new_nid;
1220 1221 1222
		if (cpu != update->cpu)
			continue;

1223
		unmap_cpu_from_node(cpu);
1224 1225 1226
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1227
		vdso_getcpu_init();
1228 1229 1230 1231 1232
	}

	return 0;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1260 1261
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1262
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1263 1264
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1265
 */
1266
int numa_update_cpu_topology(bool cpus_locked)
1267
{
1268
	unsigned int cpu, sibling, changed = 0;
1269
	struct topology_update_data *updates, *ud;
1270
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1271
	cpumask_t updated_cpus;
1272
	struct device *dev;
1273
	int weight, new_nid, i = 0;
1274

1275 1276 1277
	if (!prrn_enabled && !vphn_enabled) {
		if (!topology_inited)
			topology_update_needed = 1;
1278
		return 0;
1279
	}
1280

1281 1282 1283 1284 1285 1286 1287
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1288

1289 1290
	cpumask_clear(&updated_cpus);

1291
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1318 1319
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1320 1321 1322
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1323

1324 1325
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1326
			ud->next = &updates[i];
1327 1328 1329 1330 1331 1332
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1333 1334
	}

1335 1336 1337 1338 1339 1340 1341
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1342 1343 1344 1345 1346 1347 1348 1349 1350
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1365 1366 1367 1368 1369
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1370

1371 1372 1373 1374 1375
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1376 1377
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1378
					cpumask_of(raw_smp_processor_id()));
1379 1380 1381
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1382

1383
	for (ud = &updates[0]; ud; ud = ud->next) {
1384 1385 1386
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1387
		dev = get_cpu_device(ud->cpu);
1388 1389
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1390
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1391
		changed = 1;
1392 1393
	}

1394
out:
1395
	kfree(updates);
1396
	topology_update_needed = 0;
1397
	return changed;
1398 1399
}

1400 1401 1402 1403 1404
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1405 1406 1407 1408 1409 1410
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1411
static void topology_schedule_update(void)
1412 1413 1414 1415
{
	schedule_work(&topology_work);
}

1416
static void topology_timer_fn(struct timer_list *unused)
1417
{
1418
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1419
		topology_schedule_update();
1420 1421 1422 1423 1424
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1425
}
1426
static struct timer_list topology_timer;
1427

1428
static void reset_topology_timer(void)
1429
{
1430
	mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1431 1432
}

1433 1434
#ifdef CONFIG_SMP

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1445
	struct of_reconfig_data *update = data;
1446 1447 1448 1449
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1450 1451
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1452 1453 1454 1455 1456 1457 1458 1459 1460
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1461 1462
}

1463 1464 1465 1466
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1467 1468
#endif

1469
/*
1470
 * Start polling for associativity changes.
1471 1472 1473 1474 1475
 */
int start_topology_update(void)
{
	int rc = 0;

1476 1477 1478
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1479
#ifdef CONFIG_SMP
1480
			rc = of_reconfig_notifier_register(&dt_update_nb);
1481
#endif
1482
		}
1483 1484
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1485
		   lppaca_shared_proc(get_lppaca())) {
1486 1487 1488
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1489 1490
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1491 1492
			reset_topology_timer();
		}
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1503 1504 1505 1506
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1507
#ifdef CONFIG_SMP
1508
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1509
#endif
1510 1511
	}
	if (vphn_enabled) {
1512 1513 1514 1515 1516
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1517
}
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1570 1571 1572 1573
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1574 1575 1576
	if (vphn_enabled)
		topology_schedule_update();

1577 1578
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1579

1580 1581 1582 1583 1584
	topology_inited = 1;
	if (topology_update_needed)
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
					nr_cpumask_bits);

1585
	return 0;
1586
}
1587
device_initcall(topology_update_init);
1588
#endif /* CONFIG_PPC_SPLPAR */