numa.c 38.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13
#include <linux/threads.h>
M
Mike Rapoport 已提交
14
#include <linux/memblock.h>
L
Linus Torvalds 已提交
15 16 17
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
22
#include <linux/of.h>
23
#include <linux/pfn.h>
24 25
#include <linux/cpuset.h>
#include <linux/node.h>
26
#include <linux/stop_machine.h>
27 28 29
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
30
#include <linux/slab.h>
31
#include <asm/cputhreads.h>
32
#include <asm/sparsemem.h>
33
#include <asm/prom.h>
P
Paul Mackerras 已提交
34
#include <asm/smp.h>
35
#include <asm/topology.h>
36 37
#include <asm/firmware.h>
#include <asm/paca.h>
38
#include <asm/hvcall.h>
39
#include <asm/setup.h>
40
#include <asm/vdso.h>
41
#include <asm/drmem.h>
L
Linus Torvalds 已提交
42 43 44

static int numa_enabled = 1;

45 46
static char *cmdline __initdata;

L
Linus Torvalds 已提交
47 48 49
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

50
int numa_cpu_lookup_table[NR_CPUS];
51
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
52
struct pglist_data *node_data[MAX_NUMNODES];
53 54

EXPORT_SYMBOL(numa_cpu_lookup_table);
55
EXPORT_SYMBOL(node_to_cpumask_map);
56 57
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
58
static int min_common_depth;
59
static int n_mem_addr_cells, n_mem_size_cells;
60 61 62 63
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
64
static const __be32 *distance_ref_points;
65
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
66

67 68 69 70
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
71
 * Note: cpumask_of_node() is not valid until after this is done.
72 73 74
 */
static void __init setup_node_to_cpumask_map(void)
{
75
	unsigned int node;
76 77

	/* setup nr_node_ids if not done yet */
78 79
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
80 81

	/* allocate the map */
82
	for_each_node(node)
83 84 85
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
86
	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
87 88
}

89
static int __init fake_numa_create_new_node(unsigned long end_pfn,
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

136 137 138 139 140 141 142 143 144 145 146
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
147

148 149
	dbg("adding cpu %d to node %d\n", cpu, node);

150 151
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
152 153
}

154
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
155 156 157 158 159 160
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

161
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
162
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
163 164 165 166 167
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
168
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	int dist = 0;

	int i, index;

	for (i = 0; i < distance_ref_points_depth; i++) {
		index = be32_to_cpu(distance_ref_points[i]);
		if (cpu1_assoc[index] == cpu2_assoc[index])
			break;
		dist++;
	}

	return dist;
}

L
Linus Torvalds 已提交
186
/* must hold reference to node during call */
187
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
188
{
189
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
198
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
199 200 201 202 203 204 205 206 207 208 209

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
210
EXPORT_SYMBOL(__node_distance);
211 212

static void initialize_distance_lookup_table(int nid,
213
		const __be32 *associativity)
214 215 216 217 218 219 220
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
221 222
		const __be32 *entry;

223
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
224
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
225 226 227
	}
}

228 229 230
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
231
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
232
{
233
	int nid = NUMA_NO_NODE;
L
Linus Torvalds 已提交
234

235
	if (min_common_depth == -1 || !numa_enabled)
236
		goto out;
L
Linus Torvalds 已提交
237

238 239
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
240 241

	/* POWER4 LPAR uses 0xffff as invalid node */
242
	if (nid == 0xffff || nid >= MAX_NUMNODES)
243
		nid = NUMA_NO_NODE;
244

245
	if (nid > 0 &&
246 247 248 249 250 251
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
252

253
out:
254
	return nid;
L
Linus Torvalds 已提交
255 256
}

257 258 259 260 261
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
262
	int nid = NUMA_NO_NODE;
263
	const __be32 *tmp;
264 265 266 267 268 269 270

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

271 272 273
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
274
	int nid = NUMA_NO_NODE;
275 276 277 278 279 280 281

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

282
		device = of_get_next_parent(device);
283 284 285 286 287
	}
	of_node_put(device);

	return nid;
}
288
EXPORT_SYMBOL(of_node_to_nid);
289

L
Linus Torvalds 已提交
290 291
static int __init find_min_common_depth(void)
{
292
	int depth;
293
	struct device_node *root;
L
Linus Torvalds 已提交
294

295 296 297 298
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
299 300
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
301 302

	/*
303 304 305 306 307 308 309 310 311 312
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
313
	 */
314
	distance_ref_points = of_get_property(root,
315 316 317 318 319 320 321 322 323
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
324

325 326 327
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
328
		form1_affinity = 1;
329 330
	}

331
	if (form1_affinity) {
332
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
333
	} else {
334 335 336 337 338 339
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

340
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
341 342
	}

343 344 345 346 347 348 349 350 351 352
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

353
	of_node_put(root);
L
Linus Torvalds 已提交
354
	return depth;
355 356

err:
357
	of_node_put(root);
358
	return -1;
L
Linus Torvalds 已提交
359 360
}

361
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
362 363 364 365
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
366
	if (!memory)
367
		panic("numa.c: No memory nodes found!");
368

369
	*n_addr_cells = of_n_addr_cells(memory);
370
	*n_size_cells = of_n_size_cells(memory);
371
	of_node_put(memory);
L
Linus Torvalds 已提交
372 373
}

374
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
375 376 377 378
{
	unsigned long result = 0;

	while (n--) {
379
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
380 381 382 383 384
		(*buf)++;
	}
	return result;
}

385 386 387
struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
388
	const __be32 *arrays;
389 390 391
};

/*
L
Lucas De Marchi 已提交
392
 * Retrieve and validate the list of associativity arrays for drconf
393 394 395 396 397 398 399 400
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
401
static int of_get_assoc_arrays(struct assoc_arrays *aa)
402
{
403
	struct device_node *memory;
404
	const __be32 *prop;
405 406
	u32 len;

407 408 409 410
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

411
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
412 413
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
414
		return -1;
415
	}
416

417 418
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
419

420 421
	of_node_put(memory);

422
	/* Now that we know the number of arrays and size of each array,
423 424 425 426 427 428 429 430 431 432 433 434 435
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
436
static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
437
{
438
	struct assoc_arrays aa = { .arrays = NULL };
439
	int default_nid = NUMA_NO_NODE;
440
	int nid = default_nid;
441 442
	int rc, index;

443
	if ((min_common_depth < 0) || !numa_enabled)
444 445
		return default_nid;

446 447 448
	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;
449

450 451
	if (min_common_depth <= aa.array_sz &&
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
452
		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
453
		nid = of_read_number(&aa.arrays[index], 1);
454 455 456

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
457 458

		if (nid > 0) {
459
			index = lmb->aa_index * aa.array_sz;
460
			initialize_distance_lookup_table(nid,
461
							&aa.arrays[index]);
462
		}
463 464 465 466 467
	}

	return nid;
}

L
Linus Torvalds 已提交
468 469 470 471
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
472
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
473
{
474
	int nid = NUMA_NO_NODE;
475 476 477 478 479 480 481 482 483 484 485 486 487
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
488 489 490

	if (!cpu) {
		WARN_ON(1);
491 492 493 494
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
495 496
	}

497
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
498

499
out_present:
500
	if (nid < 0 || !node_possible(nid))
501
		nid = first_online_node;
L
Linus Torvalds 已提交
502

503
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
504
	of_node_put(cpu);
505
out:
506
	return nid;
L
Linus Torvalds 已提交
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

530 531 532 533 534 535 536 537 538 539 540 541
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
542
#ifdef CONFIG_HOTPLUG_CPU
543
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
544
#endif
545
	return 0;
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
554
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
555
 */
556 557
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
558 559
{
	/*
Y
Yinghai Lu 已提交
560
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
561
	 * we've already adjusted it for the limit and it takes care of
562 563
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
564 565
	 */

Y
Yinghai Lu 已提交
566
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
567 568
		return size;

Y
Yinghai Lu 已提交
569
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
570 571
		return 0;

Y
Yinghai Lu 已提交
572
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
573 574
}

575 576 577 578
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
579
static inline int __init read_usm_ranges(const __be32 **usm)
580 581
{
	/*
582
	 * For each lmb in ibm,dynamic-memory a corresponding
583 584 585 586 587 588 589
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

590 591 592 593
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
594 595
static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm)
596
{
597 598
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
599 600
	int nid;

601 602 603 604 605 606
	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
607 608
		return;

609
	if (*usm)
610 611
		is_kexec_kdump = 1;

612 613 614
	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;
615

616 617 618 619 620
	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return;
	}
621

622
	do {
623
		if (is_kexec_kdump) {
624 625
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
626
		}
627 628 629 630 631 632 633 634 635

		nid = of_drconf_to_nid_single(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);
636 637
}

L
Linus Torvalds 已提交
638 639
static int __init parse_numa_properties(void)
{
640
	struct device_node *memory;
641
	int default_nid = 0;
L
Linus Torvalds 已提交
642 643 644 645 646 647 648 649 650 651 652 653
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

654 655
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
656
	/*
657 658 659
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
660
	 */
661
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
662
		struct device_node *cpu;
663
		int nid;
L
Linus Torvalds 已提交
664

665
		cpu = of_get_cpu_node(i, NULL);
666
		BUG_ON(!cpu);
667
		nid = of_node_to_nid_single(cpu);
668
		of_node_put(cpu);
L
Linus Torvalds 已提交
669

670 671 672 673 674 675 676 677
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
678 679
	}

680
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
681 682

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
683 684
		unsigned long start;
		unsigned long size;
685
		int nid;
L
Linus Torvalds 已提交
686
		int ranges;
687
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
688 689
		unsigned int len;

690
		memcell_buf = of_get_property(memory,
691 692
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
693
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
694 695 696
		if (!memcell_buf || len <= 0)
			continue;

697 698
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
699 700
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
701 702
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
703

704 705 706 707 708
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
709
		nid = of_node_to_nid_single(memory);
710 711
		if (nid < 0)
			nid = default_nid;
712 713

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
714
		node_set_online(nid);
L
Linus Torvalds 已提交
715

716 717 718
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
719 720 721 722 723

		if (--ranges)
			goto new_range;
	}

724
	/*
A
Anton Blanchard 已提交
725 726 727
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
728 729
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
730 731 732 733
	if (memory) {
		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
		of_node_put(memory);
	}
734

L
Linus Torvalds 已提交
735 736 737 738 739
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
740 741
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
742
	unsigned long start_pfn, end_pfn;
743 744
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
745

746
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
747
	       top_of_ram, total_ram);
748
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
749 750
	       (top_of_ram - total_ram) >> 20);

751
	for_each_memblock(memory, reg) {
752 753
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
754 755

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
756
		memblock_set_node(PFN_PHYS(start_pfn),
757 758
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
759
		node_set_online(nid);
760
	}
L
Linus Torvalds 已提交
761 762
}

763 764 765 766 767 768 769 770 771
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
772
		pr_info("Node %d CPUs:", node);
773 774 775 776 777 778

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
779 780 781
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
782
				if (count == 0)
783
					pr_cont(" %u", cpu);
784 785 786
				++count;
			} else {
				if (count > 1)
787
					pr_cont("-%u", cpu - 1);
788 789 790 791 792
				count = 0;
			}
		}

		if (count > 1)
793 794
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
795 796 797
	}
}

798 799
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
800
{
801 802 803 804 805
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
806

807
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
808 809 810 811
	if (!nd_pa)
		panic("Cannot allocate %zu bytes for node %d data\n",
		      nd_size, nid);

812
	nd = __va(nd_pa);
813

814 815 816 817 818 819
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
820

821 822 823 824 825 826
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
827

828 829 830 831 832
static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	u32 numnodes, i;

833
	if (min_common_depth <= 0 || !numa_enabled)
834 835 836 837 838 839 840 841 842 843 844 845
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	if (of_property_read_u32_index(rtas,
				"ibm,max-associativity-domains",
				min_common_depth, &numnodes))
		goto out;

	for (i = 0; i < numnodes; i++) {
846
		if (!node_possible(i))
847 848 849 850 851 852 853
			node_set(i, node_possible_map);
	}

out:
	of_node_put(rtas);
}

854
void __init mem_topology_setup(void)
L
Linus Torvalds 已提交
855
{
856
	int cpu;
L
Linus Torvalds 已提交
857 858 859 860

	if (parse_numa_properties())
		setup_nonnuma();

861
	/*
862 863 864 865
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
866 867 868
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

869 870
	find_possible_nodes();

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	setup_node_to_cpumask_map();

	reset_numa_cpu_lookup_table();

	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
}

void __init initmem_init(void)
{
	int nid;

	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	memblock_dump_all();

L
Linus Torvalds 已提交
888
	for_each_online_node(nid) {
889
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
890

891
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
892
		setup_node_data(nid, start_pfn, end_pfn);
893
		sparse_memory_present_with_active_regions(nid);
894
	}
895

896
	sparse_init();
897

898 899 900 901
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
902 903
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
904
	 */
T
Thomas Gleixner 已提交
905
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
906
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
L
Linus Torvalds 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

920 921 922 923
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
924 925 926
	return 0;
}
early_param("numa", early_numa);
927

928 929 930 931 932 933 934
/*
 * The platform can inform us through one of several mechanisms
 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
 * assignment of a resource has changed. This controls whether we act
 * on that. Disabled by default.
 */
static bool topology_updates_enabled;
935 936 937 938 939 940

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

941 942 943
	if (!strcmp(p, "on")) {
		pr_warn("Caution: enabling topology updates\n");
		topology_updates_enabled = true;
944 945 946 947 948 949
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

950
#ifdef CONFIG_MEMORY_HOTPLUG
951
/*
952 953 954
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
955
 */
956
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
957
{
958
	struct drmem_lmb *lmb;
959
	unsigned long lmb_size;
960
	int nid = NUMA_NO_NODE;
961

962
	lmb_size = drmem_lmb_size();
963

964
	for_each_drmem_lmb(lmb) {
965 966
		/* skip this block if it is reserved or not assigned to
		 * this partition */
967 968
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
969 970
			continue;

971 972
		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
973 974
			continue;

975
		nid = of_drconf_to_nid_single(lmb);
976 977 978 979 980 981 982 983 984
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
985
 * each memblock.
986
 */
987
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
988
{
989
	struct device_node *memory;
990
	int nid = NUMA_NO_NODE;
991

992
	for_each_node_by_type(memory, "memory") {
993 994
		unsigned long start, size;
		int ranges;
995
		const __be32 *memcell_buf;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1015

1016 1017
		if (nid >= 0)
			break;
1018 1019
	}

1020 1021
	of_node_put(memory);

1022
	return nid;
1023 1024
}

1025 1026
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1027 1028
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1029 1030 1031 1032
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1033
	int nid;
1034 1035

	if (!numa_enabled || (min_common_depth < 0))
1036
		return first_online_node;
1037 1038 1039

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
1040
		nid = hot_add_drconf_scn_to_nid(scn_addr);
1041
		of_node_put(memory);
1042 1043
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1044
	}
1045

1046
	if (nid < 0 || !node_possible(nid))
1047
		nid = first_online_node;
1048

1049
	return nid;
1050
}
1051

1052 1053
static u64 hot_add_drconf_memory_max(void)
{
1054
	struct device_node *memory = NULL;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1065

1066 1067 1068
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
1069
		return drmem_lmb_memory_max();
1070
	}
1071
	return 0;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1084
#endif /* CONFIG_MEMORY_HOTPLUG */
1085

1086
/* Virtual Processor Home Node (VPHN) support */
1087
#ifdef CONFIG_PPC_SPLPAR
1088 1089 1090 1091 1092 1093 1094
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1095 1096
#define TOPOLOGY_DEF_TIMER_SECS	60

1097
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1098 1099
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1100 1101
static int prrn_enabled;
static void reset_topology_timer(void);
1102
static int topology_timer_secs = 1;
1103
static int topology_inited;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1121 1122 1123 1124 1125 1126 1127

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1128
	int cpu;
1129

1130 1131 1132
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1133
	for_each_possible_cpu(cpu) {
1134
		int i;
1135
		u8 *counts = vphn_cpu_change_counts[cpu];
1136
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1137

1138
		for (i = 0; i < distance_ref_points_depth; i++)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1156
	int cpu;
1157 1158 1159 1160 1161
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
1162
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1163

1164
		for (i = 0; i < distance_ref_points_depth; i++) {
1165
			if (hypervisor_counts[i] != counts[i]) {
1166 1167 1168 1169 1170
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1171 1172
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1173 1174 1175
		}
	}

1176
	return cpumask_weight(changes);
1177 1178 1179 1180 1181 1182 1183
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long vphn_get_associativity(unsigned long cpu,
1184
					__be32 *associativity)
1185
{
1186
	long rc;
1187

1188 1189
	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
				VPHN_FLAG_VCPU, associativity);
1190 1191 1192

	switch (rc) {
	case H_FUNCTION:
1193
		printk_once(KERN_INFO
1194 1195 1196 1197 1198 1199 1200 1201
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
1202 1203 1204
		break;
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
1205
		timed_topology_update(0);
1206
		break;
1207 1208 1209 1210 1211
	}

	return rc;
}

1212
int find_and_online_cpu_nid(int cpu)
1213 1214 1215 1216 1217
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int new_nid;

	/* Use associativity from first thread for all siblings */
1218 1219 1220
	if (vphn_get_associativity(cpu, associativity))
		return cpu_to_node(cpu);

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	new_nid = associativity_to_nid(associativity);
	if (new_nid < 0 || !node_possible(new_nid))
		new_nid = first_online_node;

	if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
		/*
		 * Need to ensure that NODE_DATA is initialized for a node from
		 * available memory (see memblock_alloc_try_nid). If unable to
		 * init the node, then default to nearest node that has memory
1231 1232
		 * installed. Skip onlining a node if the subsystems are not
		 * yet initialized.
1233
		 */
1234
		if (!topology_inited || try_online_node(new_nid))
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			new_nid = first_online_node;
#else
		/*
		 * Default to using the nearest node that has memory installed.
		 * Otherwise, it would be necessary to patch the kernel MM code
		 * to deal with more memoryless-node error conditions.
		 */
		new_nid = first_online_node;
#endif
	}

1246 1247
	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
		cpu, new_nid);
1248 1249 1250
	return new_nid;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1264
	cpu = smp_processor_id();
1265 1266

	for (update = data; update; update = update->next) {
1267
		int new_nid = update->new_nid;
1268 1269 1270
		if (cpu != update->cpu)
			continue;

1271
		unmap_cpu_from_node(cpu);
1272 1273 1274
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1275
		vdso_getcpu_init();
1276 1277 1278 1279 1280
	}

	return 0;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1308 1309
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1310
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1311 1312
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1313
 */
1314
int numa_update_cpu_topology(bool cpus_locked)
1315
{
1316
	unsigned int cpu, sibling, changed = 0;
1317
	struct topology_update_data *updates, *ud;
1318
	cpumask_t updated_cpus;
1319
	struct device *dev;
1320
	int weight, new_nid, i = 0;
1321

1322
	if (!prrn_enabled && !vphn_enabled && topology_inited)
1323 1324
		return 0;

1325 1326 1327 1328
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

K
Kees Cook 已提交
1329
	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1330 1331
	if (!updates)
		return 0;
1332

1333 1334
	cpumask_clear(&updated_cpus);

1335
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1351

1352
		new_nid = find_and_online_cpu_nid(cpu);
1353 1354 1355 1356 1357

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1358 1359
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1360 1361 1362
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1363

1364 1365
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1366
			ud->next = &updates[i];
1367 1368 1369 1370 1371 1372
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1373 1374
	}

1375 1376 1377 1378 1379 1380 1381
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1382 1383 1384 1385 1386 1387 1388 1389 1390
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1405 1406 1407 1408 1409
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1410

1411 1412 1413 1414 1415
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1416 1417
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1418
					cpumask_of(raw_smp_processor_id()));
1419 1420 1421
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1422

1423
	for (ud = &updates[0]; ud; ud = ud->next) {
1424 1425 1426
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1427
		dev = get_cpu_device(ud->cpu);
1428 1429
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1430
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1431
		changed = 1;
1432 1433
	}

1434
out:
1435
	kfree(updates);
1436
	return changed;
1437 1438
}

1439 1440 1441 1442 1443
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1444 1445 1446 1447 1448 1449
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1450
static void topology_schedule_update(void)
1451 1452 1453 1454
{
	schedule_work(&topology_work);
}

1455
static void topology_timer_fn(struct timer_list *unused)
1456
{
1457
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1458
		topology_schedule_update();
1459 1460 1461 1462 1463
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1464
}
1465
static struct timer_list topology_timer;
1466

1467
static void reset_topology_timer(void)
1468
{
1469 1470
	if (vphn_enabled)
		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1471 1472
}

1473 1474
#ifdef CONFIG_SMP

1475 1476 1477
static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1478
	struct of_reconfig_data *update = data;
1479 1480 1481 1482
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1483
		if (of_node_is_type(update->dn, "cpu") &&
1484
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1485 1486
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
1487
			rc = dlpar_cpu_readd(core_id);
1488 1489 1490 1491 1492 1493
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1494 1495
}

1496 1497 1498 1499
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1500 1501
#endif

1502
/*
1503
 * Start polling for associativity changes.
1504 1505 1506 1507 1508
 */
int start_topology_update(void)
{
	int rc = 0;

1509 1510 1511
	if (!topology_updates_enabled)
		return 0;

1512 1513 1514
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1515
#ifdef CONFIG_SMP
1516
			rc = of_reconfig_notifier_register(&dt_update_nb);
1517
#endif
1518
		}
1519 1520
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1521
		   lppaca_shared_proc(get_lppaca())) {
1522 1523 1524
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1525 1526
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1527 1528
			reset_topology_timer();
		}
1529 1530
	}

1531 1532 1533 1534
	pr_info("Starting topology update%s%s\n",
		(prrn_enabled ? " prrn_enabled" : ""),
		(vphn_enabled ? " vphn_enabled" : ""));

1535 1536 1537 1538 1539 1540 1541 1542
	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1543 1544
	int rc = 0;

1545 1546 1547
	if (!topology_updates_enabled)
		return 0;

1548 1549
	if (prrn_enabled) {
		prrn_enabled = 0;
1550
#ifdef CONFIG_SMP
1551
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1552
#endif
1553 1554
	}
	if (vphn_enabled) {
1555 1556 1557 1558
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

1559 1560
	pr_info("Stopping topology update\n");

1561
	return rc;
1562
}
1563 1564 1565 1566 1567 1568

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577
void __init shared_proc_topology_init(void)
{
	if (lppaca_shared_proc(get_lppaca())) {
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
			    nr_cpumask_bits);
		numa_update_cpu_topology(false);
	}
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

1605 1606
	if (!strncmp(kbuf, "on", 2)) {
		topology_updates_enabled = true;
1607
		start_topology_update();
1608
	} else if (!strncmp(kbuf, "off", 3)) {
1609
		stop_topology_update();
1610 1611
		topology_updates_enabled = false;
	} else
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1626
	start_topology_update();
1627

1628 1629 1630
	if (vphn_enabled)
		topology_schedule_update();

1631 1632
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1633

1634
	topology_inited = 1;
1635
	return 0;
1636
}
1637
device_initcall(topology_update_init);
1638
#endif /* CONFIG_PPC_SPLPAR */