numa.c 38.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13
#include <linux/threads.h>
M
Mike Rapoport 已提交
14
#include <linux/memblock.h>
L
Linus Torvalds 已提交
15 16 17
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
22
#include <linux/of.h>
23
#include <linux/pfn.h>
24 25
#include <linux/cpuset.h>
#include <linux/node.h>
26
#include <linux/stop_machine.h>
27 28 29
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
30
#include <linux/slab.h>
31
#include <asm/cputhreads.h>
32
#include <asm/sparsemem.h>
33
#include <asm/prom.h>
P
Paul Mackerras 已提交
34
#include <asm/smp.h>
35 36
#include <asm/cputhreads.h>
#include <asm/topology.h>
37 38
#include <asm/firmware.h>
#include <asm/paca.h>
39
#include <asm/hvcall.h>
40
#include <asm/setup.h>
41
#include <asm/vdso.h>
42
#include <asm/drmem.h>
L
Linus Torvalds 已提交
43 44 45

static int numa_enabled = 1;

46 47
static char *cmdline __initdata;

L
Linus Torvalds 已提交
48 49 50
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

51
int numa_cpu_lookup_table[NR_CPUS];
52
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
53
struct pglist_data *node_data[MAX_NUMNODES];
54 55

EXPORT_SYMBOL(numa_cpu_lookup_table);
56
EXPORT_SYMBOL(node_to_cpumask_map);
57 58
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
59
static int min_common_depth;
60
static int n_mem_addr_cells, n_mem_size_cells;
61 62 63 64
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
65
static const __be32 *distance_ref_points;
66
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
67

68 69 70 71
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
72
 * Note: cpumask_of_node() is not valid until after this is done.
73 74 75
 */
static void __init setup_node_to_cpumask_map(void)
{
76
	unsigned int node;
77 78

	/* setup nr_node_ids if not done yet */
79 80
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
81 82

	/* allocate the map */
83
	for_each_node(node)
84 85 86 87 88 89
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

90
static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

137 138 139 140 141 142 143 144 145 146 147
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
148

149 150
	dbg("adding cpu %d to node %d\n", cpu, node);

151 152
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
153 154
}

155
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
156 157 158 159 160 161
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

162
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
163
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
164 165 166 167 168
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
169
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
170 171

/* must hold reference to node during call */
172
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
173
{
174
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
175 176
}

177 178 179 180 181 182
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
183
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
184 185 186 187 188 189 190 191 192 193 194

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
195
EXPORT_SYMBOL(__node_distance);
196 197

static void initialize_distance_lookup_table(int nid,
198
		const __be32 *associativity)
199 200 201 202 203 204 205
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
206 207
		const __be32 *entry;

208
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
209
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
210 211 212
	}
}

213 214 215
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
216
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
217
{
218
	int nid = NUMA_NO_NODE;
L
Linus Torvalds 已提交
219 220

	if (min_common_depth == -1)
221
		goto out;
L
Linus Torvalds 已提交
222

223 224
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
225 226

	/* POWER4 LPAR uses 0xffff as invalid node */
227
	if (nid == 0xffff || nid >= MAX_NUMNODES)
228
		nid = NUMA_NO_NODE;
229

230
	if (nid > 0 &&
231 232 233 234 235 236
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
237

238
out:
239
	return nid;
L
Linus Torvalds 已提交
240 241
}

242 243 244 245 246
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
247
	int nid = NUMA_NO_NODE;
248
	const __be32 *tmp;
249 250 251 252 253 254 255

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

256 257 258
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
259
	int nid = NUMA_NO_NODE;
260 261 262 263 264 265 266

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

267
		device = of_get_next_parent(device);
268 269 270 271 272
	}
	of_node_put(device);

	return nid;
}
273
EXPORT_SYMBOL(of_node_to_nid);
274

L
Linus Torvalds 已提交
275 276
static int __init find_min_common_depth(void)
{
277
	int depth;
278
	struct device_node *root;
L
Linus Torvalds 已提交
279

280 281 282 283
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
284 285
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
286 287

	/*
288 289 290 291 292 293 294 295 296 297
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
298
	 */
299
	distance_ref_points = of_get_property(root,
300 301 302 303 304 305 306 307 308
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
309

310 311 312
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
313
		form1_affinity = 1;
314 315
	}

316
	if (form1_affinity) {
317
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
318
	} else {
319 320 321 322 323 324
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

325
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
326 327
	}

328 329 330 331 332 333 334 335 336 337
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

338
	of_node_put(root);
L
Linus Torvalds 已提交
339
	return depth;
340 341

err:
342
	of_node_put(root);
343
	return -1;
L
Linus Torvalds 已提交
344 345
}

346
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
347 348 349 350
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
351
	if (!memory)
352
		panic("numa.c: No memory nodes found!");
353

354
	*n_addr_cells = of_n_addr_cells(memory);
355
	*n_size_cells = of_n_size_cells(memory);
356
	of_node_put(memory);
L
Linus Torvalds 已提交
357 358
}

359
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
360 361 362 363
{
	unsigned long result = 0;

	while (n--) {
364
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
365 366 367 368 369
		(*buf)++;
	}
	return result;
}

370 371 372
struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
373
	const __be32 *arrays;
374 375 376
};

/*
L
Lucas De Marchi 已提交
377
 * Retrieve and validate the list of associativity arrays for drconf
378 379 380 381 382 383 384 385
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
386
static int of_get_assoc_arrays(struct assoc_arrays *aa)
387
{
388
	struct device_node *memory;
389
	const __be32 *prop;
390 391
	u32 len;

392 393 394 395
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

396
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
397 398
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
399
		return -1;
400
	}
401

402 403
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
404

405 406
	of_node_put(memory);

407
	/* Now that we know the number of arrays and size of each array,
408 409 410 411 412 413 414 415 416 417 418 419 420
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
421
static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
422
{
423
	struct assoc_arrays aa = { .arrays = NULL };
424 425
	int default_nid = 0;
	int nid = default_nid;
426 427 428 429 430
	int rc, index;

	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;
431

432
	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
433 434 435
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
	    lmb->aa_index < aa.n_arrays) {
		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
436
		nid = of_read_number(&aa.arrays[index], 1);
437 438 439

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
440 441

		if (nid > 0) {
442
			index = lmb->aa_index * aa.array_sz;
443
			initialize_distance_lookup_table(nid,
444
							&aa.arrays[index]);
445
		}
446 447 448 449 450
	}

	return nid;
}

L
Linus Torvalds 已提交
451 452 453 454
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
455
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
456
{
457
	int nid = NUMA_NO_NODE;
458 459 460 461 462 463 464 465 466 467 468 469 470
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
471 472 473

	if (!cpu) {
		WARN_ON(1);
474 475 476 477
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
478 479
	}

480
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
481

482
out_present:
483
	if (nid < 0 || !node_possible(nid))
484
		nid = first_online_node;
L
Linus Torvalds 已提交
485

486
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
487
	of_node_put(cpu);
488
out:
489
	return nid;
L
Linus Torvalds 已提交
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

513 514 515 516 517 518 519 520 521 522 523 524
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
525
#ifdef CONFIG_HOTPLUG_CPU
526
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
527
#endif
528
	return 0;
L
Linus Torvalds 已提交
529 530 531 532 533 534 535 536
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
537
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
538
 */
539 540
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
541 542
{
	/*
Y
Yinghai Lu 已提交
543
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
544
	 * we've already adjusted it for the limit and it takes care of
545 546
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
547 548
	 */

Y
Yinghai Lu 已提交
549
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
550 551
		return size;

Y
Yinghai Lu 已提交
552
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
553 554
		return 0;

Y
Yinghai Lu 已提交
555
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
556 557
}

558 559 560 561
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
562
static inline int __init read_usm_ranges(const __be32 **usm)
563 564
{
	/*
565
	 * For each lmb in ibm,dynamic-memory a corresponding
566 567 568 569 570 571 572
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

573 574 575 576
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
577 578
static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm)
579
{
580 581
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
582 583
	int nid;

584 585 586 587 588 589
	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
590 591
		return;

592
	if (*usm)
593 594
		is_kexec_kdump = 1;

595 596 597
	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;
598

599 600 601 602 603
	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return;
	}
604

605
	do {
606
		if (is_kexec_kdump) {
607 608
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
609
		}
610 611 612 613 614 615 616 617 618

		nid = of_drconf_to_nid_single(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);
619 620
}

L
Linus Torvalds 已提交
621 622
static int __init parse_numa_properties(void)
{
623
	struct device_node *memory;
624
	int default_nid = 0;
L
Linus Torvalds 已提交
625 626 627 628 629 630 631 632 633 634 635 636
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

637 638
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
639
	/*
640 641 642
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
643
	 */
644
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
645
		struct device_node *cpu;
646
		int nid;
L
Linus Torvalds 已提交
647

648
		cpu = of_get_cpu_node(i, NULL);
649
		BUG_ON(!cpu);
650
		nid = of_node_to_nid_single(cpu);
651
		of_node_put(cpu);
L
Linus Torvalds 已提交
652

653 654 655 656 657 658 659 660
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
661 662
	}

663
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
664 665

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
666 667
		unsigned long start;
		unsigned long size;
668
		int nid;
L
Linus Torvalds 已提交
669
		int ranges;
670
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
671 672
		unsigned int len;

673
		memcell_buf = of_get_property(memory,
674 675
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
676
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
677 678 679
		if (!memcell_buf || len <= 0)
			continue;

680 681
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
682 683
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
684 685
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
686

687 688 689 690 691
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
692
		nid = of_node_to_nid_single(memory);
693 694
		if (nid < 0)
			nid = default_nid;
695 696

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
697
		node_set_online(nid);
L
Linus Torvalds 已提交
698

699 700 701
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
702 703 704 705 706

		if (--ranges)
			goto new_range;
	}

707
	/*
A
Anton Blanchard 已提交
708 709 710
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
711 712
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
713 714 715 716
	if (memory) {
		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
		of_node_put(memory);
	}
717

L
Linus Torvalds 已提交
718 719 720 721 722
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
723 724
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
725
	unsigned long start_pfn, end_pfn;
726 727
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
728

729
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
730
	       top_of_ram, total_ram);
731
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
732 733
	       (top_of_ram - total_ram) >> 20);

734
	for_each_memblock(memory, reg) {
735 736
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
737 738

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
739
		memblock_set_node(PFN_PHYS(start_pfn),
740 741
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
742
		node_set_online(nid);
743
	}
L
Linus Torvalds 已提交
744 745
}

746 747 748 749 750 751 752 753 754
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
755
		pr_info("Node %d CPUs:", node);
756 757 758 759 760 761

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
762 763 764
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
765
				if (count == 0)
766
					pr_cont(" %u", cpu);
767 768 769
				++count;
			} else {
				if (count > 1)
770
					pr_cont("-%u", cpu - 1);
771 772 773 774 775
				count = 0;
			}
		}

		if (count > 1)
776 777
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
778 779 780
	}
}

781 782
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
783
{
784 785 786 787 788
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
789

790
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
791
	nd = __va(nd_pa);
792

793 794 795 796 797 798
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
799

800 801 802 803 804 805
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	u32 numnodes, i;

	if (min_common_depth <= 0)
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	if (of_property_read_u32_index(rtas,
				"ibm,max-associativity-domains",
				min_common_depth, &numnodes))
		goto out;

	for (i = 0; i < numnodes; i++) {
825
		if (!node_possible(i))
826 827 828 829 830 831 832
			node_set(i, node_possible_map);
	}

out:
	of_node_put(rtas);
}

833
void __init mem_topology_setup(void)
L
Linus Torvalds 已提交
834
{
835
	int cpu;
L
Linus Torvalds 已提交
836 837 838 839

	if (parse_numa_properties())
		setup_nonnuma();

840
	/*
841 842 843 844
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
845 846 847
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

848 849
	find_possible_nodes();

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	setup_node_to_cpumask_map();

	reset_numa_cpu_lookup_table();

	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
}

void __init initmem_init(void)
{
	int nid;

	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	memblock_dump_all();

L
Linus Torvalds 已提交
867
	for_each_online_node(nid) {
868
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
869

870
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
871
		setup_node_data(nid, start_pfn, end_pfn);
872
		sparse_memory_present_with_active_regions(nid);
873
	}
874

875
	sparse_init();
876

877 878 879 880
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
881 882
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
883
	 */
T
Thomas Gleixner 已提交
884
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
885
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
L
Linus Torvalds 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

899 900 901 902
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
903 904 905
	return 0;
}
early_param("numa", early_numa);
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

923
#ifdef CONFIG_MEMORY_HOTPLUG
924
/*
925 926 927
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
928
 */
929
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
930
{
931
	struct drmem_lmb *lmb;
932
	unsigned long lmb_size;
933
	int nid = NUMA_NO_NODE;
934

935
	lmb_size = drmem_lmb_size();
936

937
	for_each_drmem_lmb(lmb) {
938 939
		/* skip this block if it is reserved or not assigned to
		 * this partition */
940 941
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
942 943
			continue;

944 945
		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
946 947
			continue;

948
		nid = of_drconf_to_nid_single(lmb);
949 950 951 952 953 954 955 956 957
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
958
 * each memblock.
959
 */
960
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
961
{
962
	struct device_node *memory;
963
	int nid = NUMA_NO_NODE;
964

965
	for_each_node_by_type(memory, "memory") {
966 967
		unsigned long start, size;
		int ranges;
968
		const __be32 *memcell_buf;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
988

989 990
		if (nid >= 0)
			break;
991 992
	}

993 994
	of_node_put(memory);

995
	return nid;
996 997
}

998 999
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1000 1001
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1002 1003 1004 1005
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1006
	int nid;
1007 1008

	if (!numa_enabled || (min_common_depth < 0))
1009
		return first_online_node;
1010 1011 1012

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
1013
		nid = hot_add_drconf_scn_to_nid(scn_addr);
1014
		of_node_put(memory);
1015 1016
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1017
	}
1018

1019
	if (nid < 0 || !node_possible(nid))
1020
		nid = first_online_node;
1021

1022
	return nid;
1023
}
1024

1025 1026
static u64 hot_add_drconf_memory_max(void)
{
1027
	struct device_node *memory = NULL;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1038

1039 1040 1041
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
1042
		return drmem_lmb_memory_max();
1043
	}
1044
	return 0;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1057
#endif /* CONFIG_MEMORY_HOTPLUG */
1058

1059
/* Virtual Processor Home Node (VPHN) support */
1060
#ifdef CONFIG_PPC_SPLPAR
1061 1062 1063

#include "vphn.h"

1064 1065 1066 1067 1068 1069 1070
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1071 1072
#define TOPOLOGY_DEF_TIMER_SECS	60

1073
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1074 1075
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1076 1077
static int prrn_enabled;
static void reset_topology_timer(void);
1078
static int topology_timer_secs = 1;
1079
static int topology_inited;
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1097 1098 1099 1100 1101 1102 1103

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1104
	int cpu;
1105

1106 1107 1108
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1109
	for_each_possible_cpu(cpu) {
1110
		int i;
1111
		u8 *counts = vphn_cpu_change_counts[cpu];
1112
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1113

1114
		for (i = 0; i < distance_ref_points_depth; i++)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1132
	int cpu;
1133 1134 1135 1136 1137
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
1138
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139

1140
		for (i = 0; i < distance_ref_points_depth; i++) {
1141
			if (hypervisor_counts[i] != counts[i]) {
1142 1143 1144 1145 1146
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1147 1148
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1149 1150 1151
		}
	}

1152
	return cpumask_weight(changes);
1153 1154 1155 1156 1157 1158
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1159
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1160
{
1161
	long rc;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1173
					__be32 *associativity)
1174
{
1175
	long rc;
1176 1177 1178 1179 1180

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
1181
		printk_once(KERN_INFO
1182 1183 1184 1185 1186 1187 1188 1189
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
1190 1191 1192
		break;
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
1193
		timed_topology_update(0);
1194
		break;
1195 1196 1197 1198 1199
	}

	return rc;
}

1200
int find_and_online_cpu_nid(int cpu)
1201 1202 1203 1204 1205
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int new_nid;

	/* Use associativity from first thread for all siblings */
1206 1207 1208
	if (vphn_get_associativity(cpu, associativity))
		return cpu_to_node(cpu);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	new_nid = associativity_to_nid(associativity);
	if (new_nid < 0 || !node_possible(new_nid))
		new_nid = first_online_node;

	if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
		/*
		 * Need to ensure that NODE_DATA is initialized for a node from
		 * available memory (see memblock_alloc_try_nid). If unable to
		 * init the node, then default to nearest node that has memory
1219 1220
		 * installed. Skip onlining a node if the subsystems are not
		 * yet initialized.
1221
		 */
1222
		if (!topology_inited || try_online_node(new_nid))
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
			new_nid = first_online_node;
#else
		/*
		 * Default to using the nearest node that has memory installed.
		 * Otherwise, it would be necessary to patch the kernel MM code
		 * to deal with more memoryless-node error conditions.
		 */
		new_nid = first_online_node;
#endif
	}

1234 1235
	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
		cpu, new_nid);
1236 1237 1238
	return new_nid;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1252
	cpu = smp_processor_id();
1253 1254

	for (update = data; update; update = update->next) {
1255
		int new_nid = update->new_nid;
1256 1257 1258
		if (cpu != update->cpu)
			continue;

1259
		unmap_cpu_from_node(cpu);
1260 1261 1262
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1263
		vdso_getcpu_init();
1264 1265 1266 1267 1268
	}

	return 0;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1296 1297
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1298
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1299 1300
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1301
 */
1302
int numa_update_cpu_topology(bool cpus_locked)
1303
{
1304
	unsigned int cpu, sibling, changed = 0;
1305
	struct topology_update_data *updates, *ud;
1306
	cpumask_t updated_cpus;
1307
	struct device *dev;
1308
	int weight, new_nid, i = 0;
1309

1310
	if (!prrn_enabled && !vphn_enabled && topology_inited)
1311 1312
		return 0;

1313 1314 1315 1316
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

K
Kees Cook 已提交
1317
	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1318 1319
	if (!updates)
		return 0;
1320

1321 1322
	cpumask_clear(&updated_cpus);

1323
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1339

1340
		new_nid = find_and_online_cpu_nid(cpu);
1341 1342 1343 1344 1345

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1346 1347
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1348 1349 1350
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1351

1352 1353
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1354
			ud->next = &updates[i];
1355 1356 1357 1358 1359 1360
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1361 1362
	}

1363 1364 1365 1366 1367 1368 1369
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1370 1371 1372 1373 1374 1375 1376 1377 1378
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1393 1394 1395 1396 1397
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1398

1399 1400 1401 1402 1403
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1404 1405
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1406
					cpumask_of(raw_smp_processor_id()));
1407 1408 1409
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1410

1411
	for (ud = &updates[0]; ud; ud = ud->next) {
1412 1413 1414
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1415
		dev = get_cpu_device(ud->cpu);
1416 1417
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1418
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1419
		changed = 1;
1420 1421
	}

1422
out:
1423
	kfree(updates);
1424
	return changed;
1425 1426
}

1427 1428 1429 1430 1431
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1432 1433 1434 1435 1436 1437
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1438
static void topology_schedule_update(void)
1439 1440 1441 1442
{
	schedule_work(&topology_work);
}

1443
static void topology_timer_fn(struct timer_list *unused)
1444
{
1445
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1446
		topology_schedule_update();
1447 1448 1449 1450 1451
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1452
}
1453
static struct timer_list topology_timer;
1454

1455
static void reset_topology_timer(void)
1456
{
1457 1458
	if (vphn_enabled)
		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1459 1460
}

1461 1462
#ifdef CONFIG_SMP

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1473
	struct of_reconfig_data *update = data;
1474 1475 1476 1477
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1478
		if (of_node_is_type(update->dn, "cpu") &&
1479
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1480 1481 1482 1483 1484 1485 1486 1487 1488
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1489 1490
}

1491 1492 1493 1494
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1495 1496
#endif

1497
/*
1498
 * Start polling for associativity changes.
1499 1500 1501 1502 1503
 */
int start_topology_update(void)
{
	int rc = 0;

1504 1505 1506
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1507
#ifdef CONFIG_SMP
1508
			rc = of_reconfig_notifier_register(&dt_update_nb);
1509
#endif
1510
		}
1511 1512
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1513
		   lppaca_shared_proc(get_lppaca())) {
1514 1515 1516
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1517 1518
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1519 1520
			reset_topology_timer();
		}
1521 1522
	}

1523 1524 1525 1526
	pr_info("Starting topology update%s%s\n",
		(prrn_enabled ? " prrn_enabled" : ""),
		(vphn_enabled ? " vphn_enabled" : ""));

1527 1528 1529 1530 1531 1532 1533 1534
	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1535 1536 1537 1538
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1539
#ifdef CONFIG_SMP
1540
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1541
#endif
1542 1543
	}
	if (vphn_enabled) {
1544 1545 1546 1547
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

1548 1549
	pr_info("Stopping topology update\n");

1550
	return rc;
1551
}
1552 1553 1554 1555 1556 1557

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

1558 1559 1560 1561 1562 1563 1564 1565 1566
void __init shared_proc_topology_init(void)
{
	if (lppaca_shared_proc(get_lppaca())) {
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
			    nr_cpumask_bits);
		numa_update_cpu_topology(false);
	}
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1613 1614 1615 1616
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1617 1618 1619
	if (vphn_enabled)
		topology_schedule_update();

1620 1621
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1622

1623
	topology_inited = 1;
1624
	return 0;
1625
}
1626
device_initcall(topology_update_init);
1627
#endif /* CONFIG_PPC_SPLPAR */