numa.c 38.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13
#include <linux/threads.h>
M
Mike Rapoport 已提交
14
#include <linux/memblock.h>
L
Linus Torvalds 已提交
15 16 17
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
22
#include <linux/of.h>
23
#include <linux/pfn.h>
24 25
#include <linux/cpuset.h>
#include <linux/node.h>
26
#include <linux/stop_machine.h>
27 28 29
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
30
#include <linux/slab.h>
31
#include <asm/cputhreads.h>
32
#include <asm/sparsemem.h>
33
#include <asm/prom.h>
P
Paul Mackerras 已提交
34
#include <asm/smp.h>
35
#include <asm/topology.h>
36 37
#include <asm/firmware.h>
#include <asm/paca.h>
38
#include <asm/hvcall.h>
39
#include <asm/setup.h>
40
#include <asm/vdso.h>
41
#include <asm/drmem.h>
L
Linus Torvalds 已提交
42 43 44

static int numa_enabled = 1;

45 46
static char *cmdline __initdata;

L
Linus Torvalds 已提交
47 48 49
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

50
int numa_cpu_lookup_table[NR_CPUS];
51
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
52
struct pglist_data *node_data[MAX_NUMNODES];
53 54

EXPORT_SYMBOL(numa_cpu_lookup_table);
55
EXPORT_SYMBOL(node_to_cpumask_map);
56 57
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
58
static int min_common_depth;
59
static int n_mem_addr_cells, n_mem_size_cells;
60 61 62 63
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
64
static const __be32 *distance_ref_points;
65
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
66

67 68 69 70
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
71
 * Note: cpumask_of_node() is not valid until after this is done.
72 73 74
 */
static void __init setup_node_to_cpumask_map(void)
{
75
	unsigned int node;
76 77

	/* setup nr_node_ids if not done yet */
78 79
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
80 81

	/* allocate the map */
82
	for_each_node(node)
83 84 85
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
86
	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
87 88
}

89
static int __init fake_numa_create_new_node(unsigned long end_pfn,
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

136 137 138 139 140 141 142 143 144 145 146
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
147

148 149
	dbg("adding cpu %d to node %d\n", cpu, node);

150 151
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
152 153
}

154
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
155 156 157 158 159 160
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

161
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
162
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
163 164 165 166 167
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
168
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
	int dist = 0;

	int i, index;

	for (i = 0; i < distance_ref_points_depth; i++) {
		index = be32_to_cpu(distance_ref_points[i]);
		if (cpu1_assoc[index] == cpu2_assoc[index])
			break;
		dist++;
	}

	return dist;
}

L
Linus Torvalds 已提交
186
/* must hold reference to node during call */
187
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
188
{
189
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
198
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
199 200 201 202 203 204 205 206 207 208 209

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
210
EXPORT_SYMBOL(__node_distance);
211 212

static void initialize_distance_lookup_table(int nid,
213
		const __be32 *associativity)
214 215 216 217 218 219 220
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
221 222
		const __be32 *entry;

223
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
224
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
225 226 227
	}
}

228 229 230
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
231
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
232
{
233
	int nid = NUMA_NO_NODE;
L
Linus Torvalds 已提交
234 235

	if (min_common_depth == -1)
236
		goto out;
L
Linus Torvalds 已提交
237

238 239
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
240 241

	/* POWER4 LPAR uses 0xffff as invalid node */
242
	if (nid == 0xffff || nid >= MAX_NUMNODES)
243
		nid = NUMA_NO_NODE;
244

245
	if (nid > 0 &&
246 247 248 249 250 251
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
252

253
out:
254
	return nid;
L
Linus Torvalds 已提交
255 256
}

257 258 259 260 261
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
262
	int nid = NUMA_NO_NODE;
263
	const __be32 *tmp;
264 265 266 267 268 269 270

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

271 272 273
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
274
	int nid = NUMA_NO_NODE;
275 276 277 278 279 280 281

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

282
		device = of_get_next_parent(device);
283 284 285 286 287
	}
	of_node_put(device);

	return nid;
}
288
EXPORT_SYMBOL(of_node_to_nid);
289

L
Linus Torvalds 已提交
290 291
static int __init find_min_common_depth(void)
{
292
	int depth;
293
	struct device_node *root;
L
Linus Torvalds 已提交
294

295 296 297 298
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
299 300
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
301 302

	/*
303 304 305 306 307 308 309 310 311 312
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
313
	 */
314
	distance_ref_points = of_get_property(root,
315 316 317 318 319 320 321 322 323
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
324

325 326 327
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
328
		form1_affinity = 1;
329 330
	}

331
	if (form1_affinity) {
332
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
333
	} else {
334 335 336 337 338 339
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

340
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
341 342
	}

343 344 345 346 347 348 349 350 351 352
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

353
	of_node_put(root);
L
Linus Torvalds 已提交
354
	return depth;
355 356

err:
357
	of_node_put(root);
358
	return -1;
L
Linus Torvalds 已提交
359 360
}

361
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
362 363 364 365
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
366
	if (!memory)
367
		panic("numa.c: No memory nodes found!");
368

369
	*n_addr_cells = of_n_addr_cells(memory);
370
	*n_size_cells = of_n_size_cells(memory);
371
	of_node_put(memory);
L
Linus Torvalds 已提交
372 373
}

374
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
375 376 377 378
{
	unsigned long result = 0;

	while (n--) {
379
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
380 381 382 383 384
		(*buf)++;
	}
	return result;
}

385 386 387
struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
388
	const __be32 *arrays;
389 390 391
};

/*
L
Lucas De Marchi 已提交
392
 * Retrieve and validate the list of associativity arrays for drconf
393 394 395 396 397 398 399 400
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
401
static int of_get_assoc_arrays(struct assoc_arrays *aa)
402
{
403
	struct device_node *memory;
404
	const __be32 *prop;
405 406
	u32 len;

407 408 409 410
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

411
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
412 413
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
414
		return -1;
415
	}
416

417 418
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
419

420 421
	of_node_put(memory);

422
	/* Now that we know the number of arrays and size of each array,
423 424 425 426 427 428 429 430 431 432 433 434 435
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
436
static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
437
{
438
	struct assoc_arrays aa = { .arrays = NULL };
439 440
	int default_nid = 0;
	int nid = default_nid;
441 442 443 444 445
	int rc, index;

	rc = of_get_assoc_arrays(&aa);
	if (rc)
		return default_nid;
446

447
	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
448 449 450
	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
	    lmb->aa_index < aa.n_arrays) {
		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
451
		nid = of_read_number(&aa.arrays[index], 1);
452 453 454

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
455 456

		if (nid > 0) {
457
			index = lmb->aa_index * aa.array_sz;
458
			initialize_distance_lookup_table(nid,
459
							&aa.arrays[index]);
460
		}
461 462 463 464 465
	}

	return nid;
}

L
Linus Torvalds 已提交
466 467 468 469
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
470
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
471
{
472
	int nid = NUMA_NO_NODE;
473 474 475 476 477 478 479 480 481 482 483 484 485
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
486 487 488

	if (!cpu) {
		WARN_ON(1);
489 490 491 492
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
493 494
	}

495
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
496

497
out_present:
498
	if (nid < 0 || !node_possible(nid))
499
		nid = first_online_node;
L
Linus Torvalds 已提交
500

501
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
502
	of_node_put(cpu);
503
out:
504
	return nid;
L
Linus Torvalds 已提交
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

528 529 530 531 532 533 534 535 536 537 538 539
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
540
#ifdef CONFIG_HOTPLUG_CPU
541
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
542
#endif
543
	return 0;
L
Linus Torvalds 已提交
544 545 546 547 548 549 550 551
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
552
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
553
 */
554 555
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
556 557
{
	/*
Y
Yinghai Lu 已提交
558
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
559
	 * we've already adjusted it for the limit and it takes care of
560 561
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
562 563
	 */

Y
Yinghai Lu 已提交
564
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
565 566
		return size;

Y
Yinghai Lu 已提交
567
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
568 569
		return 0;

Y
Yinghai Lu 已提交
570
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
571 572
}

573 574 575 576
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
577
static inline int __init read_usm_ranges(const __be32 **usm)
578 579
{
	/*
580
	 * For each lmb in ibm,dynamic-memory a corresponding
581 582 583 584 585 586 587
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

588 589 590 591
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
592 593
static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
					const __be32 **usm)
594
{
595 596
	unsigned int ranges, is_kexec_kdump = 0;
	unsigned long base, size, sz;
597 598
	int nid;

599 600 601 602 603 604
	/*
	 * Skip this block if the reserved bit is set in flags (0x80)
	 * or if the block is not assigned to this partition (0x8)
	 */
	if ((lmb->flags & DRCONF_MEM_RESERVED)
	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
605 606
		return;

607
	if (*usm)
608 609
		is_kexec_kdump = 1;

610 611 612
	base = lmb->base_addr;
	size = drmem_lmb_size();
	ranges = 1;
613

614 615 616 617 618
	if (is_kexec_kdump) {
		ranges = read_usm_ranges(usm);
		if (!ranges) /* there are no (base, size) duple */
			return;
	}
619

620
	do {
621
		if (is_kexec_kdump) {
622 623
			base = read_n_cells(n_mem_addr_cells, usm);
			size = read_n_cells(n_mem_size_cells, usm);
624
		}
625 626 627 628 629 630 631 632 633

		nid = of_drconf_to_nid_single(lmb);
		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
					  &nid);
		node_set_online(nid);
		sz = numa_enforce_memory_limit(base, size);
		if (sz)
			memblock_set_node(base, sz, &memblock.memory, nid);
	} while (--ranges);
634 635
}

L
Linus Torvalds 已提交
636 637
static int __init parse_numa_properties(void)
{
638
	struct device_node *memory;
639
	int default_nid = 0;
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

652 653
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
654
	/*
655 656 657
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
658
	 */
659
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
660
		struct device_node *cpu;
661
		int nid;
L
Linus Torvalds 已提交
662

663
		cpu = of_get_cpu_node(i, NULL);
664
		BUG_ON(!cpu);
665
		nid = of_node_to_nid_single(cpu);
666
		of_node_put(cpu);
L
Linus Torvalds 已提交
667

668 669 670 671 672 673 674 675
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
676 677
	}

678
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
679 680

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
681 682
		unsigned long start;
		unsigned long size;
683
		int nid;
L
Linus Torvalds 已提交
684
		int ranges;
685
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
686 687
		unsigned int len;

688
		memcell_buf = of_get_property(memory,
689 690
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
691
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
692 693 694
		if (!memcell_buf || len <= 0)
			continue;

695 696
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
697 698
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
699 700
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
701

702 703 704 705 706
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
707
		nid = of_node_to_nid_single(memory);
708 709
		if (nid < 0)
			nid = default_nid;
710 711

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
712
		node_set_online(nid);
L
Linus Torvalds 已提交
713

714 715 716
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
717 718 719 720 721

		if (--ranges)
			goto new_range;
	}

722
	/*
A
Anton Blanchard 已提交
723 724 725
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
726 727
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
728 729 730 731
	if (memory) {
		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
		of_node_put(memory);
	}
732

L
Linus Torvalds 已提交
733 734 735 736 737
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
738 739
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
740
	unsigned long start_pfn, end_pfn;
741 742
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
743

744
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
745
	       top_of_ram, total_ram);
746
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
747 748
	       (top_of_ram - total_ram) >> 20);

749
	for_each_memblock(memory, reg) {
750 751
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
752 753

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
754
		memblock_set_node(PFN_PHYS(start_pfn),
755 756
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
757
		node_set_online(nid);
758
	}
L
Linus Torvalds 已提交
759 760
}

761 762 763 764 765 766 767 768 769
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
770
		pr_info("Node %d CPUs:", node);
771 772 773 774 775 776

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
777 778 779
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
780
				if (count == 0)
781
					pr_cont(" %u", cpu);
782 783 784
				++count;
			} else {
				if (count > 1)
785
					pr_cont("-%u", cpu - 1);
786 787 788 789 790
				count = 0;
			}
		}

		if (count > 1)
791 792
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
793 794 795
	}
}

796 797
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
798
{
799 800 801 802 803
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
804

805
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
806 807 808 809
	if (!nd_pa)
		panic("Cannot allocate %zu bytes for node %d data\n",
		      nd_size, nid);

810
	nd = __va(nd_pa);
811

812 813 814 815 816 817
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
818

819 820 821 822 823 824
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static void __init find_possible_nodes(void)
{
	struct device_node *rtas;
	u32 numnodes, i;

	if (min_common_depth <= 0)
		return;

	rtas = of_find_node_by_path("/rtas");
	if (!rtas)
		return;

	if (of_property_read_u32_index(rtas,
				"ibm,max-associativity-domains",
				min_common_depth, &numnodes))
		goto out;

	for (i = 0; i < numnodes; i++) {
844
		if (!node_possible(i))
845 846 847 848 849 850 851
			node_set(i, node_possible_map);
	}

out:
	of_node_put(rtas);
}

852
void __init mem_topology_setup(void)
L
Linus Torvalds 已提交
853
{
854
	int cpu;
L
Linus Torvalds 已提交
855 856 857 858

	if (parse_numa_properties())
		setup_nonnuma();

859
	/*
860 861 862 863
	 * Modify the set of possible NUMA nodes to reflect information
	 * available about the set of online nodes, and the set of nodes
	 * that we expect to make use of for this platform's affinity
	 * calculations.
864 865 866
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

867 868
	find_possible_nodes();

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	setup_node_to_cpumask_map();

	reset_numa_cpu_lookup_table();

	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
}

void __init initmem_init(void)
{
	int nid;

	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	memblock_dump_all();

L
Linus Torvalds 已提交
886
	for_each_online_node(nid) {
887
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
888

889
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
890
		setup_node_data(nid, start_pfn, end_pfn);
891
		sparse_memory_present_with_active_regions(nid);
892
	}
893

894
	sparse_init();
895

896 897 898 899
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
900 901
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
902
	 */
T
Thomas Gleixner 已提交
903
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
904
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
L
Linus Torvalds 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

918 919 920 921
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
922 923 924
	return 0;
}
early_param("numa", early_numa);
925

926 927 928 929 930 931 932
/*
 * The platform can inform us through one of several mechanisms
 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
 * assignment of a resource has changed. This controls whether we act
 * on that. Disabled by default.
 */
static bool topology_updates_enabled;
933 934 935 936 937 938

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

939 940 941
	if (!strcmp(p, "on")) {
		pr_warn("Caution: enabling topology updates\n");
		topology_updates_enabled = true;
942 943 944 945 946 947
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

948
#ifdef CONFIG_MEMORY_HOTPLUG
949
/*
950 951 952
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
953
 */
954
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
955
{
956
	struct drmem_lmb *lmb;
957
	unsigned long lmb_size;
958
	int nid = NUMA_NO_NODE;
959

960
	lmb_size = drmem_lmb_size();
961

962
	for_each_drmem_lmb(lmb) {
963 964
		/* skip this block if it is reserved or not assigned to
		 * this partition */
965 966
		if ((lmb->flags & DRCONF_MEM_RESERVED)
		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
967 968
			continue;

969 970
		if ((scn_addr < lmb->base_addr)
		    || (scn_addr >= (lmb->base_addr + lmb_size)))
971 972
			continue;

973
		nid = of_drconf_to_nid_single(lmb);
974 975 976 977 978 979 980 981 982
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
983
 * each memblock.
984
 */
985
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
986
{
987
	struct device_node *memory;
988
	int nid = NUMA_NO_NODE;
989

990
	for_each_node_by_type(memory, "memory") {
991 992
		unsigned long start, size;
		int ranges;
993
		const __be32 *memcell_buf;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1013

1014 1015
		if (nid >= 0)
			break;
1016 1017
	}

1018 1019
	of_node_put(memory);

1020
	return nid;
1021 1022
}

1023 1024
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1025 1026
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1027 1028 1029 1030
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1031
	int nid;
1032 1033

	if (!numa_enabled || (min_common_depth < 0))
1034
		return first_online_node;
1035 1036 1037

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
1038
		nid = hot_add_drconf_scn_to_nid(scn_addr);
1039
		of_node_put(memory);
1040 1041
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1042
	}
1043

1044
	if (nid < 0 || !node_possible(nid))
1045
		nid = first_online_node;
1046

1047
	return nid;
1048
}
1049

1050 1051
static u64 hot_add_drconf_memory_max(void)
{
1052
	struct device_node *memory = NULL;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	struct device_node *dn = NULL;
	const __be64 *lrdr = NULL;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1063

1064 1065 1066
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		of_node_put(memory);
1067
		return drmem_lmb_memory_max();
1068
	}
1069
	return 0;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1082
#endif /* CONFIG_MEMORY_HOTPLUG */
1083

1084
/* Virtual Processor Home Node (VPHN) support */
1085
#ifdef CONFIG_PPC_SPLPAR
1086 1087 1088 1089 1090 1091 1092
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1093 1094
#define TOPOLOGY_DEF_TIMER_SECS	60

1095
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1096 1097
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1098 1099
static int prrn_enabled;
static void reset_topology_timer(void);
1100
static int topology_timer_secs = 1;
1101
static int topology_inited;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1119 1120 1121 1122 1123 1124 1125

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1126
	int cpu;
1127

1128 1129 1130
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1131
	for_each_possible_cpu(cpu) {
1132
		int i;
1133
		u8 *counts = vphn_cpu_change_counts[cpu];
1134
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1135

1136
		for (i = 0; i < distance_ref_points_depth; i++)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1154
	int cpu;
1155 1156 1157 1158 1159
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
1160
		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1161

1162
		for (i = 0; i < distance_ref_points_depth; i++) {
1163
			if (hypervisor_counts[i] != counts[i]) {
1164 1165 1166 1167 1168
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1169 1170
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1171 1172 1173
		}
	}

1174
	return cpumask_weight(changes);
1175 1176 1177 1178 1179 1180 1181
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long vphn_get_associativity(unsigned long cpu,
1182
					__be32 *associativity)
1183
{
1184
	long rc;
1185

1186 1187
	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
				VPHN_FLAG_VCPU, associativity);
1188 1189 1190

	switch (rc) {
	case H_FUNCTION:
1191
		printk_once(KERN_INFO
1192 1193 1194 1195 1196 1197 1198 1199
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
1200 1201 1202
		break;
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
1203
		timed_topology_update(0);
1204
		break;
1205 1206 1207 1208 1209
	}

	return rc;
}

1210
int find_and_online_cpu_nid(int cpu)
1211 1212 1213 1214 1215
{
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
	int new_nid;

	/* Use associativity from first thread for all siblings */
1216 1217 1218
	if (vphn_get_associativity(cpu, associativity))
		return cpu_to_node(cpu);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	new_nid = associativity_to_nid(associativity);
	if (new_nid < 0 || !node_possible(new_nid))
		new_nid = first_online_node;

	if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
		/*
		 * Need to ensure that NODE_DATA is initialized for a node from
		 * available memory (see memblock_alloc_try_nid). If unable to
		 * init the node, then default to nearest node that has memory
1229 1230
		 * installed. Skip onlining a node if the subsystems are not
		 * yet initialized.
1231
		 */
1232
		if (!topology_inited || try_online_node(new_nid))
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			new_nid = first_online_node;
#else
		/*
		 * Default to using the nearest node that has memory installed.
		 * Otherwise, it would be necessary to patch the kernel MM code
		 * to deal with more memoryless-node error conditions.
		 */
		new_nid = first_online_node;
#endif
	}

1244 1245
	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
		cpu, new_nid);
1246 1247 1248
	return new_nid;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1262
	cpu = smp_processor_id();
1263 1264

	for (update = data; update; update = update->next) {
1265
		int new_nid = update->new_nid;
1266 1267 1268
		if (cpu != update->cpu)
			continue;

1269
		unmap_cpu_from_node(cpu);
1270 1271 1272
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1273
		vdso_getcpu_init();
1274 1275 1276 1277 1278
	}

	return 0;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1306 1307
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1308
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1309 1310
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1311
 */
1312
int numa_update_cpu_topology(bool cpus_locked)
1313
{
1314
	unsigned int cpu, sibling, changed = 0;
1315
	struct topology_update_data *updates, *ud;
1316
	cpumask_t updated_cpus;
1317
	struct device *dev;
1318
	int weight, new_nid, i = 0;
1319

1320
	if (!prrn_enabled && !vphn_enabled && topology_inited)
1321 1322
		return 0;

1323 1324 1325 1326
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

K
Kees Cook 已提交
1327
	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1328 1329
	if (!updates)
		return 0;
1330

1331 1332
	cpumask_clear(&updated_cpus);

1333
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1349

1350
		new_nid = find_and_online_cpu_nid(cpu);
1351 1352 1353 1354 1355

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1356 1357
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1358 1359 1360
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1361

1362 1363
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1364
			ud->next = &updates[i];
1365 1366 1367 1368 1369 1370
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1371 1372
	}

1373 1374 1375 1376 1377 1378 1379
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1380 1381 1382 1383 1384 1385 1386 1387 1388
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1403 1404 1405 1406 1407
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1408

1409 1410 1411 1412 1413
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1414 1415
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1416
					cpumask_of(raw_smp_processor_id()));
1417 1418 1419
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1420

1421
	for (ud = &updates[0]; ud; ud = ud->next) {
1422 1423 1424
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1425
		dev = get_cpu_device(ud->cpu);
1426 1427
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1428
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1429
		changed = 1;
1430 1431
	}

1432
out:
1433
	kfree(updates);
1434
	return changed;
1435 1436
}

1437 1438 1439 1440 1441
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1442 1443 1444 1445 1446 1447
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1448
static void topology_schedule_update(void)
1449 1450 1451 1452
{
	schedule_work(&topology_work);
}

1453
static void topology_timer_fn(struct timer_list *unused)
1454
{
1455
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1456
		topology_schedule_update();
1457 1458 1459 1460 1461
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1462
}
1463
static struct timer_list topology_timer;
1464

1465
static void reset_topology_timer(void)
1466
{
1467 1468
	if (vphn_enabled)
		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1469 1470
}

1471 1472
#ifdef CONFIG_SMP

1473 1474 1475
static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1476
	struct of_reconfig_data *update = data;
1477 1478 1479 1480
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1481
		if (of_node_is_type(update->dn, "cpu") &&
1482
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1483 1484
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
1485
			rc = dlpar_cpu_readd(core_id);
1486 1487 1488 1489 1490 1491
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1492 1493
}

1494 1495 1496 1497
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1498 1499
#endif

1500
/*
1501
 * Start polling for associativity changes.
1502 1503 1504 1505 1506
 */
int start_topology_update(void)
{
	int rc = 0;

1507 1508 1509
	if (!topology_updates_enabled)
		return 0;

1510 1511 1512
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1513
#ifdef CONFIG_SMP
1514
			rc = of_reconfig_notifier_register(&dt_update_nb);
1515
#endif
1516
		}
1517 1518
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1519
		   lppaca_shared_proc(get_lppaca())) {
1520 1521 1522
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1523 1524
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1525 1526
			reset_topology_timer();
		}
1527 1528
	}

1529 1530 1531 1532
	pr_info("Starting topology update%s%s\n",
		(prrn_enabled ? " prrn_enabled" : ""),
		(vphn_enabled ? " vphn_enabled" : ""));

1533 1534 1535 1536 1537 1538 1539 1540
	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1541 1542
	int rc = 0;

1543 1544 1545
	if (!topology_updates_enabled)
		return 0;

1546 1547
	if (prrn_enabled) {
		prrn_enabled = 0;
1548
#ifdef CONFIG_SMP
1549
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1550
#endif
1551 1552
	}
	if (vphn_enabled) {
1553 1554 1555 1556
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

1557 1558
	pr_info("Stopping topology update\n");

1559
	return rc;
1560
}
1561 1562 1563 1564 1565 1566

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575
void __init shared_proc_topology_init(void)
{
	if (lppaca_shared_proc(get_lppaca())) {
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
			    nr_cpumask_bits);
		numa_update_cpu_topology(false);
	}
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

1603 1604
	if (!strncmp(kbuf, "on", 2)) {
		topology_updates_enabled = true;
1605
		start_topology_update();
1606
	} else if (!strncmp(kbuf, "off", 3)) {
1607
		stop_topology_update();
1608 1609
		topology_updates_enabled = false;
	} else
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1624
	start_topology_update();
1625

1626 1627 1628
	if (vphn_enabled)
		topology_schedule_update();

1629 1630
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1631

1632
	topology_inited = 1;
1633
	return 0;
1634
}
1635
device_initcall(topology_update_init);
1636
#endif /* CONFIG_PPC_SPLPAR */