numa.c 39.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26 27 28
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
29
#include <linux/slab.h>
30
#include <asm/sparsemem.h>
31
#include <asm/prom.h>
P
Paul Mackerras 已提交
32
#include <asm/smp.h>
33 34
#include <asm/firmware.h>
#include <asm/paca.h>
35
#include <asm/hvcall.h>
36
#include <asm/setup.h>
37
#include <asm/vdso.h>
L
Linus Torvalds 已提交
38 39 40

static int numa_enabled = 1;

41 42
static char *cmdline __initdata;

L
Linus Torvalds 已提交
43 44 45
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

46
int numa_cpu_lookup_table[NR_CPUS];
47
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
48
struct pglist_data *node_data[MAX_NUMNODES];
49 50

EXPORT_SYMBOL(numa_cpu_lookup_table);
51
EXPORT_SYMBOL(node_to_cpumask_map);
52 53
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
54
static int min_common_depth;
55
static int n_mem_addr_cells, n_mem_size_cells;
56 57 58 59 60 61
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const unsigned int *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
62

63 64 65 66
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
67
 * Note: cpumask_of_node() is not valid until after this is done.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node, num = 0;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES) {
		for_each_node_mask(node, node_possible_map)
			num = node;
		nr_node_ids = num + 1;
	}

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

88
static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

135
/*
136
 * get_node_active_region - Return active region containing pfn
137
 * Active range returned is empty if none found.
138 139
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
140
 */
141 142
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
143
{
144 145 146 147 148 149 150 151 152 153 154
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
155 156
}

157
static void map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
158 159
{
	numa_cpu_lookup_table[cpu] = node;
160

161 162
	dbg("adding cpu %d to node %d\n", cpu, node);

163 164
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
165 166
}

167
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
168 169 170 171 172 173
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

174
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
175
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
176 177 178 179 180
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
181
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
182 183

/* must hold reference to node during call */
184
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
185
{
186
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
187 188
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

204 205 206 207 208 209
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
210
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
		const unsigned int *associativity)
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
		distance_lookup_table[nid][i] =
			associativity[distance_ref_points[i]];
	}
}

237 238 239
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
240
static int associativity_to_nid(const unsigned int *associativity)
L
Linus Torvalds 已提交
241
{
242
	int nid = -1;
L
Linus Torvalds 已提交
243 244

	if (min_common_depth == -1)
245
		goto out;
L
Linus Torvalds 已提交
246

247 248
	if (associativity[0] >= min_common_depth)
		nid = associativity[min_common_depth];
249 250

	/* POWER4 LPAR uses 0xffff as invalid node */
251 252
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
253

254 255
	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
		initialize_distance_lookup_table(nid, associativity);
256

257
out:
258
	return nid;
L
Linus Torvalds 已提交
259 260
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
	const unsigned int *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
297 298
static int __init find_min_common_depth(void)
{
299
	int depth;
300
	struct device_node *root;
L
Linus Torvalds 已提交
301

302 303 304 305
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
306 307
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
308 309

	/*
310 311 312 313 314 315 316 317 318 319
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
320
	 */
321
	distance_ref_points = of_get_property(root,
322 323 324 325 326 327 328 329 330
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
331

332 333 334
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
335
		form1_affinity = 1;
336 337
	}

338 339
	if (form1_affinity) {
		depth = distance_ref_points[0];
L
Linus Torvalds 已提交
340
	} else {
341 342 343 344 345 346 347
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

		depth = distance_ref_points[1];
L
Linus Torvalds 已提交
348 349
	}

350 351 352 353 354 355 356 357 358 359
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

360
	of_node_put(root);
L
Linus Torvalds 已提交
361
	return depth;
362 363

err:
364
	of_node_put(root);
365
	return -1;
L
Linus Torvalds 已提交
366 367
}

368
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
369 370 371 372
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
373
	if (!memory)
374
		panic("numa.c: No memory nodes found!");
375

376
	*n_addr_cells = of_n_addr_cells(memory);
377
	*n_size_cells = of_n_size_cells(memory);
378
	of_node_put(memory);
L
Linus Torvalds 已提交
379 380
}

381
static unsigned long read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
382 383 384 385 386 387 388 389 390 391
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

392
/*
Y
Yinghai Lu 已提交
393
 * Read the next memblock list entry from the ibm,dynamic-memory property
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
412
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
413
 *
Y
Yinghai Lu 已提交
414 415
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
416
 * contains information as laid out in the of_drconf_cell struct above.
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
440
 * Retrieve and validate the ibm,lmb-size property for drconf memory
441 442
 * from the device tree.
 */
443
static u64 of_get_lmb_size(struct device_node *memory)
444 445 446 447
{
	const u32 *prop;
	u32 len;

448
	prop = of_get_property(memory, "ibm,lmb-size", &len);
449 450 451 452 453 454 455 456 457 458 459 460 461
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
L
Lucas De Marchi 已提交
462
 * Retrieve and validate the list of associativity arrays for drconf
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

484
	/* Now that we know the number of arrays and size of each array,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
518 519 520 521
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
522
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
523
{
524
	int nid = 0;
525
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
526 527 528 529 530 531

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

532
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
533

534
	if (nid < 0 || !node_online(nid))
535
		nid = first_online_node;
L
Linus Torvalds 已提交
536
out:
537
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
538 539 540

	of_node_put(cpu);

541
	return nid;
L
Linus Torvalds 已提交
542 543
}

544
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
553
	case CPU_UP_PREPARE_FROZEN:
554
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
555 556 557 558
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
559
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
560
	case CPU_UP_CANCELED:
561
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
576
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
577
 */
578 579
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
580 581
{
	/*
Y
Yinghai Lu 已提交
582
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
583
	 * we've already adjusted it for the limit and it takes care of
584 585
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
586 587
	 */

Y
Yinghai Lu 已提交
588
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
589 590
		return size;

Y
Yinghai Lu 已提交
591
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
592 593
		return 0;

Y
Yinghai Lu 已提交
594
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
595 596
}

597 598 599 600 601 602 603
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
604
	 * For each lmb in ibm,dynamic-memory a corresponding
605 606 607 608 609 610 611
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

612 613 614 615 616 617
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
618
	const u32 *uninitialized_var(dm), *usm;
619
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
620
	unsigned long lmb_size, base, size, sz;
621
	int nid;
622
	struct assoc_arrays aa = { .arrays = NULL };
623 624 625

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
626 627
		return;

628 629
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
630 631 632 633
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
634 635
		return;

636 637 638 639 640
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

641
	for (; n != 0; --n) {
642 643 644 645 646 647 648 649
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
650
			continue;
651

652
		base = drmem.base_addr;
653
		size = lmb_size;
654
		ranges = 1;
655

656 657 658 659 660 661 662 663 664 665 666 667 668
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
669
					   &nid);
670 671 672
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
T
Tejun Heo 已提交
673
				memblock_set_node(base, sz, nid);
674
		} while (--ranges);
675 676 677
	}
}

L
Linus Torvalds 已提交
678 679
static int __init parse_numa_properties(void)
{
680
	struct device_node *memory;
681
	int default_nid = 0;
L
Linus Torvalds 已提交
682 683 684 685 686 687 688 689 690 691 692 693
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

694 695
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
696
	/*
697 698 699
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
700
	 */
701
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
702
		struct device_node *cpu;
703
		int nid;
L
Linus Torvalds 已提交
704

705
		cpu = of_get_cpu_node(i, NULL);
706
		BUG_ON(!cpu);
707
		nid = of_node_to_nid_single(cpu);
708
		of_node_put(cpu);
L
Linus Torvalds 已提交
709

710 711 712 713 714 715 716 717
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
718 719
	}

720
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
721 722

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
723 724
		unsigned long start;
		unsigned long size;
725
		int nid;
L
Linus Torvalds 已提交
726
		int ranges;
727
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
728 729
		unsigned int len;

730
		memcell_buf = of_get_property(memory,
731 732
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
733
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
734 735 736
		if (!memcell_buf || len <= 0)
			continue;

737 738
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
739 740
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
741 742
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
743

744 745 746 747 748
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
749
		nid = of_node_to_nid_single(memory);
750 751
		if (nid < 0)
			nid = default_nid;
752 753

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
754
		node_set_online(nid);
L
Linus Torvalds 已提交
755

756
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
757 758 759 760 761 762
			if (--ranges)
				goto new_range;
			else
				continue;
		}

T
Tejun Heo 已提交
763
		memblock_set_node(start, size, nid);
L
Linus Torvalds 已提交
764 765 766 767 768

		if (--ranges)
			goto new_range;
	}

769
	/*
A
Anton Blanchard 已提交
770 771 772
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
773 774 775 776 777
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
778 779 780 781 782
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
783 784
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
785
	unsigned long start_pfn, end_pfn;
786 787
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
788

789
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
790
	       top_of_ram, total_ram);
791
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
792 793
	       (top_of_ram - total_ram) >> 20);

794
	for_each_memblock(memory, reg) {
795 796
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
797 798

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
799 800
		memblock_set_node(PFN_PHYS(start_pfn),
				  PFN_PHYS(end_pfn - start_pfn), nid);
801
		node_set_online(nid);
802
	}
L
Linus Torvalds 已提交
803 804
}

805 806 807 808 809 810 811 812 813
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
814
		printk(KERN_DEBUG "Node %d CPUs:", node);
815 816 817 818 819 820

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
821 822 823
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
824 825 826 827 828 829 830 831 832 833 834
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
835
			printk("-%u", nr_cpu_ids - 1);
836 837 838 839 840
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
841 842 843 844 845 846 847 848 849 850
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

851
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
852 853 854

		count = 0;

Y
Yinghai Lu 已提交
855
		for (i = 0; i < memblock_end_of_DRAM();
856 857
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
875
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
876 877 878
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
879
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
880
 */
881
static void __init *careful_zallocation(int nid, unsigned long size,
882 883
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
884
{
885
	void *ret;
886
	int new_nid;
887 888
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
889
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
890 891

	/* retry over all memory */
892
	if (!ret_paddr)
Y
Yinghai Lu 已提交
893
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
894

895
	if (!ret_paddr)
896
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
897 898
		      size, nid);

899 900
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
901
	/*
902
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
903
	 * and hand over control from the MEMBLOCK allocator to the
904 905
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
906
	 * bootmem allocator instead of the MEMBLOCK allocator.
907 908 909
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
910
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
911
	 * since it would be useless.
L
Linus Torvalds 已提交
912
	 */
913
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
914
	if (new_nid < nid) {
915
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
916 917
				size, align, 0);

918
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
919 920
	}

921
	memset(ret, 0, size);
922
	return ret;
L
Linus Torvalds 已提交
923 924
}

925 926 927 928 929
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

930
static void __init mark_reserved_regions_for_nid(int nid)
931 932
{
	struct pglist_data *node = NODE_DATA(nid);
933
	struct memblock_region *reg;
934

935 936 937
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
938
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
939
		unsigned long end_pfn = PFN_UP(physbase + size);
940 941 942 943 944
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
Y
Yinghai Lu 已提交
945
		 * Check to make sure that this memblock.reserved area is
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
965
					- physbase;
966 967 968 969 970 971 972 973 974 975 976
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
998 999 1000 1001 1002
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1003
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1009
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1010 1011

	for_each_online_node(nid) {
1012
		unsigned long start_pfn, end_pfn;
1013
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1014 1015
		unsigned long bootmap_pages;

1016
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1025
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1026
					sizeof(struct pglist_data),
1027
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1028 1029 1030 1031

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1032
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1033 1034
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1035 1036 1037 1038

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1039 1040
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1041

1042
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1043
		bootmem_vaddr = careful_zallocation(nid,
1044 1045
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1046

1047
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1048

1049 1050
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1051
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1052

1053
		free_bootmem_with_active_regions(nid, end_pfn);
1054 1055
		/*
		 * Be very careful about moving this around.  Future
1056
		 * calls to careful_zallocation() depend on this getting
1057 1058 1059
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1060
		sparse_memory_present_with_active_regions(nid);
1061
	}
1062 1063

	init_bootmem_done = 1;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1074 1075 1076 1077
}

void __init paging_init(void)
{
1078 1079
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1080
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1081
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1095 1096 1097 1098
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1099 1100 1101
	return 0;
}
early_param("numa", early_numa);
1102 1103

#ifdef CONFIG_MEMORY_HOTPLUG
1104
/*
1105 1106 1107
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1108 1109 1110 1111 1112
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1113
	unsigned int drconf_cell_cnt, rc;
1114
	unsigned long lmb_size;
1115
	struct assoc_arrays aa;
1116
	int nid = -1;
1117

1118 1119 1120
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1121

1122 1123
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1124
		return -1;
1125 1126 1127

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1128
		return -1;
1129

1130
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1141
		if ((scn_addr < drmem.base_addr)
1142
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1143 1144
			continue;

1145
		nid = of_drconf_to_nid_single(&drmem, &aa);
1146 1147 1148 1149 1150 1151 1152 1153 1154
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1155
 * each memblock.
1156 1157 1158
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
1159
	struct device_node *memory;
1160 1161
	int nid = -1;

1162
	for_each_node_by_type(memory, "memory") {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1185

1186 1187
		if (nid >= 0)
			break;
1188 1189
	}

1190 1191
	of_node_put(memory);

1192
	return nid;
1193 1194
}

1195 1196
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1197 1198
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1199 1200 1201 1202
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1203
	int nid, found = 0;
1204 1205

	if (!numa_enabled || (min_common_depth < 0))
1206
		return first_online_node;
1207 1208 1209 1210 1211

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1212 1213
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1214
	}
1215

1216
	if (nid < 0 || !node_online(nid))
1217
		nid = first_online_node;
1218

1219 1220
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1221

1222 1223 1224 1225
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1226 1227
		}
	}
1228 1229 1230

	BUG_ON(!found);
	return nid;
1231
}
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
        const u32 *dm = 0;

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1259
#endif /* CONFIG_MEMORY_HOTPLUG */
1260

1261
/* Virtual Processor Home Node (VPHN) support */
1262
#ifdef CONFIG_PPC_SPLPAR
1263 1264 1265 1266 1267 1268 1269
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1270
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1271 1272
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1273 1274
static int prrn_enabled;
static void reset_topology_timer(void);
1275 1276 1277 1278 1279 1280 1281

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1282
	int cpu;
1283

1284 1285 1286
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1287
	for_each_possible_cpu(cpu) {
1288
		int i;
1289 1290 1291
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1292
		for (i = 0; i < distance_ref_points_depth; i++)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1310
	int cpu;
1311 1312 1313 1314 1315 1316 1317
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1318
		for (i = 0; i < distance_ref_points_depth; i++) {
1319
			if (hypervisor_counts[i] != counts[i]) {
1320 1321 1322 1323 1324 1325 1326 1327 1328
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
			cpumask_set_cpu(cpu, changes);
		}
	}

1329
	return cpumask_weight(changes);
1330 1331
}

1332 1333 1334 1335 1336
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1337 1338 1339 1340 1341 1342 1343

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
{
1344
	int i, nr_assoc_doms = 0;
1345 1346 1347 1348 1349 1350
	const u16 *field = (const u16*) packed;

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1351
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1352 1353 1354 1355 1356 1357 1358
		if (*field == VPHN_FIELD_UNUSED) {
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
1359
		} else if (*field & VPHN_FIELD_MSB) {
1360 1361 1362 1363
			/* Data is in the lower 15 bits of this field */
			unpacked[i] = *field & VPHN_FIELD_MASK;
			field++;
			nr_assoc_doms++;
1364
		} else {
1365 1366 1367 1368 1369 1370 1371 1372 1373
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
			nr_assoc_doms++;
		}
	}

1374 1375 1376
	/* The first cell contains the length of the property */
	unpacked[0] = nr_assoc_doms;

1377 1378 1379 1380 1381 1382 1383 1384 1385
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
{
1386
	long rc;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
					unsigned int *associativity)
{
1400
	long rc;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

	cpu = get_cpu();

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unregister_cpu_under_node(update->cpu, update->old_nid);
		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1442
		vdso_getcpu_init();
1443 1444 1445 1446 1447 1448
		register_cpu_under_node(update->cpu, update->new_nid);
	}

	return 0;
}

1449 1450
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1451
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1452 1453 1454
 */
int arch_update_cpu_topology(void)
{
1455 1456
	unsigned int cpu, changed = 0;
	struct topology_update_data *updates, *ud;
1457
	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1458
	cpumask_t updated_cpus;
1459
	struct device *dev;
1460 1461 1462 1463 1464 1465 1466 1467 1468
	int weight, i = 0;

	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1469

1470 1471
	cpumask_clear(&updated_cpus);

1472
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1473 1474
		ud = &updates[i++];
		ud->cpu = cpu;
1475
		vphn_get_associativity(cpu, associativity);
1476
		ud->new_nid = associativity_to_nid(associativity);
1477

1478 1479
		if (ud->new_nid < 0 || !node_online(ud->new_nid))
			ud->new_nid = first_online_node;
1480

1481
		ud->old_nid = numa_cpu_lookup_table[cpu];
1482
		cpumask_set_cpu(cpu, &updated_cpus);
1483

1484 1485 1486 1487
		if (i < weight)
			ud->next = &updates[i];
	}

1488
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1489 1490 1491

	for (ud = &updates[0]; ud; ud = ud->next) {
		dev = get_cpu_device(ud->cpu);
1492 1493
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1494
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1495
		changed = 1;
1496 1497
	}

1498
	kfree(updates);
1499
	return changed;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

void topology_schedule_update(void)
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1515
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1516
		topology_schedule_update();
1517 1518 1519 1520 1521
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1522 1523 1524 1525
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1526
static void reset_topology_timer(void)
1527 1528 1529
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	mod_timer(&topology_timer, topology_timer.expires);
}

static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1549 1550
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1551 1552 1553 1554 1555 1556 1557 1558 1559
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1560 1561
}

1562 1563 1564 1565
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1566
/*
1567
 * Start polling for associativity changes.
1568 1569 1570 1571 1572
 */
int start_topology_update(void)
{
	int rc = 0;

1573 1574 1575 1576 1577 1578
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
			rc = of_reconfig_notifier_register(&dt_update_nb);
		}
1579
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1580 1581 1582 1583 1584 1585 1586 1587
		   get_lppaca()->shared_proc) {
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1609
}
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
	start_topology_update();
	proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);

	return 0;
}
device_initcall(topology_update_init);
1668
#endif /* CONFIG_PPC_SPLPAR */