numa.c 38.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/of.h>
24
#include <linux/pfn.h>
25 26
#include <linux/cpuset.h>
#include <linux/node.h>
27
#include <linux/stop_machine.h>
28 29 30
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
31
#include <linux/slab.h>
32
#include <asm/cputhreads.h>
33
#include <asm/sparsemem.h>
34
#include <asm/prom.h>
P
Paul Mackerras 已提交
35
#include <asm/smp.h>
36 37
#include <asm/cputhreads.h>
#include <asm/topology.h>
38 39
#include <asm/firmware.h>
#include <asm/paca.h>
40
#include <asm/hvcall.h>
41
#include <asm/setup.h>
42
#include <asm/vdso.h>
L
Linus Torvalds 已提交
43 44 45

static int numa_enabled = 1;

46 47
static char *cmdline __initdata;

L
Linus Torvalds 已提交
48 49 50
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

51
int numa_cpu_lookup_table[NR_CPUS];
52
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
53
struct pglist_data *node_data[MAX_NUMNODES];
54 55

EXPORT_SYMBOL(numa_cpu_lookup_table);
56
EXPORT_SYMBOL(node_to_cpumask_map);
57 58
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
59
static int min_common_depth;
60
static int n_mem_addr_cells, n_mem_size_cells;
61 62 63 64
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
65
static const __be32 *distance_ref_points;
66
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
67

68 69 70 71
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
72
 * Note: cpumask_of_node() is not valid until after this is done.
73 74 75
 */
static void __init setup_node_to_cpumask_map(void)
{
76
	unsigned int node;
77 78

	/* setup nr_node_ids if not done yet */
79 80
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
81 82

	/* allocate the map */
83
	for_each_node(node)
84 85 86 87 88 89
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

90
static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

137 138 139 140 141 142 143 144 145
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
146 147
{
	numa_cpu_lookup_table[cpu] = node;
148 149 150 151 152
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
153

154 155
	dbg("adding cpu %d to node %d\n", cpu, node);

156 157
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
158 159
}

160
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
161 162 163 164 165 166
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

167
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
169 170 171 172 173
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
174
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
175 176

/* must hold reference to node during call */
177
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
178
{
179
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
187
static const __be32 *of_get_usable_memory(struct device_node *memory)
188
{
189
	const __be32 *prop;
190 191 192
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
193
		return NULL;
194 195 196
	return prop;
}

197 198 199 200 201 202
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
203
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 205 206 207 208 209 210 211 212 213 214

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
215
EXPORT_SYMBOL(__node_distance);
216 217

static void initialize_distance_lookup_table(int nid,
218
		const __be32 *associativity)
219 220 221 222 223 224 225
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
226 227
		const __be32 *entry;

228
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 231 232
	}
}

233 234 235
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
236
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
237
{
238
	int nid = -1;
L
Linus Torvalds 已提交
239 240

	if (min_common_depth == -1)
241
		goto out;
L
Linus Torvalds 已提交
242

243 244
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
245 246

	/* POWER4 LPAR uses 0xffff as invalid node */
247 248
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
249

250
	if (nid > 0 &&
251 252 253 254 255 256
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
257

258
out:
259
	return nid;
L
Linus Torvalds 已提交
260 261
}

262 263 264 265 266 267
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
268
	const __be32 *tmp;
269 270 271 272 273 274 275

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

276 277 278 279 280 281 282 283 284 285 286
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

287
		device = of_get_next_parent(device);
288 289 290 291 292 293 294
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
295 296
static int __init find_min_common_depth(void)
{
297
	int depth;
298
	struct device_node *root;
L
Linus Torvalds 已提交
299

300 301 302 303
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
304 305
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
306 307

	/*
308 309 310 311 312 313 314 315 316 317
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
318
	 */
319
	distance_ref_points = of_get_property(root,
320 321 322 323 324 325 326 327 328
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
329

330 331 332
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
333
		form1_affinity = 1;
334 335
	}

336
	if (form1_affinity) {
337
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
338
	} else {
339 340 341 342 343 344
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

345
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
346 347
	}

348 349 350 351 352 353 354 355 356 357
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

358
	of_node_put(root);
L
Linus Torvalds 已提交
359
	return depth;
360 361

err:
362
	of_node_put(root);
363
	return -1;
L
Linus Torvalds 已提交
364 365
}

366
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
367 368 369 370
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
371
	if (!memory)
372
		panic("numa.c: No memory nodes found!");
373

374
	*n_addr_cells = of_n_addr_cells(memory);
375
	*n_size_cells = of_n_size_cells(memory);
376
	of_node_put(memory);
L
Linus Torvalds 已提交
377 378
}

379
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
380 381 382 383
{
	unsigned long result = 0;

	while (n--) {
384
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
385 386 387 388 389
		(*buf)++;
	}
	return result;
}

390
/*
Y
Yinghai Lu 已提交
391
 * Read the next memblock list entry from the ibm,dynamic-memory property
392 393
 * and return the information in the provided of_drconf_cell structure.
 */
394
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395
{
396
	const __be32 *cp;
397 398 399 400

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
401 402 403 404
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
405 406 407 408 409

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
410
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411
 *
Y
Yinghai Lu 已提交
412 413
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
414
 * contains information as laid out in the of_drconf_cell struct above.
415
 */
416
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417
{
418
	const __be32 *prop;
419 420 421 422 423 424
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

425
	entries = of_read_number(prop++, 1);
426 427 428 429 430 431 432 433 434 435 436 437

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
438
 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 440
 * from the device tree.
 */
441
static u64 of_get_lmb_size(struct device_node *memory)
442
{
443
	const __be32 *prop;
444 445
	u32 len;

446
	prop = of_get_property(memory, "ibm,lmb-size", &len);
447 448 449 450 451 452 453 454 455
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
456
	const __be32 *arrays;
457 458 459
};

/*
L
Lucas De Marchi 已提交
460
 * Retrieve and validate the list of associativity arrays for drconf
461 462 463 464 465 466 467 468 469 470 471
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
472
	const __be32 *prop;
473 474 475 476 477 478
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

479 480
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
481

482
	/* Now that we know the number of arrays and size of each array,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507
		nid = of_read_number(&aa->arrays[index], 1);
508 509 510

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
511 512 513 514 515 516

		if (nid > 0) {
			index = drmem->aa_index * aa->array_sz;
			initialize_distance_lookup_table(nid,
							&aa->arrays[index]);
		}
517 518 519 520 521
	}

	return nid;
}

L
Linus Torvalds 已提交
522 523 524 525
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
526
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
527
{
528
	int nid = -1;
529 530 531 532 533 534 535 536 537 538 539 540 541
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
542 543 544

	if (!cpu) {
		WARN_ON(1);
545 546 547 548
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
549 550
	}

551
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
552

553
out_present:
554
	if (nid < 0 || !node_online(nid))
555
		nid = first_online_node;
L
Linus Torvalds 已提交
556

557
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
558
	of_node_put(cpu);
559
out:
560
	return nid;
L
Linus Torvalds 已提交
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

584 585 586 587 588 589 590 591 592 593 594 595
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
596
#ifdef CONFIG_HOTPLUG_CPU
597
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
598
#endif
599
	return 0;
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
608
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
609
 */
610 611
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
612 613
{
	/*
Y
Yinghai Lu 已提交
614
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
615
	 * we've already adjusted it for the limit and it takes care of
616 617
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
618 619
	 */

Y
Yinghai Lu 已提交
620
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
621 622
		return size;

Y
Yinghai Lu 已提交
623
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
624 625
		return 0;

Y
Yinghai Lu 已提交
626
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
627 628
}

629 630 631 632
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
633
static inline int __init read_usm_ranges(const __be32 **usm)
634 635
{
	/*
636
	 * For each lmb in ibm,dynamic-memory a corresponding
637 638 639 640 641 642 643
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

644 645 646 647 648 649
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
650
	const __be32 *uninitialized_var(dm), *usm;
651
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
652
	unsigned long lmb_size, base, size, sz;
653
	int nid;
654
	struct assoc_arrays aa = { .arrays = NULL };
655 656 657

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
658 659
		return;

660 661
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
662 663 664 665
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
666 667
		return;

668 669 670 671 672
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

673
	for (; n != 0; --n) {
674 675 676 677 678 679 680 681
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
682
			continue;
683

684
		base = drmem.base_addr;
685
		size = lmb_size;
686
		ranges = 1;
687

688 689 690 691 692 693 694 695 696 697 698 699 700
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
701
					   &nid);
702 703 704
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
705 706
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
707
		} while (--ranges);
708 709 710
	}
}

L
Linus Torvalds 已提交
711 712
static int __init parse_numa_properties(void)
{
713
	struct device_node *memory;
714
	int default_nid = 0;
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725 726
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

727 728
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
729
	/*
730 731 732
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
733
	 */
734
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
735
		struct device_node *cpu;
736
		int nid;
L
Linus Torvalds 已提交
737

738
		cpu = of_get_cpu_node(i, NULL);
739
		BUG_ON(!cpu);
740
		nid = of_node_to_nid_single(cpu);
741
		of_node_put(cpu);
L
Linus Torvalds 已提交
742

743 744 745 746 747 748 749 750
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
751 752
	}

753
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
754 755

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
756 757
		unsigned long start;
		unsigned long size;
758
		int nid;
L
Linus Torvalds 已提交
759
		int ranges;
760
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
761 762
		unsigned int len;

763
		memcell_buf = of_get_property(memory,
764 765
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
766
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
767 768 769
		if (!memcell_buf || len <= 0)
			continue;

770 771
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
772 773
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
774 775
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
776

777 778 779 780 781
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
782
		nid = of_node_to_nid_single(memory);
783 784
		if (nid < 0)
			nid = default_nid;
785 786

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787
		node_set_online(nid);
L
Linus Torvalds 已提交
788

789
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
790 791 792 793 794 795
			if (--ranges)
				goto new_range;
			else
				continue;
		}

796
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
797 798 799 800 801

		if (--ranges)
			goto new_range;
	}

802
	/*
A
Anton Blanchard 已提交
803 804 805
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
806 807 808 809 810
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
811 812 813 814 815
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
816 817
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
818
	unsigned long start_pfn, end_pfn;
819 820
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
821

822
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
823
	       top_of_ram, total_ram);
824
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
825 826
	       (top_of_ram - total_ram) >> 20);

827
	for_each_memblock(memory, reg) {
828 829
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
830 831

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
832
		memblock_set_node(PFN_PHYS(start_pfn),
833 834
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
835
		node_set_online(nid);
836
	}
L
Linus Torvalds 已提交
837 838
}

839 840 841 842 843 844 845 846 847
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
848
		pr_info("Node %d CPUs:", node);
849 850 851 852 853 854

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
855 856 857
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
858
				if (count == 0)
859
					pr_cont(" %u", cpu);
860 861 862
				++count;
			} else {
				if (count > 1)
863
					pr_cont("-%u", cpu - 1);
864 865 866 867 868
				count = 0;
			}
		}

		if (count > 1)
869 870
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
871 872 873
	}
}

874 875
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
876
{
877 878 879 880 881
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
882

883 884 885 886 887 888
	if (spanned_pages)
		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
			nid, start_pfn << PAGE_SHIFT,
			(end_pfn << PAGE_SHIFT) - 1);
	else
		pr_info("Initmem setup node %d\n", nid);
889

890 891
	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	nd = __va(nd_pa);
892

893 894 895 896 897 898
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
899

900 901 902 903 904 905
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
906

907
void __init initmem_init(void)
L
Linus Torvalds 已提交
908
{
909
	int nid, cpu;
L
Linus Torvalds 已提交
910

Y
Yinghai Lu 已提交
911
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
912 913 914 915 916
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();

917 918
	memblock_dump_all();

919 920 921 922 923 924 925
	/*
	 * Reduce the possible NUMA nodes to the online NUMA nodes,
	 * since we do not support node hotplug. This ensures that  we
	 * lower the maximum NUMA node ID to what is actually present.
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

L
Linus Torvalds 已提交
926
	for_each_online_node(nid) {
927
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
928

929
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
930
		setup_node_data(nid, start_pfn, end_pfn);
931
		sparse_memory_present_with_active_regions(nid);
932
	}
933

934
	sparse_init();
935 936 937

	setup_node_to_cpumask_map();

938
	reset_numa_cpu_lookup_table();
939

940 941 942 943
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
944 945
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
946
	 */
T
Thomas Gleixner 已提交
947
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
948 949 950
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
L
Linus Torvalds 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

964 965 966 967
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
968 969 970
	return 0;
}
early_param("numa", early_numa);
971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

988
#ifdef CONFIG_MEMORY_HOTPLUG
989
/*
990 991 992
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
993 994 995 996
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
997
	const __be32 *dm;
998
	unsigned int drconf_cell_cnt, rc;
999
	unsigned long lmb_size;
1000
	struct assoc_arrays aa;
1001
	int nid = -1;
1002

1003 1004 1005
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1006

1007 1008
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1009
		return -1;
1010 1011 1012

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1013
		return -1;
1014

1015
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1026
		if ((scn_addr < drmem.base_addr)
1027
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1028 1029
			continue;

1030
		nid = of_drconf_to_nid_single(&drmem, &aa);
1031 1032 1033 1034 1035 1036 1037 1038 1039
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1040
 * each memblock.
1041
 */
1042
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1043
{
1044
	struct device_node *memory;
1045 1046
	int nid = -1;

1047
	for_each_node_by_type(memory, "memory") {
1048 1049
		unsigned long start, size;
		int ranges;
1050
		const __be32 *memcell_buf;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1070

1071 1072
		if (nid >= 0)
			break;
1073 1074
	}

1075 1076
	of_node_put(memory);

1077
	return nid;
1078 1079
}

1080 1081
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1082 1083
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1084 1085 1086 1087
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1088
	int nid;
1089 1090

	if (!numa_enabled || (min_common_depth < 0))
1091
		return first_online_node;
1092 1093 1094 1095 1096

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1097 1098
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1099
	}
1100

1101
	if (nid < 0 || !node_online(nid))
1102
		nid = first_online_node;
1103

1104
	return nid;
1105
}
1106

1107 1108
static u64 hot_add_drconf_memory_max(void)
{
1109
	struct device_node *memory = NULL;
1110
	struct device_node *dn = NULL;
1111 1112
	unsigned int drconf_cell_cnt = 0;
	u64 lmb_size = 0;
1113
	const __be32 *dm = NULL;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	const __be64 *lrdr = NULL;
	struct of_drconf_cell drmem;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1124

1125 1126 1127 1128
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
		lmb_size = of_get_lmb_size(memory);
1129

1130 1131 1132
		/* Advance to the last cell, each cell has 6 32 bit integers */
		dm += (drconf_cell_cnt - 1) * 6;
		read_drconf_cell(&drmem, &dm);
1133
		of_node_put(memory);
1134
		return drmem.base_addr + lmb_size;
1135
	}
1136
	return 0;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1149
#endif /* CONFIG_MEMORY_HOTPLUG */
1150

1151
/* Virtual Processor Home Node (VPHN) support */
1152
#ifdef CONFIG_PPC_SPLPAR
1153 1154 1155

#include "vphn.h"

1156 1157 1158 1159 1160 1161 1162
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1163
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1164 1165
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1166 1167
static int prrn_enabled;
static void reset_topology_timer(void);
1168 1169 1170 1171 1172 1173 1174

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1175
	int cpu;
1176

1177 1178 1179
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1180
	for_each_possible_cpu(cpu) {
1181
		int i;
1182 1183 1184
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1185
		for (i = 0; i < distance_ref_points_depth; i++)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1203
	int cpu;
1204 1205 1206 1207 1208 1209 1210
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1211
		for (i = 0; i < distance_ref_points_depth; i++) {
1212
			if (hypervisor_counts[i] != counts[i]) {
1213 1214 1215 1216 1217
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1218 1219
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1220 1221 1222
		}
	}

1223
	return cpumask_weight(changes);
1224 1225 1226 1227 1228 1229
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1230
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1231
{
1232
	long rc;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1244
					__be32 *associativity)
1245
{
1246
	long rc;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1279
	cpu = smp_processor_id();
1280 1281

	for (update = data; update; update = update->next) {
1282
		int new_nid = update->new_nid;
1283 1284 1285
		if (cpu != update->cpu)
			continue;

1286
		unmap_cpu_from_node(cpu);
1287 1288 1289
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1290
		vdso_getcpu_init();
1291 1292 1293 1294 1295
	}

	return 0;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1323 1324
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1325
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1326 1327 1328
 */
int arch_update_cpu_topology(void)
{
1329
	unsigned int cpu, sibling, changed = 0;
1330
	struct topology_update_data *updates, *ud;
1331
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1332
	cpumask_t updated_cpus;
1333
	struct device *dev;
1334
	int weight, new_nid, i = 0;
1335

1336 1337 1338
	if (!prrn_enabled && !vphn_enabled)
		return 0;

1339 1340 1341 1342 1343 1344 1345
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1346

1347 1348
	cpumask_clear(&updated_cpus);

1349
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1390 1391
	}

1392 1393 1394 1395 1396 1397 1398 1399 1400
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1415
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1416

1417 1418 1419 1420 1421 1422 1423 1424
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1425
	for (ud = &updates[0]; ud; ud = ud->next) {
1426 1427 1428
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1429
		dev = get_cpu_device(ud->cpu);
1430 1431
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433
		changed = 1;
1434 1435
	}

1436
out:
1437
	kfree(updates);
1438
	return changed;
1439 1440 1441 1442 1443 1444 1445 1446
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1447
static void topology_schedule_update(void)
1448 1449 1450 1451 1452 1453
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1454
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1455
		topology_schedule_update();
1456 1457 1458 1459 1460
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1461 1462 1463 1464
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1465
static void reset_topology_timer(void)
1466 1467 1468
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1469
	mod_timer(&topology_timer, topology_timer.expires);
1470 1471
}

1472 1473
#ifdef CONFIG_SMP

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1484
	struct of_reconfig_data *update = data;
1485 1486 1487 1488
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1489 1490
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1491 1492 1493 1494 1495 1496 1497 1498 1499
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1500 1501
}

1502 1503 1504 1505
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1506 1507
#endif

1508
/*
1509
 * Start polling for associativity changes.
1510 1511 1512 1513 1514
 */
int start_topology_update(void)
{
	int rc = 0;

1515 1516 1517 1518
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1519
#ifdef CONFIG_SMP
1520
			rc = of_reconfig_notifier_register(&dt_update_nb);
1521
#endif
1522
		}
1523
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1524
		   lppaca_shared_proc(get_lppaca())) {
1525 1526 1527 1528 1529 1530 1531
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1542 1543 1544 1545
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1546
#ifdef CONFIG_SMP
1547
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1548
#endif
1549 1550 1551 1552 1553 1554
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1555
}
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1608 1609 1610 1611
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1612 1613
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1614 1615

	return 0;
1616
}
1617
device_initcall(topology_update_init);
1618
#endif /* CONFIG_PPC_SPLPAR */