scrub.c 116.2 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 252
				struct scrub_block *sblock,
				int retry_failed_mirror);
253
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255
					     struct scrub_block *sblock_good);
256 257 258
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
277
static void scrub_bio_end_io(struct bio *bio);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
294
static void scrub_wr_bio_end_io(struct bio *bio);
295 296 297 298
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
306 307


308 309
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
310
	atomic_inc(&sctx->refs);
311 312 313 314 315 316 317
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
318
	scrub_put_ctx(sctx);
319 320
}

321
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 323 324 325 326 327 328 329 330
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

331
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 333 334
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
335
}
336

337 338
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
339 340 341 342 343 344 345 346
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

347 348 349 350 351 352
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

353 354 355 356 357 358 359 360
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

361
	atomic_inc(&sctx->refs);
362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
375 376 377 378 379 380 381 382 383 384

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
404
	scrub_put_ctx(sctx);
405 406
}

407
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
408
{
409
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
410
		struct btrfs_ordered_sum *sum;
411
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
412 413 414 415 416 417
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

418
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
419 420 421
{
	int i;

422
	if (!sctx)
A
Arne Jansen 已提交
423 424
		return;

425 426
	scrub_free_wr_ctx(&sctx->wr_ctx);

427
	/* this can happen when scrub is cancelled */
428 429
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 431

		for (i = 0; i < sbio->page_count; i++) {
432
			WARN_ON(!sbio->pagev[i]->page);
433 434 435 436 437
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

438
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
440 441 442 443 444 445

		if (!sbio)
			break;
		kfree(sbio);
	}

446 447
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
448 449
}

450 451 452 453 454 455
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
456
static noinline_for_stack
457
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
458
{
459
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
460 461
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462
	int ret;
A
Arne Jansen 已提交
463

464
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465
	if (!sctx)
A
Arne Jansen 已提交
466
		goto nomem;
467
	atomic_set(&sctx->refs, 1);
468
	sctx->is_dev_replace = is_dev_replace;
469
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470
	sctx->curr = -1;
471
	sctx->dev_root = dev->dev_root;
472
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
473 474
		struct scrub_bio *sbio;

475
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
476 477
		if (!sbio)
			goto nomem;
478
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
479 480

		sbio->index = i;
481
		sbio->sctx = sctx;
482
		sbio->page_count = 0;
483 484
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
485

486
		if (i != SCRUB_BIOS_PER_SCTX - 1)
487
			sctx->bios[i]->next_free = i + 1;
488
		else
489 490 491 492 493
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
494 495
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
496 497 498 499 500 501 502
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
503 504 505 506 507 508 509

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
510
	return sctx;
A
Arne Jansen 已提交
511 512

nomem:
513
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
514 515 516
	return ERR_PTR(-ENOMEM);
}

517 518
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
519 520 521 522 523 524 525
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
526
	struct scrub_warning *swarn = warn_ctx;
527 528 529 530
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
531
	struct btrfs_key key;
532 533 534 535 536 537 538 539 540 541

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

542 543 544
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
545 546 547 548 549
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 551 552 553 554 555 556 557 558 559 560 561 562
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
563 564 565 566 567
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
568 569 570 571 572 573 574 575 576 577
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
578 579 580 581 582 583 584 585
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
586 587 588 589 590

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
591 592 593 594 595 596
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
597 598 599 600 601

	free_ipath(ipath);
	return 0;
}

602
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
603
{
604 605
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
606 607 608 609 610
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
611 612 613
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
614
	u64 ref_root;
615
	u32 item_size;
616
	u8 ref_level = 0;
617
	int ret;
618

619
	WARN_ON(sblock->page_count < 1);
620
	dev = sblock->pagev[0]->dev;
621 622
	fs_info = sblock->sctx->dev_root->fs_info;

623
	path = btrfs_alloc_path();
624 625
	if (!path)
		return;
626

627 628
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
629
	swarn.errstr = errstr;
630
	swarn.dev = NULL;
631

632 633
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
634 635 636
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
637
	extent_item_pos = swarn.logical - found_key.objectid;
638 639 640 641 642 643
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

644
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
645
		do {
646 647 648
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
649
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
650 651
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
652
				rcu_str_deref(dev->name),
653 654 655 656 657
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
658
		btrfs_release_path(path);
659
	} else {
660
		btrfs_release_path(path);
661
		swarn.path = path;
662
		swarn.dev = dev;
663 664
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
665 666 667 668 669 670 671
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

672
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673
{
674
	struct page *page = NULL;
675
	unsigned long index;
676
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677
	int ret;
678
	int corrected = 0;
679
	struct btrfs_key key;
680
	struct inode *inode = NULL;
681
	struct btrfs_fs_info *fs_info;
682 683
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
684
	int srcu_index;
685 686 687 688

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
689 690 691 692 693 694 695

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696
		return PTR_ERR(local_root);
697
	}
698 699 700 701

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
702 703
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 705 706
	if (IS_ERR(inode))
		return PTR_ERR(inode);

707
	index = offset >> PAGE_SHIFT;
708 709

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
736
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
737
					fixup->logical, page,
738
					offset - page_offset(page),
739 740 741 742 743 744 745 746 747 748
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
749
					EXTENT_DAMAGED);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
767
						EXTENT_DAMAGED);
768 769 770 771 772
	}

out:
	if (page)
		put_page(page);
773 774

	iput(inode);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
794
	struct scrub_ctx *sctx;
795 796 797 798 799
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
800
	sctx = fixup->sctx;
801 802 803

	path = btrfs_alloc_path();
	if (!path) {
804 805 806
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

835 836 837
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
838 839 840 841 842

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
843 844 845
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
846 847 848
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
849 850
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
851
			fixup->logical, rcu_str_deref(fixup->dev->name));
852 853 854 855 856
	}

	btrfs_free_path(path);
	kfree(fixup);

857
	scrub_pending_trans_workers_dec(sctx);
858 859
}

860 861 862 863 864 865 866 867
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
868
		btrfs_put_bbio(recover->bbio);
869 870 871 872
		kfree(recover);
	}
}

A
Arne Jansen 已提交
873
/*
874 875 876 877 878 879
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
880
 */
881
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
882
{
883
	struct scrub_ctx *sctx = sblock_to_check->sctx;
884
	struct btrfs_device *dev;
885 886 887 888 889 890 891 892 893 894 895 896
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
897
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 899 900
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
901
	fs_info = sctx->dev_root->fs_info;
902 903 904 905 906 907 908 909 910 911 912
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
913
	length = sblock_to_check->page_count * PAGE_SIZE;
914 915 916 917
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
918
			BTRFS_EXTENT_FLAG_DATA);
919 920
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
921

922 923 924 925 926
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

956 957
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
958
	if (!sblocks_for_recheck) {
959 960 961 962 963
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
964
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	/* setup the context, map the logical blocks and alloc the pages */
969
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970
	if (ret) {
971 972 973 974
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
975
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 977 978 979
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
980

981
	/* build and submit the bios for the failed mirror, check checksums */
982
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
983

984 985 986 987 988 989 990 991 992 993
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
994 995
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
996
		sblock_to_check->data_corrected = 1;
997
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
998

999 1000
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1001
		goto out;
A
Arne Jansen 已提交
1002 1003
	}

1004
	if (!sblock_bad->no_io_error_seen) {
1005 1006 1007
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1008 1009
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1010
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011
	} else if (sblock_bad->checksum_error) {
1012 1013 1014
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1015 1016
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1017
		btrfs_dev_stat_inc_and_print(dev,
1018
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019
	} else if (sblock_bad->header_error) {
1020 1021 1022
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1023 1024 1025
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1026
		if (sblock_bad->generation_error)
1027
			btrfs_dev_stat_inc_and_print(dev,
1028 1029
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1030
			btrfs_dev_stat_inc_and_print(dev,
1031
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032
	}
A
Arne Jansen 已提交
1033

1034 1035 1036 1037
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1038

1039 1040
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1041

1042 1043
		WARN_ON(sctx->is_dev_replace);

1044 1045
nodatasum_case:

1046 1047
		/*
		 * !is_metadata and !have_csum, this means that the data
1048
		 * might not be COWed, that it might be modified
1049 1050 1051 1052 1053 1054 1055
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1056
		fixup_nodatasum->sctx = sctx;
1057
		fixup_nodatasum->dev = dev;
1058 1059 1060
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061
		scrub_pending_trans_workers_inc(sctx);
1062 1063
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1064 1065
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1066
		goto out;
A
Arne Jansen 已提交
1067 1068
	}

1069 1070
	/*
	 * now build and submit the bios for the other mirrors, check
1071 1072
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1088
		struct scrub_block *sblock_other;
1089

1090 1091 1092 1093 1094
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1095
		scrub_recheck_block(fs_info, sblock_other, 0);
1096 1097

		if (!sblock_other->header_error &&
1098 1099
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1100 1101
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1102
				goto corrected_error;
1103 1104
			} else {
				ret = scrub_repair_block_from_good_copy(
1105 1106 1107
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1108
			}
1109 1110
		}
	}
A
Arne Jansen 已提交
1111

1112 1113
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1114 1115 1116

	/*
	 * In case of I/O errors in the area that is supposed to be
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1129
	 * the final checksum succeeds. But this would be a rare
1130 1131 1132 1133 1134 1135 1136 1137
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1138
	 */
1139
	success = 1;
1140 1141
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1142
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143
		struct scrub_block *sblock_other = NULL;
1144

1145 1146
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1147
			continue;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1160 1161
				}
			}
1162 1163
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1164
		}
A
Arne Jansen 已提交
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1193
		}
A
Arne Jansen 已提交
1194 1195
	}

1196
	if (success && !sctx->is_dev_replace) {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1207
			scrub_recheck_block(fs_info, sblock_bad, 1);
1208
			if (!sblock_bad->header_error &&
1209 1210 1211 1212 1213 1214 1215
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1216 1217
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1218
			sblock_to_check->data_corrected = 1;
1219
			spin_unlock(&sctx->stat_lock);
1220 1221
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1222
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1223
		}
1224 1225
	} else {
did_not_correct_error:
1226 1227 1228
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1229 1230
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1231
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1232
	}
A
Arne Jansen 已提交
1233

1234 1235 1236 1237 1238 1239
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1240
			struct scrub_recover *recover;
1241 1242
			int page_index;

1243 1244 1245
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1246 1247 1248 1249 1250 1251
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1252 1253
				scrub_page_put(sblock->pagev[page_index]);
			}
1254 1255 1256
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1257

1258 1259
	return 0;
}
A
Arne Jansen 已提交
1260

1261
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1262
{
Z
Zhao Lei 已提交
1263 1264 1265 1266 1267
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1268 1269 1270
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1271 1272
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1273 1274 1275 1276 1277 1278 1279
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1280
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1301
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1302 1303
				     struct scrub_block *sblocks_for_recheck)
{
1304 1305 1306 1307
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1308 1309 1310
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1311 1312 1313 1314 1315 1316
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1317
	int page_index = 0;
1318
	int mirror_index;
1319
	int nmirrors;
1320 1321 1322
	int ret;

	/*
1323
	 * note: the two members refs and outstanding_pages
1324 1325 1326 1327 1328
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1329 1330 1331
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1332

1333 1334 1335 1336
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1337
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1338
				       &mapped_length, &bbio, 0, 1);
1339
		if (ret || !bbio || mapped_length < sublen) {
1340
			btrfs_put_bbio(bbio);
1341 1342
			return -EIO;
		}
A
Arne Jansen 已提交
1343

1344 1345
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1346
			btrfs_put_bbio(bbio);
1347 1348 1349 1350 1351 1352 1353
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1354
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1355

1356
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1357

1358
		for (mirror_index = 0; mirror_index < nmirrors;
1359 1360 1361 1362 1363
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1364
			sblock->sctx = sctx;
1365

1366 1367 1368
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1369 1370 1371
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1372
				scrub_put_recover(recover);
1373 1374
				return -ENOMEM;
			}
1375 1376
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1377 1378 1379
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1380
			page->logical = logical;
1381 1382 1383 1384 1385
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1386

Z
Zhao Lei 已提交
1387 1388 1389
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1390
						      mapped_length,
1391 1392
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1393 1394 1395 1396 1397 1398 1399
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1400 1401 1402 1403
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1404 1405
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1406
			sblock->page_count++;
1407 1408 1409
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1410 1411 1412

			scrub_get_recover(recover);
			page->recover = recover;
1413
		}
1414
		scrub_put_recover(recover);
1415 1416 1417 1418 1419 1420
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1421 1422
}

1423 1424 1425 1426 1427
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1428
static void scrub_bio_wait_endio(struct bio *bio)
1429 1430 1431
{
	struct scrub_bio_ret *ret = bio->bi_private;

1432
	ret->error = bio->bi_error;
1433 1434 1435 1436 1437
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1438
	return page->recover &&
1439
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1457
				    page->mirror_num, 0);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1468 1469 1470 1471 1472 1473 1474
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1475
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1476 1477
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1478
{
1479
	int page_num;
I
Ilya Dryomov 已提交
1480

1481
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1482

1483 1484
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1485
		struct scrub_page *page = sblock->pagev[page_num];
1486

1487
		if (page->dev->bdev == NULL) {
1488 1489 1490 1491 1492
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1493
		WARN_ON(!page->page);
1494
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1495 1496 1497 1498 1499
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1500
		bio->bi_bdev = page->dev->bdev;
1501

1502
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1503 1504 1505 1506 1507
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1508
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1509

1510
			if (btrfsic_submit_bio_wait(bio))
1511 1512
				sblock->no_io_error_seen = 0;
		}
1513

1514 1515
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1516

1517
	if (sblock->no_io_error_seen)
1518
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1519 1520
}

M
Miao Xie 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1531
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1532
{
1533 1534 1535
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1536

1537 1538 1539 1540
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1541 1542
}

1543
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1544
					     struct scrub_block *sblock_good)
1545 1546 1547
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1548

1549 1550
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1551

1552 1553
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1554
							   page_num, 1);
1555 1556
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1557
	}
1558 1559 1560 1561 1562 1563 1564 1565

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1566 1567
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1568

1569 1570
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1571 1572 1573 1574 1575
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1576
		if (!page_bad->dev->bdev) {
1577
			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
J
Jeff Mahoney 已提交
1578
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1579 1580 1581
			return -EIO;
		}

1582
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1583 1584
		if (!bio)
			return -EIO;
1585
		bio->bi_bdev = page_bad->dev->bdev;
1586
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1587
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1588 1589 1590 1591 1592

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1593
		}
1594

1595
		if (btrfsic_submit_bio_wait(bio)) {
1596 1597
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1598 1599 1600
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1601 1602 1603
			bio_put(bio);
			return -EIO;
		}
1604
		bio_put(bio);
A
Arne Jansen 已提交
1605 1606
	}

1607 1608 1609
	return 0;
}

1610 1611 1612 1613
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1614 1615 1616 1617 1618 1619 1620
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1641
		memset(mapped_buffer, 0, PAGE_SIZE);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1659
					      GFP_KERNEL);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1676 1677
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					wr_ctx->pages_per_wr_bio);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1688
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1689
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1737
	btrfsic_submit_bio(sbio->bio);
1738 1739
}

1740
static void scrub_wr_bio_end_io(struct bio *bio)
1741 1742 1743 1744
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

1745
	sbio->err = bio->bi_error;
1746 1747
	sbio->bio = bio;

1748 1749
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1750
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1782 1783 1784 1785
{
	u64 flags;
	int ret;

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1798 1799
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1811 1812

	return ret;
A
Arne Jansen 已提交
1813 1814
}

1815
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1816
{
1817
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1818
	u8 csum[BTRFS_CSUM_SIZE];
1819 1820 1821
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1822
	u32 crc = ~(u32)0;
1823 1824
	u64 len;
	int index;
A
Arne Jansen 已提交
1825

1826
	BUG_ON(sblock->page_count < 1);
1827
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1828 1829
		return 0;

1830 1831
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1832
	buffer = kmap_atomic(page);
1833

1834
	len = sctx->sectorsize;
1835 1836 1837 1838
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1839
		crc = btrfs_csum_data(buffer, crc, l);
1840
		kunmap_atomic(buffer);
1841 1842 1843 1844 1845
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1846 1847
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1848
		buffer = kmap_atomic(page);
1849 1850
	}

A
Arne Jansen 已提交
1851
	btrfs_csum_final(crc, csum);
1852
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1853
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1854

1855
	return sblock->checksum_error;
A
Arne Jansen 已提交
1856 1857
}

1858
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1859
{
1860
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1861
	struct btrfs_header *h;
1862
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1863
	struct btrfs_fs_info *fs_info = root->fs_info;
1864 1865 1866 1867 1868 1869
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1870
	u32 crc = ~(u32)0;
1871 1872 1873 1874
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1875
	page = sblock->pagev[0]->page;
1876
	mapped_buffer = kmap_atomic(page);
1877
	h = (struct btrfs_header *)mapped_buffer;
1878
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1879 1880 1881 1882 1883 1884

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1885
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1886
		sblock->header_error = 1;
A
Arne Jansen 已提交
1887

1888 1889 1890 1891
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1892

M
Miao Xie 已提交
1893
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1894
		sblock->header_error = 1;
A
Arne Jansen 已提交
1895 1896 1897

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1898
		sblock->header_error = 1;
A
Arne Jansen 已提交
1899

1900
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1901 1902 1903 1904 1905 1906
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1907
		crc = btrfs_csum_data(p, crc, l);
1908
		kunmap_atomic(mapped_buffer);
1909 1910 1911 1912 1913
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1914 1915
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1916
		mapped_buffer = kmap_atomic(page);
1917 1918 1919 1920 1921
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1922
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1923
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1924

1925
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1926 1927
}

1928
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1929 1930
{
	struct btrfs_super_block *s;
1931
	struct scrub_ctx *sctx = sblock->sctx;
1932 1933 1934 1935 1936 1937
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1938
	u32 crc = ~(u32)0;
1939 1940
	int fail_gen = 0;
	int fail_cor = 0;
1941 1942
	u64 len;
	int index;
A
Arne Jansen 已提交
1943

1944
	BUG_ON(sblock->page_count < 1);
1945
	page = sblock->pagev[0]->page;
1946
	mapped_buffer = kmap_atomic(page);
1947
	s = (struct btrfs_super_block *)mapped_buffer;
1948
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1949

1950
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1951
		++fail_cor;
A
Arne Jansen 已提交
1952

1953
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1954
		++fail_gen;
A
Arne Jansen 已提交
1955

M
Miao Xie 已提交
1956
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1957
		++fail_cor;
A
Arne Jansen 已提交
1958

1959 1960 1961 1962 1963 1964 1965
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1966
		crc = btrfs_csum_data(p, crc, l);
1967
		kunmap_atomic(mapped_buffer);
1968 1969 1970 1971 1972
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1973 1974
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1975
		mapped_buffer = kmap_atomic(page);
1976 1977 1978 1979 1980
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1981
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1982
		++fail_cor;
A
Arne Jansen 已提交
1983

1984
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1985 1986 1987 1988 1989
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1990 1991 1992
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1993
		if (fail_cor)
1994
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 1996
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1997
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1998
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1999 2000
	}

2001
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2002 2003
}

2004 2005
static void scrub_block_get(struct scrub_block *sblock)
{
2006
	atomic_inc(&sblock->refs);
2007 2008 2009 2010
}

static void scrub_block_put(struct scrub_block *sblock)
{
2011
	if (atomic_dec_and_test(&sblock->refs)) {
2012 2013
		int i;

2014 2015 2016
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2017
		for (i = 0; i < sblock->page_count; i++)
2018
			scrub_page_put(sblock->pagev[i]);
2019 2020 2021 2022
		kfree(sblock);
	}
}

2023 2024
static void scrub_page_get(struct scrub_page *spage)
{
2025
	atomic_inc(&spage->refs);
2026 2027 2028 2029
}

static void scrub_page_put(struct scrub_page *spage)
{
2030
	if (atomic_dec_and_test(&spage->refs)) {
2031 2032 2033 2034 2035 2036
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2037
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2038 2039 2040
{
	struct scrub_bio *sbio;

2041
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2042
		return;
A
Arne Jansen 已提交
2043

2044 2045
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2046
	scrub_pending_bio_inc(sctx);
2047
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2048 2049
}

2050 2051
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2052
{
2053
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2054
	struct scrub_bio *sbio;
2055
	int ret;
A
Arne Jansen 已提交
2056 2057 2058 2059 2060

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2061 2062 2063 2064 2065 2066 2067 2068
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2069
		} else {
2070 2071
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2072 2073
		}
	}
2074
	sbio = sctx->bios[sctx->curr];
2075
	if (sbio->page_count == 0) {
2076 2077
		struct bio *bio;

2078 2079
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2080
		sbio->dev = spage->dev;
2081 2082
		bio = sbio->bio;
		if (!bio) {
2083 2084
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2085 2086 2087 2088
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2089 2090 2091

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2092
		bio->bi_bdev = sbio->dev->bdev;
2093
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2094
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2095
		sbio->err = 0;
2096 2097 2098
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2099 2100
		   spage->logical ||
		   sbio->dev != spage->dev) {
2101
		scrub_submit(sctx);
A
Arne Jansen 已提交
2102 2103
		goto again;
	}
2104

2105 2106 2107 2108 2109 2110 2111 2112
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2113
		scrub_submit(sctx);
2114 2115 2116
		goto again;
	}

2117
	scrub_block_get(sblock); /* one for the page added to the bio */
2118 2119
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2120
	if (sbio->page_count == sctx->pages_per_rd_bio)
2121
		scrub_submit(sctx);
2122 2123 2124 2125

	return 0;
}

2126
static void scrub_missing_raid56_end_io(struct bio *bio)
2127 2128 2129 2130
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

2131
	if (bio->bi_error)
2132 2133
		sblock->no_io_error_seen = 0;

2134 2135
	bio_put(bio);

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2149
	if (sblock->no_io_error_seen)
2150
		scrub_recheck_block_checksum(sblock);
2151 2152 2153 2154 2155

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2156
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2157
			"IO error rebuilding logical %llu for dev %s",
2158 2159 2160 2161 2162
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2163
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2164
			"failed to rebuild valid logical %llu for dev %s",
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2188
	struct btrfs_bio *bbio = NULL;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2244
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2245
		       u64 physical, struct btrfs_device *dev, u64 flags,
2246 2247
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2248 2249 2250 2251
{
	struct scrub_block *sblock;
	int index;

2252
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2253
	if (!sblock) {
2254 2255 2256
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2257
		return -ENOMEM;
A
Arne Jansen 已提交
2258
	}
2259

2260 2261
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2262
	atomic_set(&sblock->refs, 1);
2263
	sblock->sctx = sctx;
2264 2265 2266
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2267
		struct scrub_page *spage;
2268 2269
		u64 l = min_t(u64, len, PAGE_SIZE);

2270
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2271 2272
		if (!spage) {
leave_nomem:
2273 2274 2275
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2276
			scrub_block_put(sblock);
2277 2278
			return -ENOMEM;
		}
2279 2280 2281
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2282
		spage->sblock = sblock;
2283
		spage->dev = dev;
2284 2285 2286 2287
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2288
		spage->physical_for_dev_replace = physical_for_dev_replace;
2289 2290 2291
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2292
			memcpy(spage->csum, csum, sctx->csum_size);
2293 2294 2295 2296
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2297
		spage->page = alloc_page(GFP_KERNEL);
2298 2299
		if (!spage->page)
			goto leave_nomem;
2300 2301 2302
		len -= l;
		logical += l;
		physical += l;
2303
		physical_for_dev_replace += l;
2304 2305
	}

2306
	WARN_ON(sblock->page_count == 0);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2317

2318 2319 2320 2321 2322
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2323
		}
A
Arne Jansen 已提交
2324

2325 2326 2327
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2328

2329 2330
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2331 2332 2333
	return 0;
}

2334
static void scrub_bio_end_io(struct bio *bio)
2335 2336
{
	struct scrub_bio *sbio = bio->bi_private;
2337
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2338

2339
	sbio->err = bio->bi_error;
2340 2341
	sbio->bio = bio;

2342
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2343 2344 2345 2346 2347
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2348
	struct scrub_ctx *sctx = sbio->sctx;
2349 2350
	int i;

2351
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2373 2374 2375 2376
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2377 2378 2379 2380 2381 2382 2383 2384

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2385
	scrub_pending_bio_dec(sctx);
2386 2387
}

2388 2389 2390 2391
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2392
	u32 offset;
2393 2394 2395 2396 2397 2398 2399 2400 2401
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2402
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2427 2428
static void scrub_block_complete(struct scrub_block *sblock)
{
2429 2430
	int corrupted = 0;

2431
	if (!sblock->no_io_error_seen) {
2432
		corrupted = 1;
2433
		scrub_handle_errored_block(sblock);
2434 2435 2436 2437 2438 2439
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2440 2441
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2442 2443
			scrub_write_block_to_dev_replace(sblock);
	}
2444 2445 2446 2447 2448 2449 2450 2451 2452

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2453 2454
}

2455
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2456 2457
{
	struct btrfs_ordered_sum *sum = NULL;
2458
	unsigned long index;
A
Arne Jansen 已提交
2459 2460
	unsigned long num_sectors;

2461 2462
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2463 2464 2465 2466 2467 2468
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2469
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2470 2471 2472 2473 2474 2475 2476
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2477
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2478
	num_sectors = sum->len / sctx->sectorsize;
2479 2480
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2481 2482 2483
		list_del(&sum->list);
		kfree(sum);
	}
2484
	return 1;
A
Arne Jansen 已提交
2485 2486 2487
}

/* scrub extent tries to collect up to 64 kB for each bio */
2488
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2489
			u64 physical, struct btrfs_device *dev, u64 flags,
2490
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2491 2492 2493
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2494 2495 2496
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2497 2498 2499 2500 2501
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2502
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2503 2504 2505 2506 2507
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2508
	} else {
2509
		blocksize = sctx->sectorsize;
2510
		WARN_ON(1);
2511
	}
A
Arne Jansen 已提交
2512 2513

	while (len) {
2514
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2515 2516 2517 2518
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2519
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2520
			if (have_csum == 0)
2521
				++sctx->stat.no_csum;
2522 2523 2524 2525 2526 2527
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2528
		}
2529
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2530 2531 2532
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2533 2534 2535 2536 2537
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2538
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2539 2540 2541 2542
	}
	return 0;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2552
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2553 2554 2555 2556 2557 2558 2559 2560 2561
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2562
	atomic_set(&sblock->refs, 1);
2563 2564 2565 2566 2567 2568 2569 2570 2571
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2572
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2602
		spage->page = alloc_page(GFP_KERNEL);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2637 2638 2639 2640 2641
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2657
			have_csum = scrub_find_csum(sctx, logical, csum);
2658 2659 2660 2661 2662 2663 2664 2665
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2666
skip:
2667 2668 2669 2670 2671 2672 2673
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2674 2675 2676 2677 2678 2679 2680 2681
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2682 2683
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2684 2685 2686 2687 2688
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2689 2690
	u32 stripe_index;
	u32 rot;
2691 2692 2693

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2694 2695 2696
	if (stripe_start)
		*stripe_start = last_offset;

2697 2698 2699 2700
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2701 2702
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2703 2704

		/* Work out the disk rotation on this stripe-set */
2705
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2706 2707
		/* calculate which stripe this data locates */
		rot += i;
2708
		stripe_index = rot % map->num_stripes;
2709 2710 2711 2712 2713 2714 2715 2716 2717
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2750
static void scrub_parity_bio_endio(struct bio *bio)
2751 2752 2753
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

2754
	if (bio->bi_error)
2755 2756 2757 2758
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2759 2760 2761 2762 2763

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2780
	length = sparity->logic_end - sparity->logic_start;
2781
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2782
			       sparity->logic_start,
2783 2784
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2796
					      length, sparity->scrub_dev,
2797 2798 2799 2800 2801 2802
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2803
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2804 2805 2806 2807 2808 2809 2810 2811

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2812
	btrfs_put_bbio(bbio);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2824
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2825 2826 2827 2828
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2829
	atomic_inc(&sparity->refs);
2830 2831 2832 2833
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2834
	if (!atomic_dec_and_test(&sparity->refs))
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2851
	struct btrfs_bio *bbio = NULL;
2852 2853 2854 2855 2856 2857 2858 2859 2860
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2861
	u64 mapped_length;
2862 2863 2864 2865 2866 2867 2868
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2869
	nsectors = div_u64(map->stripe_len, root->sectorsize);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2886
	atomic_set(&sparity->refs, 1);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2935 2936 2937 2938
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2939 2940 2941 2942 2943 2944 2945 2946
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2947
			if (key.objectid >= logic_end) {
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2960 2961 2962 2963
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2964 2965
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2966
					  key.objectid, logic_start);
2967 2968 2969
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2989
			mapped_length = extent_len;
2990
			bbio = NULL;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3019 3020 3021

			scrub_free_csums(sctx);

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3053
						logic_end - logic_start);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3064
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3065 3066
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3067 3068
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3069
{
3070
	struct btrfs_path *path, *ppath;
3071
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3072 3073 3074
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3075
	struct blk_plug plug;
A
Arne Jansen 已提交
3076 3077 3078 3079 3080 3081 3082
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3083
	u64 logic_end;
3084
	u64 physical_end;
A
Arne Jansen 已提交
3085
	u64 generation;
3086
	int mirror_num;
A
Arne Jansen 已提交
3087 3088
	struct reada_control *reada1;
	struct reada_control *reada2;
3089
	struct btrfs_key key;
A
Arne Jansen 已提交
3090
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3091 3092
	u64 increment = map->stripe_len;
	u64 offset;
3093 3094 3095
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3096 3097
	u64 stripe_logical;
	u64 stripe_end;
3098 3099
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3100
	int stop_loop = 0;
D
David Woodhouse 已提交
3101

3102
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3103
	offset = 0;
3104
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3105 3106 3107
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3108
		mirror_num = 1;
A
Arne Jansen 已提交
3109 3110 3111 3112
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3113
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3114 3115
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3116
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3117 3118
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3119
		mirror_num = num % map->num_stripes + 1;
3120
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3121
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3122 3123
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3124 3125
	} else {
		increment = map->stripe_len;
3126
		mirror_num = 1;
A
Arne Jansen 已提交
3127 3128 3129 3130 3131 3132
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3133 3134
	ppath = btrfs_alloc_path();
	if (!ppath) {
3135
		btrfs_free_path(path);
3136 3137 3138
		return -ENOMEM;
	}

3139 3140 3141 3142 3143
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3144 3145 3146
	path->search_commit_root = 1;
	path->skip_locking = 1;

3147 3148
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3149
	/*
A
Arne Jansen 已提交
3150 3151 3152
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3153 3154
	 */
	logical = base + offset;
3155
	physical_end = physical + nstripes * map->stripe_len;
3156
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3157
		get_raid56_logic_offset(physical_end, num,
3158
					map, &logic_end, NULL);
3159 3160 3161 3162
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3163
	wait_event(sctx->list_wait,
3164
		   atomic_read(&sctx->bios_in_flight) == 0);
3165
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3166 3167

	/* FIXME it might be better to start readahead at commit root */
3168 3169 3170
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3171
	key_end.objectid = logic_end;
3172 3173
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3174
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3175

3176 3177 3178
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3179 3180
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3181
	key_end.offset = logic_end;
3182
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3183 3184 3185 3186 3187 3188

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3189 3190 3191 3192 3193

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3194
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3195 3196 3197 3198 3199

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3200
	while (physical < physical_end) {
A
Arne Jansen 已提交
3201 3202 3203 3204
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3205
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3206 3207 3208 3209 3210 3211 3212 3213
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3214
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3215
			scrub_submit(sctx);
3216 3217 3218
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3219
			wait_event(sctx->list_wait,
3220
				   atomic_read(&sctx->bios_in_flight) == 0);
3221
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3222
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3223 3224
		}

3225 3226 3227 3228 3229 3230
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3231
				/* it is parity strip */
3232
				stripe_logical += base;
3233
				stripe_end = stripe_logical + increment;
3234 3235 3236 3237 3238 3239 3240 3241 3242
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3243 3244 3245 3246
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3247
		key.objectid = logical;
L
Liu Bo 已提交
3248
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3249 3250 3251 3252

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3253

3254
		if (ret > 0) {
3255
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3256 3257
			if (ret < 0)
				goto out;
3258 3259 3260 3261 3262 3263 3264 3265 3266
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3267 3268
		}

L
Liu Bo 已提交
3269
		stop_loop = 0;
A
Arne Jansen 已提交
3270
		while (1) {
3271 3272
			u64 bytes;

A
Arne Jansen 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3282
				stop_loop = 1;
A
Arne Jansen 已提交
3283 3284 3285 3286
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3287 3288 3289 3290
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3291
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3292
				bytes = root->nodesize;
3293 3294 3295 3296
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3297 3298
				goto next;

L
Liu Bo 已提交
3299 3300 3301 3302 3303 3304
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3305 3306 3307 3308 3309 3310

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3311 3312 3313 3314
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3315
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3316
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3317
				       key.objectid, logical);
3318 3319 3320
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3321 3322 3323
				goto next;
			}

L
Liu Bo 已提交
3324 3325 3326 3327
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3328 3329 3330
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3331 3332 3333
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3334
			}
L
Liu Bo 已提交
3335
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3336
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3337 3338
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3339 3340
			}

L
Liu Bo 已提交
3341
			extent_physical = extent_logical - logical + physical;
3342 3343 3344 3345 3346 3347 3348
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3349

3350 3351 3352 3353 3354
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3355 3356 3357
			if (ret)
				goto out;

3358 3359 3360
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3361
					   extent_logical - logical + physical);
3362 3363 3364

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3365 3366 3367
			if (ret)
				goto out;

L
Liu Bo 已提交
3368 3369
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3370
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3371 3372 3373 3374
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3385
								increment;
3386 3387 3388 3389 3390 3391 3392 3393
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3394 3395 3396 3397
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3398 3399 3400 3401 3402
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3403
				if (physical >= physical_end) {
L
Liu Bo 已提交
3404 3405 3406 3407
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3408 3409 3410
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3411
		btrfs_release_path(path);
3412
skip:
A
Arne Jansen 已提交
3413 3414
		logical += increment;
		physical += map->stripe_len;
3415
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3416 3417 3418 3419 3420
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3421
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3422 3423
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3424
	}
3425
out:
A
Arne Jansen 已提交
3426
	/* push queued extents */
3427
	scrub_submit(sctx);
3428 3429 3430
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3431

3432
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3433
	btrfs_free_path(path);
3434
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3435 3436 3437
	return ret < 0 ? ret : 0;
}

3438
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3439 3440
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3441 3442 3443
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3444 3445
{
	struct btrfs_mapping_tree *map_tree =
3446
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3447 3448 3449
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3450
	int ret = 0;
A
Arne Jansen 已提交
3451 3452 3453 3454 3455

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3468

3469
	map = em->map_lookup;
A
Arne Jansen 已提交
3470 3471 3472 3473 3474 3475 3476
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3477
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3478
		    map->stripes[i].physical == dev_offset) {
3479
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3480 3481
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3493
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3494 3495
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3496 3497 3498
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3499
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3500 3501 3502
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_offset;
3503
	int ret = 0;
3504
	int ro_set;
A
Arne Jansen 已提交
3505 3506 3507 3508 3509
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3510
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3511 3512 3513 3514 3515

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3516
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3517 3518 3519
	path->search_commit_root = 1;
	path->skip_locking = 1;

3520
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3521 3522 3523 3524 3525 3526
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3527 3528 3529 3530 3531
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3532 3533 3534 3535
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3536
					break;
3537 3538 3539
				}
			} else {
				ret = 0;
3540 3541
			}
		}
A
Arne Jansen 已提交
3542 3543 3544 3545 3546 3547

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3548
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3549 3550
			break;

3551
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3563 3564
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3565 3566 3567 3568 3569 3570 3571 3572

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3573 3574 3575 3576 3577 3578

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
					ret = btrfs_commit_transaction(trans,
								       root);
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3629
		scrub_pause_off(fs_info);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3643 3644
			btrfs_warn(fs_info,
				   "failed setting block group ro, ret=%d\n",
3645
				   ret);
3646 3647 3648 3649
			btrfs_put_block_group(cache);
			break;
		}

3650
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3651 3652 3653
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3654
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3655
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3656
				  found_key.offset, cache, is_dev_replace);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3676 3677

		scrub_pause_on(fs_info);
3678 3679 3680 3681 3682 3683

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3684 3685
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3686 3687
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3688
		scrub_pause_off(fs_info);
3689

3690 3691 3692 3693 3694
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3695 3696
		if (ro_set)
			btrfs_dec_block_group_ro(root, cache);
3697

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3720 3721 3722
		btrfs_put_block_group(cache);
		if (ret)
			break;
3723 3724
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3725 3726 3727 3728 3729 3730 3731
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3732
skip:
A
Arne Jansen 已提交
3733
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3734
		btrfs_release_path(path);
A
Arne Jansen 已提交
3735 3736 3737
	}

	btrfs_free_path(path);
3738

3739
	return ret;
A
Arne Jansen 已提交
3740 3741
}

3742 3743
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3744 3745 3746 3747 3748
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3749
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3750

3751
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3752 3753
		return -EIO;

3754 3755 3756 3757 3758
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3759 3760 3761

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3762 3763
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3764 3765
			break;

3766
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3767
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3768
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3769 3770 3771
		if (ret)
			return ret;
	}
3772
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3773 3774 3775 3776 3777 3778 3779

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3780 3781
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3782
{
3783
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3784
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3785

A
Arne Jansen 已提交
3786
	if (fs_info->scrub_workers_refcnt == 0) {
3787
		if (is_dev_replace)
3788
			fs_info->scrub_workers =
3789
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3790
						      1, 4);
3791
		else
3792
			fs_info->scrub_workers =
3793
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3794
						      max_active, 4);
3795 3796 3797
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3798
		fs_info->scrub_wr_completion_workers =
3799
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3800
					      max_active, 2);
3801 3802 3803
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3804
		fs_info->scrub_nocow_workers =
3805
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3806 3807
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3808
		fs_info->scrub_parity_workers =
3809
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3810
					      max_active, 2);
3811 3812
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3813
	}
A
Arne Jansen 已提交
3814
	++fs_info->scrub_workers_refcnt;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3825 3826
}

3827
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3828
{
3829
	if (--fs_info->scrub_workers_refcnt == 0) {
3830 3831 3832
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3833
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3834
	}
A
Arne Jansen 已提交
3835 3836 3837
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3838 3839
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3840
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3841
{
3842
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3843 3844
	int ret;
	struct btrfs_device *dev;
3845
	struct rcu_string *name;
A
Arne Jansen 已提交
3846

3847
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3848 3849
		return -EINVAL;

3850
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3851 3852 3853 3854 3855
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3856 3857
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3858
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3859 3860 3861
		return -EINVAL;
	}

3862
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3863
		/* not supported for data w/o checksums */
3864
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3865
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3866
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3867 3868 3869
		return -EINVAL;
	}

3870 3871 3872 3873 3874 3875 3876 3877
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3878 3879
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3880 3881 3882 3883 3884 3885 3886
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3887

3888 3889
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3890
	if (!dev || (dev->missing && !is_dev_replace)) {
3891
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3892 3893 3894
		return -ENODEV;
	}

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3905
	mutex_lock(&fs_info->scrub_lock);
3906
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3907
		mutex_unlock(&fs_info->scrub_lock);
3908 3909
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3910 3911
	}

3912
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3913 3914 3915
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3916
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
3917
		mutex_unlock(&fs_info->scrub_lock);
3918
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3919 3920
		return -EINPROGRESS;
	}
3921
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3922 3923 3924 3925 3926 3927 3928 3929

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3930
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3931
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3932
		mutex_unlock(&fs_info->scrub_lock);
3933 3934
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3935
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3936
	}
3937 3938
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3939
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3940

3941 3942 3943 3944
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3945
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3946 3947 3948
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3949
	if (!is_dev_replace) {
3950 3951 3952 3953
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3954
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3955
		ret = scrub_supers(sctx, dev);
3956
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3957
	}
A
Arne Jansen 已提交
3958 3959

	if (!ret)
3960 3961
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3962

3963
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3964 3965 3966
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3967
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3968

A
Arne Jansen 已提交
3969
	if (progress)
3970
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3971 3972 3973

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3974
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3975 3976
	mutex_unlock(&fs_info->scrub_lock);

3977
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3978 3979 3980 3981

	return ret;
}

3982
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3999
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
4000 4001 4002 4003 4004 4005 4006
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4007
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4028 4029
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4030
{
4031
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4032 4033

	mutex_lock(&fs_info->scrub_lock);
4034 4035
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4036 4037 4038
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4039
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4050

A
Arne Jansen 已提交
4051 4052 4053 4054
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4055
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4056 4057

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4058
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4059
	if (dev)
4060 4061 4062
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4063 4064
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

4065
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4066
}
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4083
		btrfs_put_bbio(bbio);
4084 4085 4086 4087 4088 4089
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4090
	btrfs_put_bbio(bbio);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4107
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4142 4143
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4144
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4145 4146
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4147 4148 4149 4150

	return 0;
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4203
					  record_inode_for_nocow, nocow_ctx);
4204
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4205 4206 4207 4208
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4209 4210 4211 4212
		not_written = 1;
		goto out;
	}

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4231
out:
4232 4233 4234 4235 4236 4237 4238 4239
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

4264
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4296 4297
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4298
{
4299
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4300
	struct btrfs_key key;
4301 4302
	struct inode *inode;
	struct page *page;
4303
	struct btrfs_root *local_root;
4304
	struct extent_io_tree *io_tree;
4305
	u64 physical_for_dev_replace;
4306
	u64 nocow_ctx_logical;
4307
	u64 len = nocow_ctx->len;
4308
	unsigned long index;
4309
	int srcu_index;
4310 4311
	int ret = 0;
	int err = 0;
4312 4313 4314 4315

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4316 4317 4318

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4319
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4320 4321
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4322
		return PTR_ERR(local_root);
4323
	}
4324 4325 4326 4327 4328

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4329
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4330 4331 4332
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4333
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4334
	inode_lock(inode);
4335 4336
	inode_dio_wait(inode);

4337
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4338
	io_tree = &BTRFS_I(inode)->io_tree;
4339
	nocow_ctx_logical = nocow_ctx->logical;
4340

4341 4342 4343 4344
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4345 4346
	}

4347 4348
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4349
again:
4350 4351
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4352
			btrfs_err(fs_info, "find_or_create_page() failed");
4353
			ret = -ENOMEM;
4354
			goto out;
4355 4356 4357 4358 4359 4360 4361
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4362
			err = extent_read_full_page(io_tree, page,
4363 4364
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4365 4366
			if (err) {
				ret = err;
4367 4368
				goto next_page;
			}
4369

4370
			lock_page(page);
4371 4372 4373 4374 4375 4376 4377
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4378
				unlock_page(page);
4379
				put_page(page);
4380 4381
				goto again;
			}
4382 4383 4384 4385 4386
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4387 4388 4389 4390 4391 4392 4393 4394

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4395 4396 4397 4398
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4399
next_page:
4400
		unlock_page(page);
4401
		put_page(page);
4402 4403 4404 4405

		if (ret)
			break;

4406 4407 4408 4409
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4410
	}
4411
	ret = COPY_COMPLETE;
4412
out:
A
Al Viro 已提交
4413
	inode_unlock(inode);
4414
	iput(inode);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4429 4430
		btrfs_warn_rl(dev->dev_root->fs_info,
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4431 4432
		return -EIO;
	}
4433
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4434 4435 4436 4437 4438 4439
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4440 4441
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4442
	bio->bi_bdev = dev->bdev;
4443
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4444 4445
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4446 4447 4448 4449 4450 4451
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4452
	if (btrfsic_submit_bio_wait(bio))
4453 4454 4455 4456 4457
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}