arm.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67
static u32 kvm_next_vmid;
68
static DEFINE_SPINLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122
	ret = kvm_arm_setup_stage2(kvm, type);
123 124
	if (ret)
		return ret;
125

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143
	/* Mark the initial VMID generation invalid */
144
	kvm->arch.vmid.vmid_gen = 0;
145

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
227 228 229
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
230 231 232 233 234 235
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
236 237 238 239 240 241 242
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
243
	default:
244
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
245 246 247 248 249 250 251 252 253 254 255
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
271 272 273 274 275 276

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

277 278 279 280 281
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

282 283 284 285 286
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

287 288 289 290 291 292 293 294 295 296
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

297
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298 299 300
	if (err)
		goto vcpu_uninit;

301
	return vcpu;
302 303
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
304 305 306 307 308 309
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

310
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
311 312 313 314 315
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
316 317 318
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

319
	kvm_mmu_free_memory_caches(vcpu);
320
	kvm_timer_vcpu_terminate(vcpu);
321
	kvm_pmu_vcpu_destroy(vcpu);
322
	kvm_vcpu_uninit(vcpu);
323
	kmem_cache_free(kvm_vcpu_cache, vcpu);
324 325 326 327 328 329 330 331 332
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
333
	return kvm_timer_is_pending(vcpu);
334 335
}

336 337
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
338
	kvm_vgic_v4_enable_doorbell(vcpu);
339 340 341 342
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
343
	kvm_vgic_v4_disable_doorbell(vcpu);
344 345
}

346 347
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
348 349
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
350
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351

352 353 354
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

355 356
	kvm_arm_reset_debug_ptr(vcpu);

357
	return kvm_vgic_vcpu_init(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
362
	int *last_ran;
363
	kvm_host_data_t *cpu_data;
364 365

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
366
	cpu_data = this_cpu_ptr(&kvm_host_data);
367 368 369 370 371 372 373 374 375 376

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

377
	vcpu->cpu = cpu;
378
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
379

380
	kvm_arm_set_running_vcpu(vcpu);
381
	kvm_vgic_load(vcpu);
382
	kvm_timer_vcpu_load(vcpu);
383
	kvm_vcpu_load_sysregs(vcpu);
384
	kvm_arch_vcpu_load_fp(vcpu);
385 386 387 388 389

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
390 391

	vcpu_ptrauth_setup_lazy(vcpu);
392 393 394 395
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
396
	kvm_arch_vcpu_put_fp(vcpu);
397
	kvm_vcpu_put_sysregs(vcpu);
398
	kvm_timer_vcpu_put(vcpu);
399 400
	kvm_vgic_put(vcpu);

401 402
	vcpu->cpu = -1;

403
	kvm_arm_set_running_vcpu(NULL);
404 405
}

A
Andrew Jones 已提交
406 407 408
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
409
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
410 411 412
	kvm_vcpu_kick(vcpu);
}

413 414 415
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
416
	if (vcpu->arch.power_off)
417 418 419 420 421
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
422 423 424 425 426
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
427 428
	int ret = 0;

429 430
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
431
		vcpu->arch.power_off = false;
432 433
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
434
		vcpu_power_off(vcpu);
435 436
		break;
	default:
437
		ret = -EINVAL;
438 439
	}

440
	return ret;
441 442
}

443 444 445 446 447 448 449
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
450 451
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
452 453
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
454
		&& !v->arch.power_off && !v->arch.pause);
455 456
}

457 458
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
459
	return vcpu_mode_priv(vcpu);
460 461
}

462 463 464 465 466 467 468
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
469
	preempt_disable();
470
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
471
	preempt_enable();
472 473 474 475
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
476
 * @vmid: The VMID to check
477 478 479
 *
 * return true if there is a new generation of VMIDs being used
 *
480 481 482 483 484
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
485
 */
486
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
487
{
488 489
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
490
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
491 492 493
}

/**
494 495 496
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
497
 */
498
static void update_vmid(struct kvm_vmid *vmid)
499
{
500
	if (!need_new_vmid_gen(vmid))
501 502
		return;

503
	spin_lock(&kvm_vmid_lock);
504 505 506 507 508 509

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
510
	if (!need_new_vmid_gen(vmid)) {
511
		spin_unlock(&kvm_vmid_lock);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

534
	vmid->vmid = kvm_next_vmid;
535
	kvm_next_vmid++;
536
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
537

538
	smp_wmb();
539
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
540 541

	spin_unlock(&kvm_vmid_lock);
542 543 544 545
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
546
	struct kvm *kvm = vcpu->kvm;
547
	int ret = 0;
548

549 550 551
	if (likely(vcpu->arch.has_run_once))
		return 0;

552 553 554
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

555
	vcpu->arch.has_run_once = true;
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
573 574
	}

575
	ret = kvm_timer_enable(vcpu);
576 577 578 579
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
580

581
	return ret;
582 583
}

584 585 586 587 588
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

589
void kvm_arm_halt_guest(struct kvm *kvm)
590 591 592 593 594 595
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
596
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
597 598
}

599
void kvm_arm_resume_guest(struct kvm *kvm)
600 601 602 603
{
	int i;
	struct kvm_vcpu *vcpu;

604 605
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
606
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
607
	}
608 609
}

610
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
611
{
612
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
613

614
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
615
				       (!vcpu->arch.pause)));
616

A
Andrew Jones 已提交
617
	if (vcpu->arch.power_off || vcpu->arch.pause) {
618
		/* Awaken to handle a signal, request we sleep again later. */
619
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
620
	}
621 622 623 624 625 626 627

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
628 629
}

630 631 632 633 634
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

635 636 637
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
638 639
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
640

641 642 643
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

644 645 646 647 648
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
649 650 651
	}
}

652 653 654 655 656 657 658 659 660 661 662
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
663 664
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
665 666
	int ret;

667
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
668 669 670 671
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
672
		return ret;
673

C
Christoffer Dall 已提交
674 675 676
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
677
			return ret;
C
Christoffer Dall 已提交
678 679
	}

680 681 682 683
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
684

685
	kvm_sigset_activate(vcpu);
686 687 688 689 690 691 692 693 694

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

695
		update_vmid(&vcpu->kvm->arch.vmid);
696

697 698
		check_vcpu_requests(vcpu);

699 700 701 702 703
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
704
		preempt_disable();
705

706
		kvm_pmu_flush_hwstate(vcpu);
707

708 709
		local_irq_disable();

710 711
		kvm_vgic_flush_hwstate(vcpu);

712
		/*
713 714
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
715
		 */
716
		if (signal_pending(current)) {
717 718 719 720
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

736 737 738 739 740 741 742 743
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

744
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
745
		    kvm_request_pending(vcpu)) {
746
			vcpu->mode = OUTSIDE_GUEST_MODE;
747
			isb(); /* Ensure work in x_flush_hwstate is committed */
748
			kvm_pmu_sync_hwstate(vcpu);
749 750
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
751
			kvm_vgic_sync_hwstate(vcpu);
752
			local_irq_enable();
753
			preempt_enable();
754 755 756
			continue;
		}

757 758
		kvm_arm_setup_debug(vcpu);

759 760 761 762
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
763
		guest_enter_irqoff();
764

765 766 767
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
768
			kvm_arm_vhe_guest_exit();
769
		} else {
770
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
771 772
		}

773
		vcpu->mode = OUTSIDE_GUEST_MODE;
774
		vcpu->stat.exits++;
775 776 777 778
		/*
		 * Back from guest
		 *************************************************************/

779 780
		kvm_arm_clear_debug(vcpu);

781
		/*
782
		 * We must sync the PMU state before the vgic state so
783 784 785 786 787
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

788 789 790 791 792
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
793 794
		kvm_vgic_sync_hwstate(vcpu);

795 796 797 798 799
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
800 801
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
802

803 804
		kvm_arch_vcpu_ctxsync_fp(vcpu);

805 806 807 808 809 810 811 812 813 814 815 816 817
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
818
		 * We do local_irq_enable() before calling guest_exit() so
819 820
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
821
		 * preemption after calling guest_exit() so that if we get
822 823 824
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
825
		guest_exit();
826
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
827

828 829 830
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

831 832
		preempt_enable();

833 834 835
		ret = handle_exit(vcpu, run, ret);
	}

836
	/* Tell userspace about in-kernel device output levels */
837 838 839 840
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
841

842 843
	kvm_sigset_deactivate(vcpu);

844
	vcpu_put(vcpu);
845
	return ret;
846 847
}

848 849 850 851
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
852
	unsigned long *hcr;
853 854 855 856 857 858

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

859
	hcr = vcpu_hcr(vcpu);
860
	if (level)
861
		set = test_and_set_bit(bit_index, hcr);
862
	else
863
		set = test_and_clear_bit(bit_index, hcr);
864 865 866 867 868 869 870 871 872 873 874 875

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
876
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
877 878 879 880 881
	kvm_vcpu_kick(vcpu);

	return 0;
}

882 883
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
884 885 886 887 888 889 890 891 892 893 894 895 896
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

897 898 899 900
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
901

902 903
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
904

905 906 907
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
926

927
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
928 929 930 931
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

932
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
933 934
			return -EINVAL;

935
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
936 937 938
	}

	return -EINVAL;
939 940
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


983 984 985 986 987 988 989 990 991
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

992 993 994 995 996 997 998
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

999 1000
	vcpu_reset_hcr(vcpu);

1001
	/*
1002
	 * Handle the "start in power-off" case.
1003
	 */
1004
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1005
		vcpu_power_off(vcpu);
1006
	else
1007
		vcpu->arch.power_off = false;
1008 1009 1010 1011

	return 0;
}

1012 1013 1014 1015 1016 1017 1018
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1019
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1033
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1047
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1048 1049 1050 1051 1052 1053
		break;
	}

	return ret;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1080 1081 1082 1083 1084
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1085
	struct kvm_device_attr attr;
1086 1087
	long r;

1088 1089 1090 1091
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1092
		r = -EFAULT;
1093
		if (copy_from_user(&init, argp, sizeof(init)))
1094
			break;
1095

1096 1097
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1098 1099 1100 1101
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1102

1103
		r = -ENOEXEC;
1104
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1105
			break;
1106

1107
		r = -EFAULT;
1108
		if (copy_from_user(&reg, argp, sizeof(reg)))
1109 1110
			break;

1111
		if (ioctl == KVM_SET_ONE_REG)
1112
			r = kvm_arm_set_reg(vcpu, &reg);
1113
		else
1114 1115
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1116 1117 1118 1119 1120 1121
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1122
		r = -ENOEXEC;
1123
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1124
			break;
1125

1126 1127 1128 1129
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1130
		r = -EFAULT;
1131
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1132
			break;
1133 1134 1135
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1136 1137
			break;
		r = -E2BIG;
1138
		if (n < reg_list.n)
1139 1140 1141
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1142
	}
1143
	case KVM_SET_DEVICE_ATTR: {
1144
		r = -EFAULT;
1145
		if (copy_from_user(&attr, argp, sizeof(attr)))
1146 1147 1148
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1149 1150
	}
	case KVM_GET_DEVICE_ATTR: {
1151
		r = -EFAULT;
1152
		if (copy_from_user(&attr, argp, sizeof(attr)))
1153 1154 1155
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1156 1157
	}
	case KVM_HAS_DEVICE_ATTR: {
1158
		r = -EFAULT;
1159
		if (copy_from_user(&attr, argp, sizeof(attr)))
1160 1161 1162
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1163
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1194
	default:
1195
		r = -EINVAL;
1196
	}
1197 1198

	return r;
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1220 1221
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1222
	bool flush = false;
1223 1224 1225 1226
	int r;

	mutex_lock(&kvm->slots_lock);

1227
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1228

1229
	if (flush)
1230 1231 1232 1233
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1234 1235
}

1236 1237 1238
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1239 1240 1241 1242
	int r;

	mutex_lock(&kvm->slots_lock);

1243
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1244

1245
	if (flush)
1246 1247 1248 1249
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1250 1251
}

1252 1253 1254
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1255 1256 1257 1258 1259 1260 1261 1262 1263
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1264 1265
		if (!vgic_present)
			return -ENXIO;
1266
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1267 1268 1269
	default:
		return -ENODEV;
	}
1270 1271
}

1272 1273 1274
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1275 1276 1277 1278
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1279
	case KVM_CREATE_IRQCHIP: {
1280
		int ret;
1281 1282
		if (!vgic_present)
			return -ENXIO;
1283 1284 1285 1286
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1287
	}
1288 1289 1290 1291 1292 1293 1294
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1308 1309 1310
	default:
		return -EINVAL;
	}
1311 1312
}

1313
static void cpu_init_hyp_mode(void *dummy)
1314
{
1315
	phys_addr_t pgd_ptr;
1316 1317 1318 1319 1320
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1321
	__hyp_set_vectors(kvm_get_idmap_vector());
1322

1323
	pgd_ptr = kvm_mmu_get_httbr();
1324
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1325
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1326
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1327

M
Marc Zyngier 已提交
1328
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1329
	__cpu_init_stage2();
1330 1331
}

1332 1333 1334 1335 1336 1337
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1338 1339
static void cpu_hyp_reinit(void)
{
1340 1341
	cpu_hyp_reset();

1342
	if (is_kernel_in_hyp_mode())
1343
		kvm_timer_init_vhe();
1344
	else
1345
		cpu_init_hyp_mode(NULL);
1346

1347
	kvm_arm_init_debug();
1348 1349 1350

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1351 1352
}

1353 1354 1355
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1356
		cpu_hyp_reinit();
1357
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1358
	}
1359
}
1360

1361 1362 1363 1364
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1379

1380 1381 1382 1383 1384
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1400
		return NOTIFY_OK;
1401
	case CPU_PM_ENTER_FAILED:
1402 1403 1404 1405
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1406

1407 1408 1409 1410 1411
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1422 1423 1424 1425
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1426 1427 1428 1429
#else
static inline void hyp_cpu_pm_init(void)
{
}
1430 1431 1432
static inline void hyp_cpu_pm_exit(void)
{
}
1433 1434
#endif

1435 1436
static int init_common_resources(void)
{
1437 1438
	kvm_set_ipa_limit();

1439 1440 1441 1442 1443
	return 0;
}

static int init_subsystems(void)
{
1444
	int err = 0;
1445

1446
	/*
1447
	 * Enable hardware so that subsystem initialisation can access EL2.
1448
	 */
1449
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1450 1451 1452 1453 1454 1455

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1467
		err = 0;
1468 1469
		break;
	default:
1470
		goto out;
1471 1472 1473 1474 1475
	}

	/*
	 * Init HYP architected timer support
	 */
1476
	err = kvm_timer_hyp_init(vgic_present);
1477
	if (err)
1478
		goto out;
1479 1480 1481 1482

	kvm_perf_init();
	kvm_coproc_table_init();

1483 1484 1485 1486
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1487 1488 1489 1490 1491 1492 1493 1494 1495
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1496
	hyp_cpu_pm_exit();
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1523
			goto out_err;
1524 1525 1526 1527 1528 1529 1530 1531
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1532
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1533
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1534 1535
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1536
		goto out_err;
1537 1538
	}

1539
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1540
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1541 1542
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1543 1544 1545 1546 1547 1548 1549
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1550
		goto out_err;
1551 1552
	}

1553 1554 1555 1556 1557 1558
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1559 1560 1561 1562 1563
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1564 1565
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1566 1567 1568

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1569
			goto out_err;
1570 1571 1572 1573
		}
	}

	for_each_possible_cpu(cpu) {
1574
		kvm_host_data_t *cpu_data;
1575

1576 1577 1578
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		kvm_init_host_cpu_context(&cpu_data->host_ctxt, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1579 1580

		if (err) {
1581
			kvm_err("Cannot map host CPU state: %d\n", err);
1582
			goto out_err;
1583 1584 1585
		}
	}

1586 1587
	err = hyp_map_aux_data();
	if (err)
1588
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1589

1590
	return 0;
1591

1592
out_err:
1593
	teardown_hyp_mode();
1594 1595 1596 1597
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1598 1599 1600 1601 1602
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1627 1628
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1629 1630 1631 1632 1633 1634 1635
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1636 1637
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1656 1657 1658
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1659 1660
int kvm_arch_init(void *opaque)
{
1661
	int err;
1662
	int ret, cpu;
1663
	bool in_hyp_mode;
1664 1665

	if (!is_hyp_mode_available()) {
1666
		kvm_info("HYP mode not available\n");
1667 1668 1669
		return -ENODEV;
	}

1670 1671 1672 1673
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1674 1675 1676
		return -ENODEV;
	}

1677 1678 1679 1680 1681 1682
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1683 1684
	}

1685
	err = init_common_resources();
1686
	if (err)
1687
		return err;
1688

1689
	err = kvm_arm_init_sve();
1690 1691 1692
	if (err)
		return err;

1693
	if (!in_hyp_mode) {
1694
		err = init_hyp_mode();
1695 1696 1697
		if (err)
			goto out_err;
	}
1698

1699 1700 1701
	err = init_subsystems();
	if (err)
		goto out_hyp;
1702

1703 1704 1705 1706 1707
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1708
	return 0;
1709 1710

out_hyp:
1711 1712
	if (!in_hyp_mode)
		teardown_hyp_mode();
1713 1714
out_err:
	return err;
1715 1716 1717 1718 1719
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1720
	kvm_perf_teardown();
1721 1722 1723 1724 1725 1726 1727 1728 1729
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);