Kconfig 51.3 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125 126
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
if CRYPTO_MANAGER2

141 142
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
143
	default y
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158 159
endif	# if CRYPTO_MANAGER2

160
config CRYPTO_GF128MUL
161
	tristate
K
Kazunori MIYAZAWA 已提交
162

L
Linus Torvalds 已提交
163 164
config CRYPTO_NULL
	tristate "Null algorithms"
165
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
166 167 168
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

169
config CRYPTO_NULL2
170
	tristate
171 172 173 174
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

175
config CRYPTO_PCRYPT
176 177
	tristate "Parallel crypto engine"
	depends on SMP
178 179 180 181 182 183 184
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

185 186 187
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
188
	select CRYPTO_HASH
189
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
190
	help
191 192 193
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
194

195 196 197 198 199 200
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
201
	select CRYPTO_NULL
L
Linus Torvalds 已提交
202
	help
203 204
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
205

206 207 208
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
209
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
210
	help
211
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
212

213 214
config CRYPTO_SIMD
	tristate
215 216
	select CRYPTO_CRYPTD

217 218 219
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
220
	select CRYPTO_BLKCIPHER
221

222 223 224
config CRYPTO_ENGINE
	tristate

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

243 244 245
config CRYPTO_ECC
	tristate

246 247
config CRYPTO_ECDH
	tristate "ECDH algorithm"
248
	select CRYPTO_ECC
249 250 251 252 253
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

254 255 256 257 258
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
259 260
	select OID_REGISTRY
	select ASN1
261 262 263 264 265 266
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

267
comment "Authenticated Encryption with Associated Data"
268

269 270 271
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
272
	select CRYPTO_HASH
273
	select CRYPTO_AEAD
274
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
275
	help
276
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
277

278 279 280 281
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
282
	select CRYPTO_GHASH
283
	select CRYPTO_NULL
284
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
285
	help
286 287
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
288

289 290 291 292 293
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
294
	select CRYPTO_MANAGER
295 296 297 298 299 300 301
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

302 303 304 305 306 307 308
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

309 310 311 312
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
313
	select CRYPTO_SIMD
314
	help
315
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
316

317 318 319 320
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
321
	select CRYPTO_NULL
322
	select CRYPTO_RNG_DEFAULT
323
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
324
	help
325 326
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
327

328 329 330 331
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
332
	select CRYPTO_RNG_DEFAULT
333
	select CRYPTO_MANAGER
334 335 336 337 338
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

339
comment "Block modes"
340

341 342
config CRYPTO_CBC
	tristate "CBC support"
343
	select CRYPTO_BLKCIPHER
344
	select CRYPTO_MANAGER
345
	help
346 347
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
348

349 350 351 352 353 354 355 356
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

357 358
config CRYPTO_CTR
	tristate "CTR support"
359
	select CRYPTO_BLKCIPHER
360
	select CRYPTO_SEQIV
361
	select CRYPTO_MANAGER
362
	help
363
	  CTR: Counter mode
364 365
	  This block cipher algorithm is required for IPSec.

366 367 368
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
369
	select CRYPTO_MANAGER
370 371 372
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
373 374 375
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
376 377 378
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

379 380
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

381 382
config CRYPTO_ECB
	tristate "ECB support"
383 384 385
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
386 387 388
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
389

390
config CRYPTO_LRW
391
	tristate "LRW support"
392 393 394 395 396 397 398 399 400 401
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

402 403 404 405 406 407 408 409 410 411 412 413
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

414 415 416 417 418 419 420 421
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

422
config CRYPTO_XTS
423
	tristate "XTS support"
424 425
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
426
	select CRYPTO_ECB
427 428 429 430 431
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

432 433 434
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
435
	select CRYPTO_MANAGER
436 437 438 439
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

440 441 442 443 444
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

445 446 447 448 449 450 451 452
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

453 454 455 456 457 458 459 460
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

461 462 463 464 465
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_NHPOLY1305
466
	select CRYPTO_MANAGER
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

485 486
comment "Hash modes"

487 488 489 490 491 492 493 494 495 496 497
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

498 499 500
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
501 502
	select CRYPTO_MANAGER
	help
503 504
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
505

506 507 508 509
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
510
	help
511 512 513 514
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
515

516 517 518 519 520 521 522 523 524 525 526
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

527
comment "Digest"
M
Mikko Herranen 已提交
528

529 530
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
531
	select CRYPTO_HASH
532
	select CRC32
J
Joy Latten 已提交
533
	help
534 535
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
536
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

550
config CRYPTO_CRC32C_VPMSUM
551
	tristate "CRC32c CRC algorithm (powerpc64)"
552
	depends on PPC64 && ALTIVEC
553 554 555 556 557 558 559 560
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


561 562 563 564 565 566 567 568 569
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
587
	  instruction. This option will create 'crc32-pclmul' module,
588 589 590
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

591 592 593 594 595 596 597 598 599
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


600 601 602 603 604 605 606 607
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
624
	  'crct10dif-pclmul' module, which is faster when computing the
625 626
	  crct10dif checksum as compared with the generic table implementation.

627 628 629 630 631 632 633 634 635
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

636 637 638 639 640 641 642 643
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

644 645 646
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
647
	select CRYPTO_HASH
648 649 650
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

651 652
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
653
	select CRYPTO_HASH
654 655 656 657 658 659 660
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

661
config CRYPTO_POLY1305_X86_64
662
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
663 664 665 666 667 668 669 670 671 672
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

673 674
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
675
	select CRYPTO_HASH
676
	help
677
	  MD4 message digest algorithm (RFC1320).
678

679 680
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
681
	select CRYPTO_HASH
L
Linus Torvalds 已提交
682
	help
683
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
684

685 686 687 688 689 690 691 692 693
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

694 695 696 697 698 699 700 701
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

702 703 704 705 706 707 708 709 710
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

711 712
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
713
	select CRYPTO_HASH
714
	help
715 716 717 718
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
719

720
config CRYPTO_RMD128
721
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
722
	select CRYPTO_HASH
723 724
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
725

726
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
727
	  be used as a secure replacement for RIPEMD. For other use cases,
728
	  RIPEMD-160 should be used.
729

730
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
731
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
732 733

config CRYPTO_RMD160
734
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
735
	select CRYPTO_HASH
736 737
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
738

739 740 741 742
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
743

744 745
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
746

747
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
748
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
749 750

config CRYPTO_RMD256
751
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
752
	select CRYPTO_HASH
753 754 755 756 757
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
758

759
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
760
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
761 762

config CRYPTO_RMD320
763
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
764
	select CRYPTO_HASH
765 766 767 768 769
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
770

771
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
772
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
773

774 775
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
776
	select CRYPTO_HASH
L
Linus Torvalds 已提交
777
	help
778
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
779

780
config CRYPTO_SHA1_SSSE3
781
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
782 783 784 785 786 787
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
788 789
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
790

791
config CRYPTO_SHA256_SSSE3
792
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
793 794 795 796 797 798 799
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
800 801
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
802 803 804 805 806 807 808 809 810 811

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
812 813
	  version 2 (AVX2) instructions, when available.

814 815 816 817 818 819 820 821 822
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

823 824 825 826 827 828 829 830 831
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

832 833 834 835 836 837 838
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

839 840 841 842 843 844 845
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

846 847
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
848
	select CRYPTO_HASH
L
Linus Torvalds 已提交
849
	help
850
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
851

852 853
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
854

855 856
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
857

858 859 860 861 862 863 864 865 866
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

867 868 869 870 871 872 873 874 875
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

876 877 878 879 880 881 882 883 884
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

885 886
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
887
	select CRYPTO_HASH
888
	help
889
	  SHA512 secure hash standard (DFIPS 180-2).
890

891 892
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
893

894 895
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
896

897 898 899 900 901 902 903 904 905
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

906 907 908 909 910 911 912 913 914
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

915 916 917 918 919 920 921 922 923 924
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

925 926 927 928 929 930 931 932 933 934 935
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

936 937 938 939 940 941 942 943 944 945 946 947
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

948 949
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
950
	select CRYPTO_HASH
951
	help
952
	  Tiger hash algorithm 192, 160 and 128-bit hashes
953

954 955 956
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
957 958

	  See also:
959
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
960

961 962
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
963
	select CRYPTO_HASH
L
Linus Torvalds 已提交
964
	help
965
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
966

967 968
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
969 970

	  See also:
971
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
972

973 974
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
975
	depends on X86 && 64BIT
976 977 978 979 980
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

981
comment "Ciphers"
L
Linus Torvalds 已提交
982

983 984 985
config CRYPTO_LIB_AES
	tristate

L
Linus Torvalds 已提交
986 987
config CRYPTO_AES
	tristate "AES cipher algorithms"
988
	select CRYPTO_ALGAPI
989
	select CRYPTO_LIB_AES
L
Linus Torvalds 已提交
990
	help
991
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
992 993 994
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
995 996 997 998 999 1000 1001
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1002

1003
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1004 1005 1006

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1007 1008 1009
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1010
	select CRYPTO_LIB_AES
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1023 1024
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1025

1026 1027
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1028
	depends on X86
H
Herbert Xu 已提交
1029
	select CRYPTO_AEAD
1030
	select CRYPTO_LIB_AES
1031
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1032
	select CRYPTO_BLKCIPHER
1033
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1034
	select CRYPTO_SIMD
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1045 1046 1047 1048
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1049

1050
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1051 1052 1053

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1054 1055
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1056
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1057
	  acceleration for CTR.
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1111 1112
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1113

1114 1115 1116
config CRYPTO_LIB_ARC4
	tristate

1117 1118
config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1119
	select CRYPTO_BLKCIPHER
1120
	select CRYPTO_LIB_ARC4
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1132
	select CRYPTO_BLOWFISH_COMMON
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1143 1144 1145 1146 1147 1148 1149 1150 1151
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1152 1153
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1154
	depends on X86 && 64BIT
1155
	select CRYPTO_BLKCIPHER
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1182 1183
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1184
	depends on X86 && 64BIT
1185
	depends on CRYPTO
1186
	select CRYPTO_BLKCIPHER
1187
	select CRYPTO_GLUE_HELPER_X86
1188 1189 1190 1191 1192 1193 1194 1195 1196
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1197 1198 1199 1200 1201 1202
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1203
	select CRYPTO_BLKCIPHER
1204
	select CRYPTO_CAMELLIA_X86_64
1205 1206
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1217 1218
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1251 1252 1253 1254 1255 1256
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1257 1258
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1259
	select CRYPTO_ALGAPI
1260
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1261 1262 1263 1264
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1265 1266 1267
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1268
	select CRYPTO_BLKCIPHER
1269
	select CRYPTO_CAST5
1270 1271
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1272 1273 1274 1275 1276 1277 1278
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1279 1280
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1281
	select CRYPTO_ALGAPI
1282
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1283 1284 1285 1286
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1287 1288 1289
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1290
	select CRYPTO_BLKCIPHER
1291
	select CRYPTO_CAST6
1292 1293 1294
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1295 1296 1297 1298 1299 1300 1301 1302
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1303 1304
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1305
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1306
	help
1307
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1308

1309 1310
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1311
	depends on SPARC64
1312 1313 1314 1315 1316 1317
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1318 1319 1320
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1321
	select CRYPTO_BLKCIPHER
1322 1323 1324 1325 1326 1327 1328 1329 1330
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1331 1332
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1333
	select CRYPTO_ALGAPI
1334
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1335
	help
1336
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1337 1338 1339

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1340
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1341 1342 1343 1344 1345 1346 1347 1348
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1349
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1350

1351
config CRYPTO_SALSA20
1352
	tristate "Salsa20 stream cipher algorithm"
1353 1354 1355 1356 1357 1358
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1359 1360 1361 1362

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1363
config CRYPTO_CHACHA20
1364
	tristate "ChaCha stream cipher algorithms"
1365 1366
	select CRYPTO_BLKCIPHER
	help
1367
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1368 1369 1370

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1371
	  This is the portable C implementation of ChaCha20.  See also:
1372 1373
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1374 1375 1376 1377 1378 1379
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1380 1381 1382 1383
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1384
config CRYPTO_CHACHA20_X86_64
1385
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1386 1387 1388 1389
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
1390 1391
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1392

1393 1394
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1395
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1396
	help
1397
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1409
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1410
	help
1411
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1412

1413 1414 1415 1416 1417 1418 1419
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1420 1421 1422
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1423
	select CRYPTO_BLKCIPHER
1424
	select CRYPTO_GLUE_HELPER_X86
1425
	select CRYPTO_SERPENT
1426
	select CRYPTO_SIMD
1427 1428 1429 1430 1431 1432
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1433
	  This module provides Serpent cipher algorithm that processes eight
1434 1435 1436 1437 1438
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1439 1440 1441
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1442
	select CRYPTO_BLKCIPHER
1443
	select CRYPTO_GLUE_HELPER_X86
1444
	select CRYPTO_SERPENT
1445
	select CRYPTO_SIMD
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1457 1458 1459 1460

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1461
	select CRYPTO_BLKCIPHER
1462
	select CRYPTO_GLUE_HELPER_X86
1463
	select CRYPTO_SERPENT
1464
	select CRYPTO_SIMD
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1519 1520
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1521
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1522
	help
1523
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1538
	select CRYPTO_ALGAPI
1539
	select CRYPTO_TWOFISH_COMMON
1540
	help
1541
	  Twofish cipher algorithm.
1542

1543 1544 1545 1546
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1569 1570

	  See also:
1571
	  <http://www.schneier.com/twofish.html>
1572

1573 1574 1575
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1576
	select CRYPTO_ALGAPI
1577
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1578
	help
1579
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1580

1581 1582 1583 1584 1585 1586 1587 1588
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1589 1590
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1591
	depends on X86 && 64BIT
1592
	select CRYPTO_BLKCIPHER
1593 1594
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1595
	select CRYPTO_GLUE_HELPER_X86
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1610 1611 1612
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1613
	select CRYPTO_BLKCIPHER
1614
	select CRYPTO_GLUE_HELPER_X86
1615
	select CRYPTO_SIMD
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1633 1634 1635 1636 1637
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1638
	select CRYPTO_ACOMP2
1639 1640
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1641
	help
1642 1643 1644 1645
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1646

1647 1648 1649
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1650
	select CRYPTO_ACOMP2
1651 1652 1653 1654 1655
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1656 1657
config CRYPTO_842
	tristate "842 compression algorithm"
1658
	select CRYPTO_ALGAPI
1659
	select CRYPTO_ACOMP2
1660 1661
	select 842_COMPRESS
	select 842_DECOMPRESS
1662 1663
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1664 1665 1666 1667

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1668
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1669 1670 1671 1672 1673 1674 1675 1676
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1677
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1678 1679 1680 1681
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1682

N
Nick Terrell 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1692 1693 1694 1695 1696 1697 1698 1699 1700
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1701 1702
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1703

1704
menuconfig CRYPTO_DRBG_MENU
1705 1706 1707 1708 1709
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1710
if CRYPTO_DRBG_MENU
1711 1712

config CRYPTO_DRBG_HMAC
1713
	bool
1714 1715
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1716
	select CRYPTO_SHA256
1717 1718 1719

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1720
	select CRYPTO_SHA256
1721 1722 1723 1724 1725 1726
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1727
	depends on CRYPTO_CTR
1728 1729 1730
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1731 1732
config CRYPTO_DRBG
	tristate
1733
	default CRYPTO_DRBG_MENU
1734
	select CRYPTO_RNG
1735
	select CRYPTO_JITTERENTROPY
1736 1737

endif	# if CRYPTO_DRBG_MENU
1738

1739 1740
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1741
	select CRYPTO_RNG
1742 1743 1744 1745 1746 1747 1748
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1749 1750 1751
config CRYPTO_USER_API
	tristate

1752 1753
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1754
	depends on NET
1755 1756 1757 1758 1759 1760
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1761 1762
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1763
	depends on NET
1764 1765 1766 1767 1768 1769
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1770 1771 1772 1773 1774 1775 1776 1777 1778
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1779 1780 1781 1782
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1783 1784
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1785 1786 1787 1788 1789
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1790 1791
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1792
	depends on CRYPTO_USER
1793 1794 1795 1796 1797 1798 1799 1800 1801
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1802 1803 1804
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1805
source "drivers/crypto/Kconfig"
1806 1807
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1808

1809
endif	# if CRYPTO