intel_lrc.c 85.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_gem_render_state.h"
138
#include "i915_vgpu.h"
139
#include "intel_engine_pm.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_reset.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
#define ACTIVE_PRIORITY (I915_PRIORITY_NEWCLIENT | I915_PRIORITY_NOSEMAPHORE)
168

169 170
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
171
static void execlists_init_reg_state(u32 *reg_state,
172
				     struct intel_context *ce,
173 174
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
175

176 177 178 179 180 181 182
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
183
	return rq->sched.attr.priority;
184 185
}

186 187
static int effective_prio(const struct i915_request *rq)
{
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
	 * equivalent to a freshly submitted request. This protects it from
	 * being gazumped again, but it would be preferable if we didn't
	 * let it be gazumped in the first place!
	 *
	 * See __unwind_incomplete_requests()
	 */
	if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(rq)) {
		/*
		 * After preemption, we insert the active request at the
		 * end of the new priority level. This means that we will be
		 * _lower_ priority than the preemptee all things equal (and
		 * so the preemption is valid), so adjust our comparison
		 * accordingly.
		 */
		prio |= ACTIVE_PRIORITY;
		prio--;
	}

210
	/* Restrict mere WAIT boosts from triggering preemption */
211
	return prio | __NO_PREEMPTION;
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

231
static inline bool need_preempt(const struct intel_engine_cs *engine,
232 233
				const struct i915_request *rq)
{
234
	int last_prio;
235

236
	if (!engine->preempt_context)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		return false;

	if (i915_request_completed(rq))
		return false;

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
254
	last_prio = effective_prio(rq);
255 256
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
	if (!list_is_last(&rq->link, &engine->timeline.requests) &&
	    rq_prio(list_next_entry(rq, link)) > last_prio)
		return true;

	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
281
assert_priority_queue(const struct i915_request *prev,
282
		      const struct i915_request *next)
283
{
284 285
	const struct intel_engine_execlists *execlists =
		&prev->engine->execlists;
286 287 288 289 290 291 292 293 294 295 296 297

	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
	if (port_request(execlists->port) == prev)
		return true;

	return rq_prio(prev) >= rq_prio(next);
298 299
}

300
/*
301 302 303 304 305
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
306 307
 * This is what a descriptor looks like, from LSB to MSB::
 *
308
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
309
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
311 312
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
313 314 315 316 317 318 319 320 321 322 323 324
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
325
 */
326 327
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
328
{
329
	struct i915_gem_context *ctx = ce->gem_context;
330
	u64 desc;
331

332 333
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
334

335
	desc = ctx->desc_template;				/* bits  0-11 */
336 337
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

338
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
339
								/* bits 12-31 */
340 341
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

342 343 344 345 346
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
347
	if (INTEL_GEN(engine->i915) >= 11) {
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
363

364
	return desc;
365 366
}

367
static void unwind_wa_tail(struct i915_request *rq)
368 369 370 371 372
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

373
static struct i915_request *
374
__unwind_incomplete_requests(struct intel_engine_cs *engine, int boost)
375
{
376
	struct i915_request *rq, *rn, *active = NULL;
377
	struct list_head *uninitialized_var(pl);
378
	int prio = I915_PRIORITY_INVALID | boost;
379

380
	lockdep_assert_held(&engine->timeline.lock);
381 382

	list_for_each_entry_safe_reverse(rq, rn,
383
					 &engine->timeline.requests,
384
					 link) {
385
		if (i915_request_completed(rq))
386
			break;
387

388
		__i915_request_unsubmit(rq);
389 390
		unwind_wa_tail(rq);

391 392
		GEM_BUG_ON(rq->hw_context->active);

393
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
394 395
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
396
			pl = i915_sched_lookup_priolist(engine, prio);
397
		}
398
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
399

400
		list_add(&rq->sched.link, pl);
401 402 403 404 405 406 407 408

		active = rq;
	}

	/*
	 * The active request is now effectively the start of a new client
	 * stream, so give it the equivalent small priority bump to prevent
	 * it being gazumped a second time by another peer.
409 410 411 412 413 414 415 416 417 418 419 420
	 *
	 * Note we have to be careful not to apply a priority boost to a request
	 * still spinning on its semaphores. If the request hasn't started, that
	 * means it is still waiting for its dependencies to be signaled, and
	 * if we apply a priority boost to this request, we will boost it past
	 * its signalers and so break PI.
	 *
	 * One consequence of this preemption boost is that we may jump
	 * over lesser priorities (such as I915_PRIORITY_WAIT), effectively
	 * making those priorities non-preemptible. They will be moved forward
	 * in the priority queue, but they will not gain immediate access to
	 * the GPU.
421
	 */
422 423 424
	if (~prio & boost && __i915_request_has_started(active)) {
		prio |= boost;
		GEM_BUG_ON(active->sched.attr.priority >= prio);
425
		active->sched.attr.priority = prio;
426
		list_move_tail(&active->sched.link,
427
			       i915_sched_lookup_priolist(engine, prio));
428
	}
429 430

	return active;
431 432
}

433
struct i915_request *
434 435 436 437 438
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

439
	return __unwind_incomplete_requests(engine, 0);
440 441
}

442
static inline void
443
execlists_context_status_change(struct i915_request *rq, unsigned long status)
444
{
445 446 447 448 449 450
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
451

452 453
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

469
static inline void
470
execlists_context_schedule_in(struct i915_request *rq)
471
{
472 473
	GEM_BUG_ON(rq->hw_context->active);

474
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
475
	intel_engine_context_in(rq->engine);
476
	rq->hw_context->active = rq->engine;
477 478 479
}

static inline void
480
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
481
{
482
	rq->hw_context->active = NULL;
483
	intel_engine_context_out(rq->engine);
484 485
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
486 487
}

488
static u64 execlists_update_context(struct i915_request *rq)
489
{
490
	struct intel_context *ce = rq->hw_context;
491

492 493
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
494

495 496 497 498 499 500 501 502 503
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
504 505 506 507 508
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
509
	 */
510
	mb();
511
	return ce->lrc_desc;
512 513
}

514
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
515
{
516 517 518 519 520 521 522
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
523 524
}

525
static void execlists_submit_ports(struct intel_engine_cs *engine)
526
{
527 528
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
529
	unsigned int n;
530

531 532 533 534 535 536 537 538
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
539
	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
540

541 542 543 544 545 546 547
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
548
		struct i915_request *rq;
549 550 551 552 553 554 555
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
556
				execlists_context_schedule_in(rq);
557 558 559
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
560

561
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
562
				  engine->name, n,
563
				  port[n].context_id, count,
564
				  rq->fence.context, rq->fence.seqno,
565
				  hwsp_seqno(rq),
566
				  rq_prio(rq));
567 568 569 570
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
571

572
		write_desc(execlists, desc, n);
573
	}
574 575 576 577 578 579

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
580 581
}

582
static bool ctx_single_port_submission(const struct intel_context *ce)
583
{
584
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
585
		i915_gem_context_force_single_submission(ce->gem_context));
586
}
587

588 589
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
590 591 592
{
	if (prev != next)
		return false;
593

594 595
	if (ctx_single_port_submission(prev))
		return false;
596

597
	return true;
598 599
}

600 601 602 603 604 605 606 607 608 609 610
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

611
static void port_assign(struct execlist_port *port, struct i915_request *rq)
612 613 614 615
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
616
		i915_request_put(port_request(port));
617

618
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
619 620
}

C
Chris Wilson 已提交
621 622
static void inject_preempt_context(struct intel_engine_cs *engine)
{
623
	struct intel_engine_execlists *execlists = &engine->execlists;
624
	struct intel_context *ce = engine->preempt_context;
C
Chris Wilson 已提交
625 626
	unsigned int n;

627
	GEM_BUG_ON(execlists->preempt_complete_status !=
628
		   upper_32_bits(ce->lrc_desc));
629

630 631 632 633
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
634
	GEM_TRACE("%s\n", engine->name);
635 636 637 638 639 640 641 642
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
643

644 645
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
646 647

	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
648 649 650 651 652 653
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

654 655 656
	if (inject_preempt_hang(execlists))
		return;

657
	execlists_cancel_port_requests(execlists);
658 659
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
660 661
						  execlists),
				     ACTIVE_PRIORITY);
C
Chris Wilson 已提交
662 663
}

664
static void execlists_dequeue(struct intel_engine_cs *engine)
665
{
666 667
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
668 669
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
670
	struct i915_request *last = port_request(port);
671
	struct rb_node *rb;
672 673
	bool submit = false;

674 675
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
694
	 */
695

C
Chris Wilson 已提交
696 697 698 699 700 701 702
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
703 704
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
705
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
706

707 708 709 710 711 712 713 714
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
715
			return;
716

717
		if (need_preempt(engine, last)) {
C
Chris Wilson 已提交
718
			inject_preempt_context(engine);
719
			return;
C
Chris Wilson 已提交
720
		}
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
744
			return;
745 746 747 748 749

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
750
		 * request. See gen8_emit_fini_breadcrumb() for
751 752 753 754
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
755 756
	}

757
	while ((rb = rb_first_cached(&execlists->queue))) {
758
		struct i915_priolist *p = to_priolist(rb);
759
		struct i915_request *rq, *rn;
760
		int i;
761

762
		priolist_for_each_request_consume(rq, rn, p, i) {
763 764 765 766 767 768 769 770 771 772
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
773
			 */
774
			if (last && !can_merge_rq(last, rq)) {
775 776 777 778 779
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
780
				if (port == last_port)
781 782
					goto done;

783 784 785 786 787 788 789 790
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

791 792 793 794 795 796 797
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
798
				if (ctx_single_port_submission(last->hw_context) ||
799
				    ctx_single_port_submission(rq->hw_context))
800 801 802 803 804 805
					goto done;


				if (submit)
					port_assign(port, last);
				port++;
806 807

				GEM_BUG_ON(port_isset(port));
808
			}
809

810 811
			list_del_init(&rq->sched.link);

812 813
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
814

815 816
			last = rq;
			submit = true;
817
		}
818

819
		rb_erase_cached(&p->node, &execlists->queue);
820
		i915_priolist_free(p);
821
	}
822

823
done:
824 825 826
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
827
	 * We choose the priority hint such that if we add a request of greater
828 829 830
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
831
	 * HW. We derive the priority hint then as the first "hole" in
832 833 834 835
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
836
	 * user, see queue_request(), the priority hint is bumped to that
837 838 839
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
840
	execlists->queue_priority_hint = queue_prio(execlists);
841

842
	if (submit) {
843
		port_assign(port, last);
844 845
		execlists_submit_ports(engine);
	}
846 847

	/* We must always keep the beast fed if we have work piled up */
848 849
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
850

851 852
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
853
		execlists_user_begin(execlists, execlists->port);
854

855 856 857 858
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
859 860
}

861
void
862
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
863
{
864
	struct execlist_port *port = execlists->port;
865
	unsigned int num_ports = execlists_num_ports(execlists);
866

867
	while (num_ports-- && port_isset(port)) {
868
		struct i915_request *rq = port_request(port);
869

870
		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
871 872 873
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->fence.context, rq->fence.seqno,
874
			  hwsp_seqno(rq));
875

876
		GEM_BUG_ON(!execlists->active);
877 878 879 880
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
881

882
		i915_request_put(rq);
883

884 885 886
		memset(port, 0, sizeof(*port));
		port++;
	}
887

888
	execlists_clear_all_active(execlists);
889 890
}

891 892 893 894 895 896 897
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

898 899 900 901 902 903
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

904
static void process_csb(struct intel_engine_cs *engine)
905
{
906
	struct intel_engine_execlists * const execlists = &engine->execlists;
907
	struct execlist_port *port = execlists->port;
908
	const u32 * const buf = execlists->csb_status;
909
	const u8 num_entries = execlists->csb_size;
910
	u8 head, tail;
911

912 913
	lockdep_assert_held(&engine->timeline.lock);

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
929

930 931 932 933 934 935 936 937 938
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
939

940
	do {
941 942 943 944
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

945
		if (++head == num_entries)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
968
			  buf[2 * head + 0], buf[2 * head + 1],
969 970
			  execlists->active);

971
		status = buf[2 * head];
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
991
		}
992

993 994 995 996
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
997

998 999
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
1000

1001
		rq = port_unpack(port, &count);
1002
		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1003 1004 1005 1006
			  engine->name,
			  port->context_id, count,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
1007
			  rq ? hwsp_seqno(rq) : 0,
1008 1009 1010 1011 1012 1013 1014
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1015
			/*
1016 1017 1018 1019 1020 1021
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1022
			 */
1023 1024 1025 1026 1027
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1028

1029 1030 1031 1032 1033 1034 1035
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1036

1037 1038 1039
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1040

1041 1042
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1043

1044 1045 1046 1047 1048 1049 1050
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1051
		}
1052
	} while (head != tail);
1053

1054
	execlists->csb_head = head;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1067
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1068
}
1069

1070
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1071
{
1072
	lockdep_assert_held(&engine->timeline.lock);
1073

C
Chris Wilson 已提交
1074
	process_csb(engine);
1075 1076
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
1090
		  !!intel_wakeref_active(&engine->wakeref),
1091 1092 1093
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1094
	__execlists_submission_tasklet(engine);
1095 1096 1097
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1098
static void queue_request(struct intel_engine_cs *engine,
1099
			  struct i915_sched_node *node,
1100
			  int prio)
1101
{
1102
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1116 1117
}

1118 1119
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1120 1121
	if (prio > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = prio;
1122 1123
		__submit_queue_imm(engine);
	}
1124 1125
}

1126
static void execlists_submit_request(struct i915_request *request)
1127
{
1128
	struct intel_engine_cs *engine = request->engine;
1129
	unsigned long flags;
1130

1131
	/* Will be called from irq-context when using foreign fences. */
1132
	spin_lock_irqsave(&engine->timeline.lock, flags);
1133

1134
	queue_request(engine, &request->sched, rq_prio(request));
1135

1136
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1137
	GEM_BUG_ON(list_empty(&request->sched.link));
1138

1139 1140
	submit_queue(engine, rq_prio(request));

1141
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1142 1143
}

1144
static void __execlists_context_fini(struct intel_context *ce)
1145
{
1146
	intel_ring_put(ce->ring);
1147 1148 1149

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1150 1151
}

1152
static void execlists_context_destroy(struct kref *kref)
1153
{
1154 1155
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1156
	GEM_BUG_ON(intel_context_is_pinned(ce));
1157 1158 1159 1160 1161 1162 1163

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static int __context_pin(struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	flags = PIN_GLOBAL | PIN_HIGH;
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return err;

	vma->obj->pin_global++;
	vma->obj->mm.dirty = true;

	return 0;
}

static void __context_unpin(struct i915_vma *vma)
{
	vma->obj->pin_global--;
	__i915_vma_unpin(vma);
}

1188
static void execlists_context_unpin(struct intel_context *ce)
1189
{
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	struct intel_engine_cs *engine;

	/*
	 * The tasklet may still be using a pointer to our state, via an
	 * old request. However, since we know we only unpin the context
	 * on retirement of the following request, we know that the last
	 * request referencing us will have had a completion CS interrupt.
	 * If we see that it is still active, it means that the tasklet hasn't
	 * had the chance to run yet; let it run before we teardown the
	 * reference it may use.
	 */
	engine = READ_ONCE(ce->active);
	if (unlikely(engine)) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		process_csb(engine);
		spin_unlock_irqrestore(&engine->timeline.lock, flags);

		GEM_BUG_ON(READ_ONCE(ce->active));
	}

1212 1213
	i915_gem_context_unpin_hw_id(ce->gem_context);

1214 1215 1216
	intel_ring_unpin(ce->ring);

	i915_gem_object_unpin_map(ce->state->obj);
1217
	__context_unpin(ce->state);
1218 1219
}

1220
static void
1221 1222
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1223 1224
{
	struct intel_ring *ring = ce->ring;
1225 1226 1227 1228
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1229 1230 1231 1232 1233 1234 1235

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1236
		regs[CTX_R_PWR_CLK_STATE + 1] =
1237
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1238 1239
}

1240 1241 1242
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1243
{
1244
	void *vaddr;
1245
	int ret;
1246

1247 1248 1249
	GEM_BUG_ON(!ce->gem_context->ppgtt);

	ret = execlists_context_deferred_alloc(ce, engine);
1250 1251
	if (ret)
		goto err;
1252
	GEM_BUG_ON(!ce->state);
1253

1254
	ret = __context_pin(ce->state);
1255
	if (ret)
1256
		goto err;
1257

1258
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1259
					i915_coherent_map_type(engine->i915) |
1260
					I915_MAP_OVERRIDE);
1261 1262
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1263
		goto unpin_vma;
1264 1265
	}

1266
	ret = intel_ring_pin(ce->ring);
1267
	if (ret)
1268
		goto unpin_map;
1269

1270
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1271 1272 1273
	if (ret)
		goto unpin_ring;

1274
	ce->lrc_desc = lrc_descriptor(ce, engine);
1275
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1276
	__execlists_update_reg_state(ce, engine);
1277

1278
	return 0;
1279

1280 1281
unpin_ring:
	intel_ring_unpin(ce->ring);
1282
unpin_map:
1283 1284
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
1285
	__context_unpin(ce->state);
1286
err:
1287
	return ret;
1288 1289
}

1290
static int execlists_context_pin(struct intel_context *ce)
1291
{
1292
	return __execlists_context_pin(ce, ce->engine);
1293 1294
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1317
static const struct intel_context_ops execlists_context_ops = {
1318
	.pin = execlists_context_pin,
1319
	.unpin = execlists_context_unpin,
1320

1321 1322 1323
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1324
	.reset = execlists_context_reset,
1325 1326 1327
	.destroy = execlists_context_destroy,
};

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1353 1354 1355 1356

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1357 1358 1359
	return 0;
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1394
		u32 base = engine->mmio_base;
1395

1396
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1397
		*cs++ = upper_32_bits(pd_daddr);
1398
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1414
static int execlists_request_alloc(struct i915_request *request)
1415
{
1416
	int ret;
1417

1418
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1419

1420 1421
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1422 1423 1424 1425 1426
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1427 1428
	/*
	 * Note that after this point, we have committed to using
1429 1430 1431 1432 1433 1434
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1435
	/* Unconditionally invalidate GPU caches and TLBs. */
1436
	if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
1437 1438 1439 1440 1441 1442
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1443 1444 1445 1446
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1463 1464
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1465
{
1466
	/* NB no one else is allowed to scribble over scratch + 256! */
1467 1468
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1469
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1470 1471 1472 1473 1474 1475
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1476 1477 1478 1479
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1480 1481 1482

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1483
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1484 1485 1486
	*batch++ = 0;

	return batch;
1487 1488
}

1489 1490 1491 1492 1493 1494
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1495
 *
1496 1497
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1498
 *
1499 1500 1501 1502
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1503
 */
1504
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1505
{
1506
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1507
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1508

1509
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1510 1511
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1512

1513 1514
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1515 1516 1517 1518 1519
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1520
				       i915_scratch_offset(engine->i915) +
1521
				       2 * CACHELINE_BYTES);
1522

C
Chris Wilson 已提交
1523 1524
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1525
	/* Pad to end of cacheline */
1526 1527
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1528 1529 1530 1531 1532 1533 1534

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1535
	return batch;
1536 1537
}

1538 1539 1540 1541 1542 1543
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1544
{
1545
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1546

1547 1548 1549 1550 1551 1552
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1553

1554 1555
	return batch;
}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1581

1582
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1583

1584 1585
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1586

1587
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1588

1589
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1604 1605 1606 1607 1608 1609
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1610 1611
	}

C
Chris Wilson 已提交
1612 1613
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1614
	/* Pad to end of cacheline */
1615 1616
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1617

1618
	return batch;
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1655 1656 1657
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1658
{
1659 1660 1661
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1662

1663
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1664 1665
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1666

1667
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1668 1669 1670
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1671 1672
	}

1673
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1674 1675 1676 1677
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1678
	return 0;
1679 1680 1681 1682

err:
	i915_gem_object_put(obj);
	return err;
1683 1684
}

1685
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1686
{
1687
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1688 1689
}

1690 1691
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1692
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1693
{
1694
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1695 1696 1697
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1698
	struct page *page;
1699 1700
	void *batch, *batch_ptr;
	unsigned int i;
1701
	int ret;
1702

1703 1704
	if (engine->class != RENDER_CLASS)
		return 0;
1705

1706
	switch (INTEL_GEN(engine->i915)) {
1707 1708
	case 11:
		return 0;
1709
	case 10:
1710 1711 1712
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1713 1714
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1715
		wa_bb_fn[1] = NULL;
1716 1717 1718
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1719
		wa_bb_fn[1] = NULL;
1720 1721 1722
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1723
		return 0;
1724
	}
1725

1726
	ret = lrc_setup_wa_ctx(engine);
1727 1728 1729 1730 1731
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1732
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1733
	batch = batch_ptr = kmap_atomic(page);
1734

1735 1736 1737 1738 1739 1740 1741
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1742 1743
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
1744 1745 1746
			ret = -EINVAL;
			break;
		}
1747 1748
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1749
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1750 1751
	}

1752 1753
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1754 1755
	kunmap_atomic(batch);
	if (ret)
1756
		lrc_destroy_wa_ctx(engine);
1757 1758 1759 1760

	return ret;
}

1761
static void enable_execlists(struct intel_engine_cs *engine)
1762
{
1763
	struct drm_i915_private *dev_priv = engine->i915;
1764

1765
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1766 1767 1768

	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
1769
			   _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1770 1771 1772 1773
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1774 1775 1776
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1777
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1778
		   i915_ggtt_offset(engine->status_page.vma));
1779 1780 1781
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1795
static int execlists_resume(struct intel_engine_cs *engine)
1796
{
1797
	intel_engine_apply_workarounds(engine);
1798
	intel_engine_apply_whitelist(engine);
1799

1800
	intel_mocs_init_engine(engine);
1801

1802
	intel_engine_reset_breadcrumbs(engine);
1803

1804 1805 1806 1807 1808 1809
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1810
	enable_execlists(engine);
1811

1812
	return 0;
1813 1814
}

1815
static void execlists_reset_prepare(struct intel_engine_cs *engine)
1816 1817
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1818
	unsigned long flags;
1819

1820 1821
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1822 1823 1824 1825 1826 1827

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
1828
	 * calling engine->resume() and also writing the ELSP.
1829 1830 1831 1832
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
1833
	GEM_BUG_ON(!reset_in_progress(execlists));
1834

1835 1836
	intel_engine_stop_cs(engine);

1837
	/* And flush any current direct submission. */
1838 1839
	spin_lock_irqsave(&engine->timeline.lock, flags);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1840 1841
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static bool lrc_regs_ok(const struct i915_request *rq)
{
	const struct intel_ring *ring = rq->ring;
	const u32 *regs = rq->hw_context->lrc_reg_state;

	/* Quick spot check for the common signs of context corruption */

	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID))
		return false;

	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
		return false;

	return true;
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	const unsigned int reset_value = execlists->csb_size - 1;

	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
1874
	wmb(); /* Make sure this is visible to HW (paranoia?) */
1875 1876 1877 1878 1879 1880

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
1881
{
1882
	struct intel_engine_execlists * const execlists = &engine->execlists;
1883
	struct intel_context *ce;
1884
	struct i915_request *rq;
1885
	u32 *regs;
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
	reset_csb_pointers(&engine->execlists);

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
	if (!port_isset(execlists->port))
		goto out_clear;

	ce = port_request(execlists->port)->hw_context;
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1911
	execlists_cancel_port_requests(execlists);
1912

1913
	/* Push back any incomplete requests for replay after the reset. */
1914
	rq = __unwind_incomplete_requests(engine, 0);
1915
	if (!rq)
1916 1917 1918 1919 1920 1921
		goto out_replay;

	if (rq->hw_context != ce) { /* caught just before a CS event */
		rq = NULL;
		goto out_replay;
	}
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
	if (!i915_request_started(rq) && lrc_regs_ok(rq))
1936
		goto out_replay;
1937

1938 1939
	/*
	 * If the request was innocent, we leave the request in the ELSP
1940 1941 1942 1943 1944 1945 1946 1947 1948
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1949
	i915_reset_request(rq, stalled);
1950
	if (!stalled && lrc_regs_ok(rq))
1951
		goto out_replay;
1952

1953 1954
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1955 1956 1957 1958 1959 1960
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1961
	regs = ce->lrc_reg_state;
1962 1963 1964 1965
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1966
	}
1967
	execlists_init_reg_state(regs, ce, engine, ce->ring);
1968

1969
	/* Rerun the request; its payload has been neutered (if guilty). */
1970 1971 1972 1973 1974 1975 1976 1977 1978
out_replay:
	ce->ring->head =
		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

out_clear:
	execlists_clear_all_active(execlists);
}
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, stalled);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;
	GEM_BUG_ON(port_isset(execlists->port));

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2057

2058
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2059 2060
}

2061 2062
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2063 2064
	struct intel_engine_execlists * const execlists = &engine->execlists;

2065
	/*
2066 2067 2068
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2069
	 */
2070
	GEM_BUG_ON(!reset_in_progress(execlists));
2071 2072
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2073

2074 2075 2076
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2077 2078
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2079 2080
}

2081
static int gen8_emit_bb_start(struct i915_request *rq,
2082
			      u64 offset, u32 len,
2083
			      const unsigned int flags)
2084
{
2085
	u32 *cs;
2086

2087
	cs = intel_ring_begin(rq, 4);
2088 2089
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2090

2091 2092 2093 2094 2095 2096 2097
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2098 2099 2100 2101 2102
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2103
	 */
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2127 2128
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2129
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2130
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2131 2132
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2133 2134 2135

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2136

2137
	intel_ring_advance(rq, cs);
2138 2139 2140 2141

	return 0;
}

2142
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2143
{
2144 2145 2146
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2147 2148
}

2149
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2150
{
2151
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2152 2153
}

2154
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2155
{
2156
	u32 cmd, *cs;
2157

2158 2159 2160
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2161 2162 2163

	cmd = MI_FLUSH_DW + 1;

2164 2165 2166 2167 2168 2169 2170
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2171
	if (mode & EMIT_INVALIDATE) {
2172
		cmd |= MI_INVALIDATE_TLB;
2173
		if (request->engine->class == VIDEO_DECODE_CLASS)
2174
			cmd |= MI_INVALIDATE_BSD;
2175 2176
	}

2177 2178 2179 2180 2181
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2182 2183 2184 2185

	return 0;
}

2186
static int gen8_emit_flush_render(struct i915_request *request,
2187
				  u32 mode)
2188
{
2189
	struct intel_engine_cs *engine = request->engine;
2190
	u32 scratch_addr =
2191
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2192
	bool vf_flush_wa = false, dc_flush_wa = false;
2193
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2194
	int len;
2195 2196 2197

	flags |= PIPE_CONTROL_CS_STALL;

2198
	if (mode & EMIT_FLUSH) {
2199 2200
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2201
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2202
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2203 2204
	}

2205
	if (mode & EMIT_INVALIDATE) {
2206 2207 2208 2209 2210 2211 2212 2213 2214
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2215 2216 2217 2218
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2219
		if (IS_GEN(request->i915, 9))
2220
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2221 2222 2223 2224

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2225
	}
2226

M
Mika Kuoppala 已提交
2227 2228 2229 2230 2231 2232 2233 2234
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2235 2236 2237
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2238

2239 2240
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2241

2242 2243 2244
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2245

2246
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2247

2248 2249
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2250

2251
	intel_ring_advance(request, cs);
2252 2253 2254 2255

	return 0;
}

2256 2257 2258 2259 2260
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2261
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2262
{
C
Chris Wilson 已提交
2263 2264
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2265 2266
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2267 2268

	return cs;
C
Chris Wilson 已提交
2269
}
2270

2271
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2272
{
2273 2274
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2275 2276
				  request->timeline->hwsp_offset,
				  0);
2277

2278 2279
	cs = gen8_emit_ggtt_write(cs,
				  intel_engine_next_hangcheck_seqno(request->engine),
2280 2281 2282
				  I915_GEM_HWS_HANGCHECK_ADDR,
				  MI_FLUSH_DW_STORE_INDEX);

2283

2284
	*cs++ = MI_USER_INTERRUPT;
2285
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2286

2287
	request->tail = intel_ring_offset(request, cs);
2288
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2289

2290
	return gen8_emit_wa_tail(request, cs);
2291
}
2292

2293
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2294
{
2295
	cs = gen8_emit_ggtt_write_rcs(cs,
2296 2297
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2298 2299 2300 2301 2302 2303
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);

2304 2305
	cs = gen8_emit_ggtt_write_rcs(cs,
				      intel_engine_next_hangcheck_seqno(request->engine),
2306 2307
				      I915_GEM_HWS_HANGCHECK_ADDR,
				      PIPE_CONTROL_STORE_DATA_INDEX);
2308

2309
	*cs++ = MI_USER_INTERRUPT;
2310
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2311

2312
	request->tail = intel_ring_offset(request, cs);
2313
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2314

2315
	return gen8_emit_wa_tail(request, cs);
2316
}
2317

2318
static int gen8_init_rcs_context(struct i915_request *rq)
2319 2320 2321
{
	int ret;

2322
	ret = intel_engine_emit_ctx_wa(rq);
2323 2324 2325
	if (ret)
		return ret;

2326
	ret = intel_rcs_context_init_mocs(rq);
2327 2328 2329 2330 2331 2332 2333
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2334
	return i915_gem_render_state_emit(rq);
2335 2336
}

2337 2338 2339 2340 2341
static void execlists_park(struct intel_engine_cs *engine)
{
	intel_engine_park(engine);
}

2342
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2343
{
2344
	engine->submit_request = execlists_submit_request;
2345
	engine->cancel_requests = execlists_cancel_requests;
2346
	engine->schedule = i915_schedule;
2347
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2348

2349
	engine->reset.prepare = execlists_reset_prepare;
2350 2351
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2352

2353
	engine->park = execlists_park;
2354
	engine->unpark = NULL;
2355 2356

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2357 2358
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2359 2360
	if (engine->preempt_context &&
	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2361
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2362 2363
}

2364 2365 2366 2367 2368 2369 2370
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2371
static void
2372
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2373 2374
{
	/* Default vfuncs which can be overriden by each engine. */
2375 2376

	engine->destroy = execlists_destroy;
2377
	engine->resume = execlists_resume;
2378 2379 2380 2381

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2382

2383
	engine->cops = &execlists_context_ops;
2384 2385
	engine->request_alloc = execlists_request_alloc;

2386
	engine->emit_flush = gen8_emit_flush;
2387 2388
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2389

2390
	engine->set_default_submission = intel_execlists_set_default_submission;
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2403 2404 2405 2406
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2407 2408
}

2409
static inline void
2410
logical_ring_default_irqs(struct intel_engine_cs *engine)
2411
{
2412 2413 2414 2415
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2416 2417 2418 2419 2420
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2421 2422 2423 2424 2425
		};

		shift = irq_shifts[engine->id];
	}

2426 2427
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2428 2429
}

2430
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2431 2432 2433 2434
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2435 2436
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2437 2438 2439

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2440

2441 2442 2443 2444 2445 2446
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2447
	return 0;
2448 2449
}

2450
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2451
{
2452 2453
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2454
	u32 base = engine->mmio_base;
2455 2456
	int ret;

2457
	ret = intel_engine_init_common(engine);
2458
	if (ret)
2459
		return ret;
2460

2461
	intel_engine_init_workarounds(engine);
2462 2463 2464 2465 2466 2467 2468 2469 2470
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2471

2472
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2473
		execlists->submit_reg = i915->uncore.regs +
2474
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2475
		execlists->ctrl_reg = i915->uncore.regs +
2476
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2477
	} else {
2478
		execlists->submit_reg = i915->uncore.regs +
2479
			i915_mmio_reg_offset(RING_ELSP(base));
2480
	}
2481

2482
	execlists->preempt_complete_status = ~0u;
2483
	if (engine->preempt_context)
2484
		execlists->preempt_complete_status =
2485
			upper_32_bits(engine->preempt_context->lrc_desc);
2486

2487
	execlists->csb_status =
2488
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2489

2490
	execlists->csb_write =
2491
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2492

2493 2494 2495 2496
	if (INTEL_GEN(engine->i915) < 11)
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2497

2498
	reset_csb_pointers(execlists);
2499

2500 2501 2502
	return 0;
}

2503
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2504 2505 2506
{
	u32 indirect_ctx_offset;

2507
	switch (INTEL_GEN(engine->i915)) {
2508
	default:
2509
		MISSING_CASE(INTEL_GEN(engine->i915));
2510
		/* fall through */
2511 2512 2513 2514
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2515 2516 2517 2518
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2532
static void execlists_init_reg_state(u32 *regs,
2533
				     struct intel_context *ce,
2534 2535
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2536
{
2537
	struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
2538
	bool rcs = engine->class == RENDER_CLASS;
2539
	u32 base = engine->mmio_base;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2551
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2552
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2553
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2554
	if (INTEL_GEN(engine->i915) < 11) {
2555 2556 2557 2558
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2571 2572
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2573 2574 2575
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2576
		if (wa_ctx->indirect_ctx.size) {
2577
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2578

2579
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2580 2581
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2582

2583
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2584
				intel_lr_indirect_ctx_offset(engine) << 6;
2585 2586 2587 2588 2589
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2590

2591
			regs[CTX_BB_PER_CTX_PTR + 1] =
2592
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2593
		}
2594
	}
2595 2596 2597 2598

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2599
	/* PDP values well be assigned later if needed */
2600 2601 2602 2603 2604 2605 2606 2607
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2608

2609
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2610 2611 2612 2613
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2614
		ASSIGN_CTX_PML4(ppgtt, regs);
2615
	} else {
2616 2617 2618 2619
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2620 2621
	}

2622 2623
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2624
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2625

2626
		i915_oa_init_reg_state(engine, ce, regs);
2627
	}
2628 2629

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2630
	if (INTEL_GEN(engine->i915) >= 10)
2631
		regs[CTX_END] |= BIT(0);
2632 2633 2634
}

static int
2635
populate_lr_context(struct intel_context *ce,
2636 2637 2638 2639 2640
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2641
	u32 *regs;
2642 2643 2644 2645 2646 2647 2648 2649 2650
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2662 2663 2664 2665
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2666 2667 2668 2669 2670

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2671 2672
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2673
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2674
	execlists_init_reg_state(regs, ce, engine, ring);
2675 2676 2677
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2678 2679
	if (ce->gem_context == engine->i915->preempt_context &&
	    INTEL_GEN(engine->i915) < 11)
2680 2681 2682
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2683

2684
	ret = 0;
2685
err_unpin_ctx:
2686 2687 2688
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
2689
	i915_gem_object_unpin_map(ctx_obj);
2690
	return ret;
2691 2692
}

2693 2694
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
2695 2696 2697 2698
	if (ctx->timeline)
		return i915_timeline_get(ctx->timeline);
	else
		return i915_timeline_create(ctx->i915, NULL);
2699 2700 2701 2702
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
2703
{
2704
	struct drm_i915_gem_object *ctx_obj;
2705
	struct i915_vma *vma;
2706
	u32 context_size;
2707
	struct intel_ring *ring;
2708
	struct i915_timeline *timeline;
2709 2710
	int ret;

2711 2712
	if (ce->state)
		return 0;
2713

2714
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2715

2716 2717 2718 2719 2720
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2721

2722
	ctx_obj = i915_gem_object_create(engine->i915, context_size);
2723 2724
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2725

2726
	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2727 2728 2729 2730 2731
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2732
	timeline = get_timeline(ce->gem_context);
2733 2734 2735 2736 2737
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

2738 2739 2740
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
2741
	i915_timeline_put(timeline);
2742 2743
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2744
		goto error_deref_obj;
2745 2746
	}

2747
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
2748 2749
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2750
		goto error_ring_free;
2751 2752
	}

2753
	ce->ring = ring;
2754
	ce->state = vma;
2755 2756

	return 0;
2757

2758
error_ring_free:
2759
	intel_ring_put(ring);
2760
error_deref_obj:
2761
	i915_gem_object_put(ctx_obj);
2762
	return ret;
2763
}
2764

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

	spin_lock_irqsave(&engine->timeline.lock, flags);

	last = NULL;
	count = 0;
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
2799 2800 2801
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

2856
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2857
#include "selftest_lrc.c"
2858
#endif