gup.c 83.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
81 82
__maybe_unused struct page *try_grab_compound_head(struct page *page,
						   int refs, unsigned int flags)
J
John Hubbard 已提交
83 84 85 86
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
87 88
		int orig_refs = refs;

89 90 91 92 93 94 95 96
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

115 116 117
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

118
		return page;
J
John Hubbard 已提交
119 120 121 122 123 124
	}

	WARN_ON_ONCE(1);
	return NULL;
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
	if (flags & FOLL_PIN) {
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

J
John Hubbard 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
175 176
		int refs = 1;

J
John Hubbard 已提交
177 178 179 180 181
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

182 183 184 185 186 187 188 189 190 191 192 193
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
194 195

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	}

	return true;
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
212
	put_compound_head(compound_head(page), 1, FOLL_PIN);
J
John Hubbard 已提交
213 214 215
}
EXPORT_SYMBOL(unpin_user_page);

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static inline void compound_range_next(unsigned long i, unsigned long npages,
				       struct page **list, struct page **head,
				       unsigned int *ntails)
{
	struct page *next, *page;
	unsigned int nr = 1;

	if (i >= npages)
		return;

	next = *list + i;
	page = compound_head(next);
	if (PageCompound(page) && compound_order(page) >= 1)
		nr = min_t(unsigned int,
			   page + compound_nr(page) - next, npages - i);

	*head = page;
	*ntails = nr;
}

#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
	for (__i = 0, \
	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
	     __i < __npages; __i += __ntails, \
	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline void compound_next(unsigned long i, unsigned long npages,
				 struct page **list, struct page **head,
				 unsigned int *ntails)
{
	struct page *page;
	unsigned int nr;

	if (i >= npages)
		return;

	page = compound_head(list[i]);
	for (nr = i + 1; nr < npages; nr++) {
		if (compound_head(list[nr]) != page)
			break;
	}

	*head = page;
	*ntails = nr - i;
}

#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
	for (__i = 0, \
	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
	     __i < __npages; __i += __ntails, \
	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))

268
/**
269
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
271
 * @npages: number of pages in the @pages array.
272
 * @make_dirty: whether to mark the pages dirty
273 274 275 276 277
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
278
 * compound page) dirty, if @make_dirty is true, and if the page was previously
279 280
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
281
 *
282
 * Please see the unpin_user_page() documentation for details.
283
 *
284 285 286
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
287
 * set_page_dirty_lock(), unpin_user_page().
288 289
 *
 */
290 291
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
292
{
293
	unsigned long index;
294 295
	struct page *head;
	unsigned int ntails;
296 297

	if (!make_dirty) {
298
		unpin_user_pages(pages, npages);
299 300 301
		return;
	}

302
	for_each_compound_head(index, pages, npages, head, ntails) {
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
323 324 325
		if (!PageDirty(head))
			set_page_dirty_lock(head);
		put_compound_head(head, ntails, FOLL_PIN);
326
	}
327
}
328
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/**
 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 * gup-pinned page range
 *
 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 * @npages: number of consecutive pages to release.
 * @make_dirty: whether to mark the pages dirty
 *
 * "gup-pinned page range" refers to a range of pages that has had one of the
 * pin_user_pages() variants called on that page.
 *
 * For the page ranges defined by [page .. page+npages], make that range (or
 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 * page range was previously listed as clean.
 *
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), unpin_user_page().
 *
 */
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
				      bool make_dirty)
{
	unsigned long index;
	struct page *head;
	unsigned int ntails;

	for_each_compound_range(index, &page, npages, head, ntails) {
		if (make_dirty && !PageDirty(head))
			set_page_dirty_lock(head);
		put_compound_head(head, ntails, FOLL_PIN);
	}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);

366
/**
367
 * unpin_user_pages() - release an array of gup-pinned pages.
368 369 370
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
371
 * For each page in the @pages array, release the page using unpin_user_page().
372
 *
373
 * Please see the unpin_user_page() documentation for details.
374
 */
375
void unpin_user_pages(struct page **pages, unsigned long npages)
376 377
{
	unsigned long index;
378 379
	struct page *head;
	unsigned int ntails;
380

381 382 383 384 385 386 387
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
388 389 390

	for_each_compound_head(index, pages, npages, head, ntails)
		put_compound_head(head, ntails, FOLL_PIN);
391
}
392
EXPORT_SYMBOL(unpin_user_pages);
393

394
#ifdef CONFIG_MMU
395 396
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
397
{
398 399 400 401 402 403 404 405
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
406 407
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
408 409 410
		return ERR_PTR(-EFAULT);
	return NULL;
}
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

436
/*
437 438
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
439 440 441
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
442 443
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
444 445
}

446
static struct page *follow_page_pte(struct vm_area_struct *vma,
447 448
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
449 450 451 452 453
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
454
	int ret;
455

456 457 458 459
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
460
retry:
461
	if (unlikely(pmd_bad(*pmd)))
462
		return no_page_table(vma, flags);
463 464 465 466 467 468 469 470 471 472 473 474

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
475
		if (pte_none(pte))
476 477 478 479 480 481
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
482
		goto retry;
483
	}
484
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
485
		goto no_page;
486
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
487 488 489
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
490 491

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
492
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
493
		/*
J
John Hubbard 已提交
494 495 496
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
497
		 */
498 499
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
500 501 502 503
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
504 505 506 507 508 509 510 511 512 513 514 515 516
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
517 518
	}

519 520 521 522 523 524 525 526 527 528 529 530
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
531 532 533 534
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
535
	}
536 537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
549 550 551 552 553 554 555 556 557 558 559
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
560
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
561 562 563 564
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
586
out:
587 588 589 590 591
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
592 593 594 595
		return NULL;
	return no_page_table(vma, flags);
}

596 597
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
598 599
				    unsigned int flags,
				    struct follow_page_context *ctx)
600
{
601
	pmd_t *pmd, pmdval;
602 603 604 605
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

606
	pmd = pmd_offset(pudp, address);
607 608 609 610 611 612
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
613
		return no_page_table(vma, flags);
614
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
615 616 617 618
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
619
	}
620
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
621
		page = follow_huge_pd(vma, address,
622
				      __hugepd(pmd_val(pmdval)), flags,
623 624 625 626 627
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
628
retry:
629
	if (!pmd_present(pmdval)) {
630 631 632
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
633 634
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
635
			pmd_migration_entry_wait(mm, pmd);
636 637 638
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
639
		 * mmap_lock is held in read mode
640 641 642
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
643 644
		goto retry;
	}
645
	if (pmd_devmap(pmdval)) {
646
		ptl = pmd_lock(mm, pmd);
647
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
648 649 650 651
		spin_unlock(ptl);
		if (page)
			return page;
	}
652
	if (likely(!pmd_trans_huge(pmdval)))
653
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
654

655
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
656 657
		return no_page_table(vma, flags);

658
retry_locked:
659
	ptl = pmd_lock(mm, pmd);
660 661 662 663
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
664 665 666 667 668 669 670
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
671 672
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
673
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674
	}
S
Song Liu 已提交
675
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
676 677 678 679 680
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
681
			split_huge_pmd(vma, pmd, address);
682 683
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
684
		} else if (flags & FOLL_SPLIT) {
685 686 687 688
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
689
			spin_unlock(ptl);
690 691 692 693
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
694 695
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
696 697 698 699
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
700 701 702
		}

		return ret ? ERR_PTR(ret) :
703
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
704
	}
705 706
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
707
	ctx->page_mask = HPAGE_PMD_NR - 1;
708
	return page;
709 710
}

711 712
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
713 714
				    unsigned int flags,
				    struct follow_page_context *ctx)
715 716 717 718 719 720 721 722 723
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
724
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
725 726 727 728 729
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
730 731 732 733 734 735 736 737
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
738 739
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
740
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
741 742 743 744 745 746 747
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

748
	return follow_pmd_mask(vma, address, pud, flags, ctx);
749 750 751 752
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
753 754
				    unsigned int flags,
				    struct follow_page_context *ctx)
755 756
{
	p4d_t *p4d;
757
	struct page *page;
758 759 760 761 762 763 764 765

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

766 767 768 769 770 771 772 773
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
774
	return follow_pud_mask(vma, address, p4d, flags, ctx);
775 776 777 778 779 780 781
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
782 783
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
784 785 786
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
787 788 789 790 791 792
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
793 794 795
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
796
static struct page *follow_page_mask(struct vm_area_struct *vma,
797
			      unsigned long address, unsigned int flags,
798
			      struct follow_page_context *ctx)
799 800 801 802 803
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

804
	ctx->page_mask = 0;
805 806 807 808

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
809
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
810 811 812 813 814 815 816 817
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

818 819 820 821 822 823
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
824 825 826 827 828 829 830 831
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
832

833 834 835 836 837 838 839 840 841 842 843 844 845
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
846 847
}

848 849 850 851 852
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
853
	p4d_t *p4d;
854 855 856 857 858 859 860 861 862 863 864 865
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
866 867
	if (pgd_none(*pgd))
		return -EFAULT;
868
	p4d = p4d_offset(pgd, address);
869 870
	if (p4d_none(*p4d))
		return -EFAULT;
871
	pud = pud_offset(p4d, address);
872 873
	if (pud_none(*pud))
		return -EFAULT;
874
	pmd = pmd_offset(pud, address);
875
	if (!pmd_present(*pmd))
876 877 878 879 880 881 882 883 884 885 886 887 888 889
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
890
	if (unlikely(!try_grab_page(*page, gup_flags))) {
891 892 893
		ret = -ENOMEM;
		goto unmap;
	}
894 895 896 897 898 899 900
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

901
/*
902 903
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
904
 * is, *@locked will be set to 0 and -EBUSY returned.
905
 */
906
static int faultin_page(struct vm_area_struct *vma,
907
		unsigned long address, unsigned int *flags, int *locked)
908 909
{
	unsigned int fault_flags = 0;
910
	vm_fault_t ret;
911

E
Eric B Munson 已提交
912 913 914
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
915 916
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
917 918
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
919
	if (locked)
920
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
921 922
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
923
	if (*flags & FOLL_TRIED) {
924 925 926 927
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
928 929
		fault_flags |= FAULT_FLAG_TRIED;
	}
930

931
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
932
	if (ret & VM_FAULT_ERROR) {
933 934 935 936
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
937 938 939 940
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
941 942
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
943 944 945 946 947 948 949 950 951 952 953 954 955
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
956
		*flags |= FOLL_COW;
957 958 959
	return 0;
}

960 961 962
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
963 964
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
965 966 967 968

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

969 970 971
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

972 973 974
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

975
	if (write) {
976 977 978 979 980 981 982 983 984 985 986 987
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
988
			if (!is_cow_mapping(vm_flags))
989 990 991 992 993 994 995 996 997 998 999 1000
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
1001 1002 1003 1004 1005
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1006
		return -EFAULT;
1007 1008 1009
	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1021
 * @locked:     whether we're still with the mmap_lock held
1022
 *
1023 1024 1025 1026 1027 1028 1029
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
1030
 * -- 0 return value is possible when the fault would need to be retried.
1031 1032 1033
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1034
 * @vmas are valid only as long as mmap_lock is held.
1035
 *
1036
 * Must be called with mmap_lock held.  It may be released.  See below.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1057
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1058 1059
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1060
 *
1061
 * A caller using such a combination of @locked and @gup_flags
1062
 * must therefore hold the mmap_lock for reading only, and recognize
1063 1064
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1065 1066 1067 1068 1069
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1070
static long __get_user_pages(struct mm_struct *mm,
1071 1072
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1073
		struct vm_area_struct **vmas, int *locked)
1074
{
1075
	long ret = 0, i = 0;
1076
	struct vm_area_struct *vma = NULL;
1077
	struct follow_page_context ctx = { NULL };
1078 1079 1080 1081

	if (!nr_pages)
		return 0;

1082 1083
	start = untagged_addr(start);

1084
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1107
					goto out;
1108
				ctx.page_mask = 0;
1109 1110
				goto next_page;
			}
1111

1112
			if (!vma) {
1113 1114 1115
				ret = -EFAULT;
				goto out;
			}
1116 1117 1118 1119
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1120 1121 1122
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1123
						gup_flags, locked);
1124 1125 1126
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1127
					 * and we've lost mmap_lock.
1128 1129 1130 1131 1132 1133
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1134
				continue;
1135
			}
1136 1137 1138 1139 1140 1141
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1142
		if (fatal_signal_pending(current)) {
1143
			ret = -EINTR;
1144 1145
			goto out;
		}
1146
		cond_resched();
1147 1148

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1149
		if (!page) {
1150
			ret = faultin_page(vma, start, &foll_flags, locked);
1151 1152 1153
			switch (ret) {
			case 0:
				goto retry;
1154 1155
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1156
				fallthrough;
1157 1158 1159
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1160
				goto out;
1161 1162
			case -ENOENT:
				goto next_page;
1163
			}
1164
			BUG();
1165 1166 1167 1168 1169 1170 1171
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1172 1173
			ret = PTR_ERR(page);
			goto out;
1174
		}
1175 1176 1177 1178
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1179
			ctx.page_mask = 0;
1180 1181
		}
next_page:
1182 1183
		if (vmas) {
			vmas[i] = vma;
1184
			ctx.page_mask = 0;
1185
		}
1186
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1187 1188 1189 1190 1191
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1192
	} while (nr_pages);
1193 1194 1195 1196
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1197 1198
}

1199 1200
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1201
{
1202 1203
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1204
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1205 1206 1207 1208

	if (!(vm_flags & vma->vm_flags))
		return false;

1209 1210
	/*
	 * The architecture might have a hardware protection
1211
	 * mechanism other than read/write that can deny access.
1212 1213 1214
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1215
	 */
1216
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1217 1218
		return false;

1219 1220 1221
	return true;
}

1222
/**
1223 1224 1225 1226
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1227
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1228 1229
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1241
 * get_user_pages() only guarantees to update these in the struct page.
1242 1243 1244 1245 1246 1247
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1248 1249
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1250
 */
1251
int fixup_user_fault(struct mm_struct *mm,
1252 1253
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1254 1255
{
	struct vm_area_struct *vma;
1256
	vm_fault_t ret, major = 0;
1257

1258 1259
	address = untagged_addr(address);

1260
	if (unlocked)
1261
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1262

1263
retry:
1264 1265 1266 1267
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1268
	if (!vma_permits_fault(vma, fault_flags))
1269 1270
		return -EFAULT;

1271 1272 1273 1274
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1275
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1276
	major |= ret & VM_FAULT_MAJOR;
1277
	if (ret & VM_FAULT_ERROR) {
1278 1279 1280 1281
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1282 1283
		BUG();
	}
1284 1285

	if (ret & VM_FAULT_RETRY) {
1286
		mmap_read_lock(mm);
1287 1288 1289
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1290 1291
	}

1292 1293
	return 0;
}
1294
EXPORT_SYMBOL_GPL(fixup_user_fault);
1295

1296 1297 1298 1299
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1300
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1301 1302 1303 1304
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1305
						int *locked,
1306
						unsigned int flags)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

P
Peter Xu 已提交
1318
	if (flags & FOLL_PIN)
1319
		atomic_set(&mm->has_pinned, 1);
P
Peter Xu 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1331 1332 1333 1334 1335
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1336
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1355 1356 1357 1358
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1359 1360 1361 1362
			if (!pages_done)
				pages_done = ret;
			break;
		}
1363 1364 1365 1366 1367 1368
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1369
		start += ret << PAGE_SHIFT;
1370
		lock_dropped = true;
1371

1372
retry:
1373 1374
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1375 1376 1377 1378
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1379
		 */
1380

1381 1382 1383
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1384
			break;
1385
		}
1386

1387
		ret = mmap_read_lock_killable(mm);
1388 1389 1390 1391 1392 1393
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1394

1395
		*locked = 1;
1396
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1397 1398 1399 1400 1401 1402
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1413 1414
		if (likely(pages))
			pages++;
1415 1416
		start += PAGE_SIZE;
	}
1417
	if (lock_dropped && *locked) {
1418 1419 1420 1421
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1422
		mmap_read_unlock(mm);
1423 1424 1425 1426 1427
		*locked = 0;
	}
	return pages_done;
}

1428 1429 1430 1431 1432
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1433
 * @locked: whether the mmap_lock is still held
1434 1435 1436
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1437 1438
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1439
 *
1440
 * vma->vm_mm->mmap_lock must be held.
1441
 *
1442
 * If @locked is NULL, it may be held for read or write and will
1443 1444
 * be unperturbed.
 *
1445 1446
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1447 1448
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1449
		unsigned long start, unsigned long end, int *locked)
1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1459
	mmap_assert_locked(mm);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1476
	if (vma_is_accessible(vma))
1477 1478 1479 1480 1481 1482
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1483
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1484
				NULL, NULL, locked);
1485 1486 1487 1488 1489 1490 1491
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1492
 * mmap_lock must not be held.
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1511
			mmap_read_lock(mm);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1543
		mmap_read_unlock(mm);
1544 1545
	return ret;	/* 0 or negative error code */
}
1546
#else /* CONFIG_MMU */
1547
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1603
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1604 1605 1606 1607
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1608
	struct mm_struct *mm = current->mm;
1609
	struct page *page;
1610 1611
	int locked = 1;
	int ret;
1612

1613
	if (mmap_read_lock_killable(mm))
1614
		return NULL;
1615 1616 1617 1618
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
1619 1620 1621 1622

	if (ret == 1 && is_page_poisoned(page))
		return NULL;

1623
	return (ret == 1) ? page : NULL;
1624 1625 1626
}
#endif /* CONFIG_ELF_CORE */

1627
#ifdef CONFIG_CMA
1628
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1629 1630
					unsigned long start,
					unsigned long nr_pages,
1631
					struct page **pages,
1632 1633
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1634
{
1635 1636
	unsigned long i;
	unsigned long step;
1637 1638 1639
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1640
	long ret = nr_pages;
1641 1642 1643 1644
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1645 1646

check_again:
1647 1648 1649 1650 1651 1652 1653 1654
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1655
		step = compound_nr(head) - (pages[i] - head);
1656 1657 1658 1659 1660
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1661 1662
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1663
				isolate_huge_page(head, &cma_page_list);
1664
			else {
1665 1666 1667 1668 1669 1670 1671 1672 1673
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1674
							    page_is_file_lru(head),
1675
							    thp_nr_pages(head));
1676 1677 1678
				}
			}
		}
1679 1680

		i += step;
1681 1682 1683 1684 1685 1686
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
1687 1688 1689 1690 1691
		if (gup_flags & FOLL_PIN)
			unpin_user_pages(pages, nr_pages);
		else
			for (i = 0; i < nr_pages; i++)
				put_page(pages[i]);
1692

1693 1694
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1705 1706 1707
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1708
		 */
1709
		ret = __get_user_pages_locked(mm, start, nr_pages,
1710 1711 1712
						   pages, vmas, NULL,
						   gup_flags);

1713 1714
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1715 1716 1717 1718 1719
			drain_allow = true;
			goto check_again;
		}
	}

1720
	return ret;
1721 1722
}
#else
1723
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1724 1725 1726 1727 1728
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1729 1730 1731
{
	return nr_pages;
}
1732
#endif /* CONFIG_CMA */
1733

1734
/*
1735 1736
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1737
 */
1738
static long __gup_longterm_locked(struct mm_struct *mm,
1739 1740 1741 1742 1743
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1744
{
1745
	unsigned long flags = 0;
1746
	long rc;
1747

1748
	if (gup_flags & FOLL_LONGTERM)
1749
		flags = memalloc_nocma_save();
1750

1751 1752
	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
				     gup_flags);
1753

1754
	if (gup_flags & FOLL_LONGTERM) {
1755 1756 1757
		if (rc > 0)
			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
							 vmas, gup_flags);
1758
		memalloc_nocma_restore(flags);
1759
	}
1760 1761
	return rc;
}
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1782
#ifdef CONFIG_MMU
1783
static long __get_user_pages_remote(struct mm_struct *mm,
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1802
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1803 1804 1805 1806
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1807
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1808 1809 1810 1811
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1812
/**
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1837
 * @vmas are valid only as long as mmap_lock is held.
1838
 *
1839
 * Must be called with mmap_lock held for read or write.
1840
 *
1841 1842
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1843 1844 1845 1846
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1847
 * get_user_pages_remote returns, and there may even be a completely different
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1859 1860 1861 1862 1863
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1864 1865 1866
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1867
 * get_user_pages_remote should be phased out in favor of
1868
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1869
 * should use get_user_pages_remote because it cannot pass
1870 1871
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1872
long get_user_pages_remote(struct mm_struct *mm,
1873 1874 1875 1876
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1877
	if (!is_valid_gup_flags(gup_flags))
1878 1879
		return -EINVAL;

1880
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1881
				       pages, vmas, locked);
1882 1883 1884
}
EXPORT_SYMBOL(get_user_pages_remote);

1885
#else /* CONFIG_MMU */
1886
long get_user_pages_remote(struct mm_struct *mm,
1887 1888 1889 1890 1891 1892
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1893

1894
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1895 1896 1897 1898 1899 1900
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1901 1902
#endif /* !CONFIG_MMU */

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1914 1915 1916 1917
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1918 1919 1920 1921 1922
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1923
	if (!is_valid_gup_flags(gup_flags))
1924 1925
		return -EINVAL;

1926
	return __gup_longterm_locked(current->mm, start, nr_pages,
1927 1928 1929
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1930

1931
/**
M
Mauro Carvalho Chehab 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
 * get_user_pages_locked() - variant of get_user_pages()
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * It is suitable to replace the form:
1945
 *
1946
 *      mmap_read_lock(mm);
1947
 *      do_something()
1948
 *      get_user_pages(mm, ..., pages, NULL);
1949
 *      mmap_read_unlock(mm);
1950
 *
1951
 *  to:
1952
 *
1953
 *      int locked = 1;
1954
 *      mmap_read_lock(mm);
1955
 *      do_something()
1956
 *      get_user_pages_locked(mm, ..., pages, &locked);
1957
 *      if (locked)
1958
 *          mmap_read_unlock(mm);
1959 1960 1961 1962 1963
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1964
 */
1965 1966 1967
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1968 1969
{
	/*
1970 1971 1972 1973
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1974
	 */
1975 1976
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1977 1978 1979 1980 1981 1982
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1983

1984
	return __get_user_pages_locked(current->mm, start, nr_pages,
1985 1986
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1987
}
1988
EXPORT_SYMBOL(get_user_pages_locked);
1989 1990

/*
1991
 * get_user_pages_unlocked() is suitable to replace the form:
1992
 *
1993
 *      mmap_read_lock(mm);
1994
 *      get_user_pages(mm, ..., pages, NULL);
1995
 *      mmap_read_unlock(mm);
1996 1997 1998
 *
 *  with:
 *
1999
 *      get_user_pages_unlocked(mm, ..., pages);
2000 2001 2002 2003
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
2004
 */
2005 2006
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2007 2008
{
	struct mm_struct *mm = current->mm;
2009 2010
	int locked = 1;
	long ret;
2011

2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2020

2021
	mmap_read_lock(mm);
2022
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2023
				      &locked, gup_flags | FOLL_TOUCH);
2024
	if (locked)
2025
		mmap_read_unlock(mm);
2026
	return ret;
2027
}
2028
EXPORT_SYMBOL(get_user_pages_unlocked);
2029 2030

/*
2031
 * Fast GUP
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2052
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2053
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2054 2055 2056 2057 2058 2059 2060 2061 2062
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2063
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2064

2065
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2066
					    unsigned int flags,
2067
					    struct page **pages)
2068 2069 2070 2071 2072
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2073 2074 2075 2076
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2077 2078 2079
	}
}

2080
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2081
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2082
			 unsigned int flags, struct page **pages, int *nr)
2083
{
2084 2085
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2086 2087 2088 2089
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2090
		pte_t pte = ptep_get_lockless(ptep);
2091
		struct page *head, *page;
2092 2093 2094

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2095
		 * path using the pte_protnone check.
2096
		 */
2097 2098 2099
		if (pte_protnone(pte))
			goto pte_unmap;

2100
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2101 2102
			goto pte_unmap;

2103
		if (pte_devmap(pte)) {
2104 2105 2106
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2107 2108
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2109
				undo_dev_pagemap(nr, nr_start, flags, pages);
2110 2111 2112
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2113 2114 2115 2116 2117
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2118
		head = try_grab_compound_head(page, 1, flags);
2119
		if (!head)
2120 2121 2122
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2123
			put_compound_head(head, 1, flags);
2124 2125 2126
			goto pte_unmap;
		}

2127
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2142
		SetPageReferenced(page);
2143 2144 2145 2146 2147 2148 2149 2150
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2151 2152
	if (pgmap)
		put_dev_pagemap(pgmap);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2164
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2165 2166 2167
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2168
			 unsigned int flags, struct page **pages, int *nr)
2169 2170 2171
{
	return 0;
}
2172
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2173

R
Robin Murphy 已提交
2174
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2175
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2176 2177
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2178 2179 2180 2181 2182 2183 2184 2185 2186
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2187
			undo_dev_pagemap(nr, nr_start, flags, pages);
2188 2189 2190 2191
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2192 2193 2194 2195
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2196 2197 2198
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2199 2200 2201

	if (pgmap)
		put_dev_pagemap(pgmap);
2202 2203 2204
	return 1;
}

2205
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2206 2207
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2208 2209
{
	unsigned long fault_pfn;
2210 2211 2212
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2213
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2214
		return 0;
2215

2216
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2217
		undo_dev_pagemap(nr, nr_start, flags, pages);
2218 2219 2220
		return 0;
	}
	return 1;
2221 2222
}

2223
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2224 2225
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2226 2227
{
	unsigned long fault_pfn;
2228 2229 2230
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2231
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2232
		return 0;
2233

2234
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2235
		undo_dev_pagemap(nr, nr_start, flags, pages);
2236 2237 2238
		return 0;
	}
	return 1;
2239 2240
}
#else
2241
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2242 2243
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2244 2245 2246 2247 2248
{
	BUILD_BUG();
	return 0;
}

2249
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2250 2251
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2252 2253 2254 2255 2256 2257
{
	BUILD_BUG();
	return 0;
}
#endif

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2269 2270 2271 2272 2273 2274 2275 2276 2277
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2278 2279
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2290
	pte = huge_ptep_get(ptep);
2291

2292
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2293 2294 2295 2296 2297 2298 2299
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2300
	refs = record_subpages(page, addr, end, pages + *nr);
2301

J
John Hubbard 已提交
2302
	head = try_grab_compound_head(head, refs, flags);
2303
	if (!head)
2304 2305 2306
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2307
		put_compound_head(head, refs, flags);
2308 2309 2310
		return 0;
	}

2311
	*nr += refs;
2312
	SetPageReferenced(head);
2313 2314 2315 2316
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2317
		unsigned int pdshift, unsigned long end, unsigned int flags,
2318 2319 2320 2321 2322 2323 2324 2325 2326
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2327
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2328 2329 2330 2331 2332 2333 2334
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2335
		unsigned int pdshift, unsigned long end, unsigned int flags,
2336 2337 2338 2339 2340 2341
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2342
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2343 2344
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2345
{
2346
	struct page *head, *page;
2347 2348
	int refs;

2349
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2350 2351
		return 0;

2352 2353 2354
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2355 2356
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2357
	}
2358

2359
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2360
	refs = record_subpages(page, addr, end, pages + *nr);
2361

J
John Hubbard 已提交
2362
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2363
	if (!head)
2364 2365 2366
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2367
		put_compound_head(head, refs, flags);
2368 2369 2370
		return 0;
	}

2371
	*nr += refs;
2372
	SetPageReferenced(head);
2373 2374 2375 2376
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2377 2378
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2379
{
2380
	struct page *head, *page;
2381 2382
	int refs;

2383
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2384 2385
		return 0;

2386 2387 2388
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2389 2390
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2391
	}
2392

2393
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2394
	refs = record_subpages(page, addr, end, pages + *nr);
2395

J
John Hubbard 已提交
2396
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2397
	if (!head)
2398 2399 2400
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2401
		put_compound_head(head, refs, flags);
2402 2403 2404
		return 0;
	}

2405
	*nr += refs;
2406
	SetPageReferenced(head);
2407 2408 2409
	return 1;
}

2410
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2411
			unsigned long end, unsigned int flags,
2412 2413 2414
			struct page **pages, int *nr)
{
	int refs;
2415
	struct page *head, *page;
2416

2417
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2418 2419
		return 0;

2420
	BUILD_BUG_ON(pgd_devmap(orig));
2421

2422
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2423
	refs = record_subpages(page, addr, end, pages + *nr);
2424

J
John Hubbard 已提交
2425
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2426
	if (!head)
2427 2428 2429
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2430
		put_compound_head(head, refs, flags);
2431 2432 2433
		return 0;
	}

2434
	*nr += refs;
2435
	SetPageReferenced(head);
2436 2437 2438
	return 1;
}

2439
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2440
		unsigned int flags, struct page **pages, int *nr)
2441 2442 2443 2444
{
	unsigned long next;
	pmd_t *pmdp;

2445
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2446
	do {
2447
		pmd_t pmd = READ_ONCE(*pmdp);
2448 2449

		next = pmd_addr_end(addr, end);
2450
		if (!pmd_present(pmd))
2451 2452
			return 0;

Y
Yu Zhao 已提交
2453 2454
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2455 2456 2457 2458 2459
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2460
			if (pmd_protnone(pmd))
2461 2462
				return 0;

2463
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2464 2465 2466
				pages, nr))
				return 0;

2467 2468 2469 2470 2471 2472
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2473
					 PMD_SHIFT, next, flags, pages, nr))
2474
				return 0;
2475
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2476
			return 0;
2477 2478 2479 2480 2481
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2482
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2483
			 unsigned int flags, struct page **pages, int *nr)
2484 2485 2486 2487
{
	unsigned long next;
	pud_t *pudp;

2488
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2489
	do {
2490
		pud_t pud = READ_ONCE(*pudp);
2491 2492

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2493
		if (unlikely(!pud_present(pud)))
2494
			return 0;
2495
		if (unlikely(pud_huge(pud))) {
2496
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2497 2498 2499 2500
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2501
					 PUD_SHIFT, next, flags, pages, nr))
2502
				return 0;
2503
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2504 2505 2506 2507 2508 2509
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2510
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2511
			 unsigned int flags, struct page **pages, int *nr)
2512 2513 2514 2515
{
	unsigned long next;
	p4d_t *p4dp;

2516
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2517 2518 2519 2520 2521 2522 2523 2524 2525
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2526
					 P4D_SHIFT, next, flags, pages, nr))
2527
				return 0;
2528
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2529 2530 2531 2532 2533 2534
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2535
static void gup_pgd_range(unsigned long addr, unsigned long end,
2536
		unsigned int flags, struct page **pages, int *nr)
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2549
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2550 2551 2552 2553
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2554
					 PGDIR_SHIFT, next, flags, pages, nr))
2555
				return;
2556
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2557 2558 2559
			return;
	} while (pgdp++, addr = next, addr != end);
}
2560 2561 2562 2563 2564 2565
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2566 2567 2568

#ifndef gup_fast_permitted
/*
2569
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2570 2571
 * we need to fall back to the slow version:
 */
2572
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2573
{
2574
	return true;
2575 2576 2577
}
#endif

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2588
		mmap_read_lock(current->mm);
2589
		ret = __gup_longterm_locked(current->mm,
2590 2591
					    start, nr_pages,
					    pages, NULL, gup_flags);
2592
		mmap_read_unlock(current->mm);
2593 2594 2595 2596 2597 2598 2599 2600
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2601 2602 2603 2604 2605 2606 2607
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2608
	unsigned seq;
2609 2610 2611 2612 2613

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2614 2615 2616 2617 2618 2619
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2645 2646 2647 2648 2649
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2650 2651
					unsigned int gup_flags,
					struct page **pages)
2652
{
2653 2654 2655
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2656

2657
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2658 2659
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2660 2661
		return -EINVAL;

P
Peter Xu 已提交
2662 2663 2664
	if (gup_flags & FOLL_PIN)
		atomic_set(&current->mm->has_pinned, 1);

2665
	if (!(gup_flags & FOLL_FAST_ONLY))
2666
		might_lock_read(&current->mm->mmap_lock);
2667

2668
	start = untagged_addr(start) & PAGE_MASK;
2669 2670
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2671
		return 0;
2672
	if (unlikely(!access_ok((void __user *)start, len)))
2673
		return -EFAULT;
2674

2675 2676 2677
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2692
	}
2693
	return ret + nr_pinned;
2694
}
2695

2696 2697 2698 2699 2700 2701 2702 2703
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2716 2717
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2718
{
2719
	int nr_pinned;
2720 2721 2722
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2723 2724 2725
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2726
	 */
2727
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2728

2729 2730
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2731 2732

	/*
2733 2734 2735 2736
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2737
	 */
2738 2739
	if (nr_pinned < 0)
		nr_pinned = 0;
2740 2741 2742

	return nr_pinned;
}
2743
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2744

2745 2746
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2747 2748 2749 2750 2751
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2752
 *
2753
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2764
	if (!is_valid_gup_flags(gup_flags))
2765 2766
		return -EINVAL;

2767 2768 2769 2770 2771 2772 2773
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2774 2775
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2776
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2777 2778 2779 2780

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2792
 * see Documentation/core-api/pin_user_pages.rst for further details.
2793 2794 2795 2796
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2797 2798 2799 2800 2801 2802
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2803 2804 2805
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2806
/*
2807 2808
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2842
/**
2843
 * pin_user_pages_remote() - pin pages of a remote process
2844
 *
J
John Hubbard 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2863
 * see Documentation/core-api/pin_user_pages.rst for details.
2864
 */
2865
long pin_user_pages_remote(struct mm_struct *mm,
2866 2867 2868 2869
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2870 2871 2872 2873 2874
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2875
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2876
				       pages, vmas, locked);
2877 2878 2879 2880 2881 2882
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2896
 * see Documentation/core-api/pin_user_pages.rst for details.
2897 2898 2899 2900 2901
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2902 2903 2904 2905 2906
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2907
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2908
				     pages, vmas, gup_flags);
2909 2910
}
EXPORT_SYMBOL(pin_user_pages);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2952
	return __get_user_pages_locked(current->mm, start, nr_pages,
2953 2954 2955 2956
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);