gup.c 84.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
89 90
		int orig_refs = refs;

91 92 93 94 95 96 97 98
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

117 118 119
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

120
		return page;
J
John Hubbard 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	}

	WARN_ON_ONCE(1);
	return NULL;
}

/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
155 156
		int refs = 1;

J
John Hubbard 已提交
157 158 159 160 161
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

162 163 164 165 166 167 168 169 170 171 172 173
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
174 175

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
176 177 178 179 180 181 182 183
	}

	return true;
}

#ifdef CONFIG_DEV_PAGEMAP_OPS
static bool __unpin_devmap_managed_user_page(struct page *page)
{
184
	int count, refs = 1;
J
John Hubbard 已提交
185 186 187 188

	if (!page_is_devmap_managed(page))
		return false;

189 190 191 192 193 194
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	count = page_ref_sub_return(page, refs);
J
John Hubbard 已提交
195

196
	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	/*
	 * devmap page refcounts are 1-based, rather than 0-based: if
	 * refcount is 1, then the page is free and the refcount is
	 * stable because nobody holds a reference on the page.
	 */
	if (count == 1)
		free_devmap_managed_page(page);
	else if (!count)
		__put_page(page);

	return true;
}
#else
static bool __unpin_devmap_managed_user_page(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
227 228
	int refs = 1;

J
John Hubbard 已提交
229 230 231 232 233 234 235 236 237 238 239
	page = compound_head(page);

	/*
	 * For devmap managed pages we need to catch refcount transition from
	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
	 * page is free and we need to inform the device driver through
	 * callback. See include/linux/memremap.h and HMM for details.
	 */
	if (__unpin_devmap_managed_user_page(page))
		return;

240 241 242 243 244 245
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	if (page_ref_sub_and_test(page, refs))
J
John Hubbard 已提交
246
		__put_page(page);
247 248

	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
249 250 251
}
EXPORT_SYMBOL(unpin_user_page);

252
/**
253
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
255
 * @npages: number of pages in the @pages array.
256
 * @make_dirty: whether to mark the pages dirty
257 258 259 260 261
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
262
 * compound page) dirty, if @make_dirty is true, and if the page was previously
263 264
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
265
 *
266
 * Please see the unpin_user_page() documentation for details.
267
 *
268 269 270
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
271
 * set_page_dirty_lock(), unpin_user_page().
272 273
 *
 */
274 275
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
276
{
277
	unsigned long index;
278

279 280 281 282 283 284 285
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
286
		unpin_user_pages(pages, npages);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
314
		unpin_user_page(page);
315
	}
316
}
317
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 319

/**
320
 * unpin_user_pages() - release an array of gup-pinned pages.
321 322 323
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
324
 * For each page in the @pages array, release the page using unpin_user_page().
325
 *
326
 * Please see the unpin_user_page() documentation for details.
327
 */
328
void unpin_user_pages(struct page **pages, unsigned long npages)
329 330 331 332 333 334 335 336 337
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
338
		unpin_user_page(pages[index]);
339
}
340
EXPORT_SYMBOL(unpin_user_pages);
341

342
#ifdef CONFIG_MMU
343 344
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
345
{
346 347 348 349 350 351 352 353
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
354 355
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 357 358
		return ERR_PTR(-EFAULT);
	return NULL;
}
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

384
/*
385 386
 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
 * but only after we've gone through a COW cycle and they are dirty.
387 388 389
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
390 391 392 393 394 395 396 397 398 399 400
	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
}

/*
 * A (separate) COW fault might break the page the other way and
 * get_user_pages() would return the page from what is now the wrong
 * VM. So we need to force a COW break at GUP time even for reads.
 */
static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
{
	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
401 402
}

403
static struct page *follow_page_pte(struct vm_area_struct *vma,
404 405
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
406 407 408 409 410
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
411
	int ret;
412

413 414 415 416
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
417
retry:
418
	if (unlikely(pmd_bad(*pmd)))
419
		return no_page_table(vma, flags);
420 421 422 423 424 425 426 427 428 429 430 431

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
432
		if (pte_none(pte))
433 434 435 436 437 438
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
439
		goto retry;
440
	}
441
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
442
		goto no_page;
443
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
444 445 446
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
447 448

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
449
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
450
		/*
J
John Hubbard 已提交
451 452 453
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
454
		 */
455 456
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
457 458 459 460
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
461 462 463 464 465 466 467 468 469 470 471 472 473
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
474 475
	}

476 477 478 479 480 481 482 483 484 485 486 487
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
488 489 490 491
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
492
	}
493 494 495 496 497 498 499 500 501 502 503 504 505
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
506 507 508 509 510 511 512 513 514 515 516
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
517
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
518 519 520 521
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
543
out:
544 545 546 547 548
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
549 550 551 552
		return NULL;
	return no_page_table(vma, flags);
}

553 554
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
555 556
				    unsigned int flags,
				    struct follow_page_context *ctx)
557
{
558
	pmd_t *pmd, pmdval;
559 560 561 562
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

563
	pmd = pmd_offset(pudp, address);
564 565 566 567 568 569
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
570
		return no_page_table(vma, flags);
571
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
572 573 574 575
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
576
	}
577
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
578
		page = follow_huge_pd(vma, address,
579
				      __hugepd(pmd_val(pmdval)), flags,
580 581 582 583 584
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
585
retry:
586
	if (!pmd_present(pmdval)) {
587 588 589
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
590 591
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
592
			pmd_migration_entry_wait(mm, pmd);
593 594 595 596 597 598 599
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
600 601
		goto retry;
	}
602
	if (pmd_devmap(pmdval)) {
603
		ptl = pmd_lock(mm, pmd);
604
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 606 607 608
		spin_unlock(ptl);
		if (page)
			return page;
	}
609
	if (likely(!pmd_trans_huge(pmdval)))
610
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611

612
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 614
		return no_page_table(vma, flags);

615
retry_locked:
616
	ptl = pmd_lock(mm, pmd);
617 618 619 620
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
621 622 623 624 625 626 627
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
628 629
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
630
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631
	}
S
Song Liu 已提交
632
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
633 634 635 636 637
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
638
			split_huge_pmd(vma, pmd, address);
639 640
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
641
		} else if (flags & FOLL_SPLIT) {
642 643 644 645
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
646
			spin_unlock(ptl);
647 648 649 650
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
651 652
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
653 654 655 656
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
657 658 659
		}

		return ret ? ERR_PTR(ret) :
660
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
661
	}
662 663
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
664
	ctx->page_mask = HPAGE_PMD_NR - 1;
665
	return page;
666 667
}

668 669
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
670 671
				    unsigned int flags,
				    struct follow_page_context *ctx)
672 673 674 675 676 677 678 679 680
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
681
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
682 683 684 685 686
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
687 688 689 690 691 692 693 694
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
695 696
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
697
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
698 699 700 701 702 703 704
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

705
	return follow_pmd_mask(vma, address, pud, flags, ctx);
706 707 708 709
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
710 711
				    unsigned int flags,
				    struct follow_page_context *ctx)
712 713
{
	p4d_t *p4d;
714
	struct page *page;
715 716 717 718 719 720 721 722

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

723 724 725 726 727 728 729 730
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
731
	return follow_pud_mask(vma, address, p4d, flags, ctx);
732 733 734 735 736 737 738
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
739 740
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
741 742 743
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
744 745 746 747 748 749
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
750 751 752
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
753
static struct page *follow_page_mask(struct vm_area_struct *vma,
754
			      unsigned long address, unsigned int flags,
755
			      struct follow_page_context *ctx)
756 757 758 759 760
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

761
	ctx->page_mask = 0;
762 763 764 765

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
766
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 768 769 770 771 772 773 774
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

775 776 777 778 779 780
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
781 782 783 784 785 786 787 788
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
789

790 791 792 793 794 795 796 797 798 799 800 801 802
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
803 804
}

805 806 807 808 809
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
810
	p4d_t *p4d;
811 812 813 814 815 816 817 818 819 820 821 822
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
823 824
	if (pgd_none(*pgd))
		return -EFAULT;
825
	p4d = p4d_offset(pgd, address);
826 827
	if (p4d_none(*p4d))
		return -EFAULT;
828
	pud = pud_offset(p4d, address);
829 830
	if (pud_none(*pud))
		return -EFAULT;
831
	pmd = pmd_offset(pud, address);
832
	if (!pmd_present(*pmd))
833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
847 848 849 850
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
851 852 853 854 855 856 857
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

858
/*
859 860 861
 * mmap_sem must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
 * is, *@locked will be set to 0 and -EBUSY returned.
862
 */
863
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
864
		unsigned long address, unsigned int *flags, int *locked)
865 866
{
	unsigned int fault_flags = 0;
867
	vm_fault_t ret;
868

E
Eric B Munson 已提交
869 870 871
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
872 873
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
874 875
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
876
	if (locked)
877
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
878 879
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
880
	if (*flags & FOLL_TRIED) {
881 882 883 884
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
885 886
		fault_flags |= FAULT_FLAG_TRIED;
	}
887

888
	ret = handle_mm_fault(vma, address, fault_flags);
889
	if (ret & VM_FAULT_ERROR) {
890 891 892 893
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
894 895 896 897 898 899 900 901 902 903 904
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
905 906
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
907 908 909 910 911 912 913 914 915 916 917 918 919
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
920
		*flags |= FOLL_COW;
921 922 923
	return 0;
}

924 925 926
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
927 928
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
929 930 931 932

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

933 934 935
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

936
	if (write) {
937 938 939 940 941 942 943 944 945 946 947 948
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
949
			if (!is_cow_mapping(vm_flags))
950 951 952 953 954 955 956 957 958 959 960 961
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
962 963 964 965 966
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
967
		return -EFAULT;
968 969 970
	return 0;
}

971 972 973 974 975 976 977 978 979 980 981 982
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
983
 * @locked:     whether we're still with the mmap_sem held
984
 *
985 986 987 988 989 990 991 992 993 994 995
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
996
 *
997
 * Must be called with mmap_sem held.  It may be released.  See below.
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1018 1019 1020
 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1021
 *
1022
 * A caller using such a combination of @locked and @gup_flags
1023 1024 1025
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1026 1027 1028 1029 1030
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
1031
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 1033
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1034
		struct vm_area_struct **vmas, int *locked)
1035
{
1036
	long ret = 0, i = 0;
1037
	struct vm_area_struct *vma = NULL;
1038
	struct follow_page_context ctx = { NULL };
1039 1040 1041 1042

	if (!nr_pages)
		return 0;

1043 1044
	start = untagged_addr(start);

1045
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1068
					goto out;
1069
				ctx.page_mask = 0;
1070 1071
				goto next_page;
			}
1072

1073 1074 1075 1076
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
1077
			if (is_vm_hugetlb_page(vma)) {
1078 1079
				if (should_force_cow_break(vma, foll_flags))
					foll_flags |= FOLL_WRITE;
1080 1081
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1082
						foll_flags, locked);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
					 * and we've lost mmap_sem.
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1093
				continue;
1094
			}
1095
		}
1096 1097 1098 1099

		if (should_force_cow_break(vma, foll_flags))
			foll_flags |= FOLL_WRITE;

1100 1101 1102 1103 1104
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1105
		if (fatal_signal_pending(current)) {
1106
			ret = -EINTR;
1107 1108
			goto out;
		}
1109
		cond_resched();
1110 1111

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 1113
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
1114
					   locked);
1115 1116 1117
			switch (ret) {
			case 0:
				goto retry;
1118 1119
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1120
				fallthrough;
1121 1122 1123
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1124
				goto out;
1125 1126
			case -ENOENT:
				goto next_page;
1127
			}
1128
			BUG();
1129 1130 1131 1132 1133 1134 1135
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1136 1137
			ret = PTR_ERR(page);
			goto out;
1138
		}
1139 1140 1141 1142
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1143
			ctx.page_mask = 0;
1144 1145
		}
next_page:
1146 1147
		if (vmas) {
			vmas[i] = vma;
1148
			ctx.page_mask = 0;
1149
		}
1150
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 1152 1153 1154 1155
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1156
	} while (nr_pages);
1157 1158 1159 1160
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1161 1162
}

1163 1164
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1165
{
1166 1167
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1169 1170 1171 1172

	if (!(vm_flags & vma->vm_flags))
		return false;

1173 1174
	/*
	 * The architecture might have a hardware protection
1175
	 * mechanism other than read/write that can deny access.
1176 1177 1178
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1179
	 */
1180
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 1182
		return false;

1183 1184 1185
	return true;
}

1186
/**
1187 1188 1189 1190 1191 1192
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1193
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1194 1195
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1207
 * get_user_pages() only guarantees to update these in the struct page.
1208 1209 1210 1211 1212 1213
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1214 1215
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1216 1217
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1218 1219
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1220 1221
{
	struct vm_area_struct *vma;
1222
	vm_fault_t ret, major = 0;
1223

1224 1225
	address = untagged_addr(address);

1226
	if (unlocked)
1227
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1228

1229
retry:
1230 1231 1232 1233
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1234
	if (!vma_permits_fault(vma, fault_flags))
1235 1236
		return -EFAULT;

1237 1238 1239 1240
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1241
	ret = handle_mm_fault(vma, address, fault_flags);
1242
	major |= ret & VM_FAULT_MAJOR;
1243
	if (ret & VM_FAULT_ERROR) {
1244 1245 1246 1247
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1248 1249
		BUG();
	}
1250 1251 1252

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
1253 1254 1255
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1256 1257
	}

1258
	if (tsk) {
1259
		if (major)
1260 1261 1262 1263 1264 1265
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1266
EXPORT_SYMBOL_GPL(fixup_user_fault);
1267

1268 1269 1270 1271 1272 1273
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1274
						int *locked,
1275
						unsigned int flags)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1321 1322 1323 1324
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1325 1326 1327 1328
			if (!pages_done)
				pages_done = ret;
			break;
		}
1329 1330 1331 1332 1333 1334
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1335
		start += ret << PAGE_SHIFT;
1336
		lock_dropped = true;
1337

1338
retry:
1339 1340
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1341 1342 1343 1344
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1345
		 */
1346

1347 1348 1349
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1350
			break;
1351
		}
1352

1353 1354 1355 1356 1357 1358 1359
		ret = down_read_killable(&mm->mmap_sem);
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1360

1361
		*locked = 1;
1362
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1363 1364 1365 1366 1367 1368
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1379 1380
		if (likely(pages))
			pages++;
1381 1382
		start += PAGE_SIZE;
	}
1383
	if (lock_dropped && *locked) {
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1394 1395 1396 1397 1398
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1399
 * @locked: whether the mmap_sem is still held
1400 1401 1402 1403 1404 1405 1406
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
1407
 * If @locked is NULL, it may be held for read or write and will
1408 1409
 * be unperturbed.
 *
1410 1411
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1412 1413
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1414
		unsigned long start, unsigned long end, int *locked)
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1441
	if (vma_is_accessible(vma))
1442 1443 1444 1445 1446 1447 1448
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1449
				NULL, NULL, locked);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long start,
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1658 1659 1660 1661
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1662
					struct page **pages,
1663 1664
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1665
{
1666 1667
	unsigned long i;
	unsigned long step;
1668 1669 1670
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1671
	long ret = nr_pages;
1672 1673

check_again:
1674 1675 1676 1677 1678 1679 1680 1681
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1682
		step = compound_nr(head) - (pages[i] - head);
1683 1684 1685 1686 1687
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1688 1689
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1690
				isolate_huge_page(head, &cma_page_list);
1691
			else {
1692 1693 1694 1695 1696 1697 1698 1699 1700
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1701
							    page_is_file_lru(head),
1702 1703 1704 1705
							    hpage_nr_pages(head));
				}
			}
		}
1706 1707

		i += step;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1729 1730 1731
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1732
		 */
1733
		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1734 1735 1736
						   pages, vmas, NULL,
						   gup_flags);

1737 1738
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1739 1740 1741 1742 1743
			drain_allow = true;
			goto check_again;
		}
	}

1744
	return ret;
1745 1746
}
#else
1747 1748 1749 1750 1751 1752 1753
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1754 1755 1756
{
	return nr_pages;
}
1757
#endif /* CONFIG_CMA */
1758

1759
/*
1760 1761
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1762
 */
1763 1764 1765 1766 1767 1768 1769
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1770
{
1771 1772
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1773 1774
	long rc, i;

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1787 1788
	}

1789 1790
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1791

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1806
	}
1807 1808

out:
1809 1810
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1811 1812
	return rc;
}
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
#ifdef CONFIG_MMU
static long __get_user_pages_remote(struct task_struct *tsk,
				    struct mm_struct *mm,
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1858
/**
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
 * get_user_pages_remote() - pin user pages in memory
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
1889 1890
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1891 1892 1893 1894
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1895
 * get_user_pages_remote returns, and there may even be a completely different
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1907 1908 1909 1910 1911
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1912 1913 1914
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1915
 * get_user_pages_remote should be phased out in favor of
1916
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1917
 * should use get_user_pages_remote because it cannot pass
1918 1919 1920 1921 1922 1923 1924
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1925 1926 1927 1928 1929 1930 1931
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1932 1933
	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
				       pages, vmas, locked);
1934 1935 1936
}
EXPORT_SYMBOL(get_user_pages_remote);

1937 1938 1939 1940 1941 1942 1943 1944
#else /* CONFIG_MMU */
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953

static long __get_user_pages_remote(struct task_struct *tsk,
				    struct mm_struct *mm,
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1954 1955
#endif /* !CONFIG_MMU */

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1977 1978 1979 1980 1981 1982 1983
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1984 1985 1986 1987
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1988

1989
/**
1990
 * get_user_pages_locked() is suitable to replace the form:
1991
 *
1992 1993 1994 1995
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
1996
 *
1997
 *  to:
1998
 *
1999 2000 2001 2002 2003 2004
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
2020
 */
2021 2022 2023
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
2024 2025
{
	/*
2026 2027 2028 2029
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
2030
	 */
2031 2032
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2033

2034 2035 2036
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
2037
}
2038
EXPORT_SYMBOL(get_user_pages_locked);
2039 2040

/*
2041
 * get_user_pages_unlocked() is suitable to replace the form:
2042
 *
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
2054
 */
2055 2056
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2057 2058
{
	struct mm_struct *mm = current->mm;
2059 2060
	int locked = 1;
	long ret;
2061

2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2070

2071 2072 2073
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
				      &locked, gup_flags | FOLL_TOUCH);
2074 2075
	if (locked)
		up_read(&mm->mmap_sem);
2076
	return ret;
2077
}
2078
EXPORT_SYMBOL(get_user_pages_unlocked);
2079 2080

/*
2081
 * Fast GUP
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2102
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2103
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2104 2105 2106 2107 2108 2109 2110 2111 2112
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2113
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2114 2115 2116

static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
2117
	if (flags & FOLL_PIN) {
2118 2119 2120
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

2121 2122 2123 2124 2125
		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}
J
John Hubbard 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

2137
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
J
John Hubbard 已提交
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2184
/*
2185
 * We require that the PTE can be read atomically.
2186 2187 2188 2189 2190
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
2191
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2192

2193
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2194
					    unsigned int flags,
2195
					    struct page **pages)
2196 2197 2198 2199 2200
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2201 2202 2203 2204
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2205 2206 2207
	}
}

2208
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2209
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2210
			 unsigned int flags, struct page **pages, int *nr)
2211
{
2212 2213
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2214 2215 2216 2217
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2218
		pte_t pte = gup_get_pte(ptep);
2219
		struct page *head, *page;
2220 2221 2222

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2223
		 * path using the pte_protnone check.
2224
		 */
2225 2226 2227
		if (pte_protnone(pte))
			goto pte_unmap;

2228
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2229 2230
			goto pte_unmap;

2231
		if (pte_devmap(pte)) {
2232 2233 2234
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2235 2236
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2237
				undo_dev_pagemap(nr, nr_start, flags, pages);
2238 2239 2240
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2241 2242 2243 2244 2245
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2246
		head = try_grab_compound_head(page, 1, flags);
2247
		if (!head)
2248 2249 2250
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2251
			put_compound_head(head, 1, flags);
2252 2253 2254
			goto pte_unmap;
		}

2255
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2270
		SetPageReferenced(page);
2271 2272 2273 2274 2275 2276 2277 2278
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2279 2280
	if (pgmap)
		put_dev_pagemap(pgmap);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2296
			 unsigned int flags, struct page **pages, int *nr)
2297 2298 2299
{
	return 0;
}
2300
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2301

R
Robin Murphy 已提交
2302
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2303
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2304 2305
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2306 2307 2308 2309 2310 2311 2312 2313 2314
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2315
			undo_dev_pagemap(nr, nr_start, flags, pages);
2316 2317 2318 2319
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2320 2321 2322 2323
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2324 2325 2326
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2327 2328 2329

	if (pgmap)
		put_dev_pagemap(pgmap);
2330 2331 2332
	return 1;
}

2333
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2334 2335
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2336 2337
{
	unsigned long fault_pfn;
2338 2339 2340
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2341
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2342
		return 0;
2343

2344
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2345
		undo_dev_pagemap(nr, nr_start, flags, pages);
2346 2347 2348
		return 0;
	}
	return 1;
2349 2350
}

2351
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2352 2353
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2354 2355
{
	unsigned long fault_pfn;
2356 2357 2358
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2359
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2360
		return 0;
2361

2362
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2363
		undo_dev_pagemap(nr, nr_start, flags, pages);
2364 2365 2366
		return 0;
	}
	return 1;
2367 2368
}
#else
2369
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2370 2371
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2372 2373 2374 2375 2376
{
	BUILD_BUG();
	return 0;
}

2377
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2378 2379
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2380 2381 2382 2383 2384 2385
{
	BUILD_BUG();
	return 0;
}
#endif

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2397 2398 2399 2400 2401 2402 2403 2404 2405
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2406 2407
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = READ_ONCE(*ptep);

2420
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2421 2422 2423 2424 2425 2426 2427
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2428
	refs = record_subpages(page, addr, end, pages + *nr);
2429

J
John Hubbard 已提交
2430
	head = try_grab_compound_head(head, refs, flags);
2431
	if (!head)
2432 2433 2434
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2435
		put_compound_head(head, refs, flags);
2436 2437 2438
		return 0;
	}

2439
	*nr += refs;
2440
	SetPageReferenced(head);
2441 2442 2443 2444
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2445
		unsigned int pdshift, unsigned long end, unsigned int flags,
2446 2447 2448 2449 2450 2451 2452 2453 2454
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2455
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2456 2457 2458 2459 2460 2461 2462
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2463
		unsigned int pdshift, unsigned long end, unsigned int flags,
2464 2465 2466 2467 2468 2469
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2470
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2471 2472
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2473
{
2474
	struct page *head, *page;
2475 2476
	int refs;

2477
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2478 2479
		return 0;

2480 2481 2482
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2483 2484
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2485
	}
2486

2487
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2488
	refs = record_subpages(page, addr, end, pages + *nr);
2489

J
John Hubbard 已提交
2490
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2491
	if (!head)
2492 2493 2494
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2495
		put_compound_head(head, refs, flags);
2496 2497 2498
		return 0;
	}

2499
	*nr += refs;
2500
	SetPageReferenced(head);
2501 2502 2503 2504
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2505 2506
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2507
{
2508
	struct page *head, *page;
2509 2510
	int refs;

2511
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2512 2513
		return 0;

2514 2515 2516
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2517 2518
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2519
	}
2520

2521
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2522
	refs = record_subpages(page, addr, end, pages + *nr);
2523

J
John Hubbard 已提交
2524
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2525
	if (!head)
2526 2527 2528
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2529
		put_compound_head(head, refs, flags);
2530 2531 2532
		return 0;
	}

2533
	*nr += refs;
2534
	SetPageReferenced(head);
2535 2536 2537
	return 1;
}

2538
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2539
			unsigned long end, unsigned int flags,
2540 2541 2542
			struct page **pages, int *nr)
{
	int refs;
2543
	struct page *head, *page;
2544

2545
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2546 2547
		return 0;

2548
	BUILD_BUG_ON(pgd_devmap(orig));
2549

2550
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2551
	refs = record_subpages(page, addr, end, pages + *nr);
2552

J
John Hubbard 已提交
2553
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2554
	if (!head)
2555 2556 2557
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2558
		put_compound_head(head, refs, flags);
2559 2560 2561
		return 0;
	}

2562
	*nr += refs;
2563
	SetPageReferenced(head);
2564 2565 2566
	return 1;
}

2567
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2568
		unsigned int flags, struct page **pages, int *nr)
2569 2570 2571 2572 2573 2574
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2575
		pmd_t pmd = READ_ONCE(*pmdp);
2576 2577

		next = pmd_addr_end(addr, end);
2578
		if (!pmd_present(pmd))
2579 2580
			return 0;

Y
Yu Zhao 已提交
2581 2582
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2583 2584 2585 2586 2587
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2588
			if (pmd_protnone(pmd))
2589 2590
				return 0;

2591
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2592 2593 2594
				pages, nr))
				return 0;

2595 2596 2597 2598 2599 2600
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2601
					 PMD_SHIFT, next, flags, pages, nr))
2602
				return 0;
2603
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2604
			return 0;
2605 2606 2607 2608 2609
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2610
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2611
			 unsigned int flags, struct page **pages, int *nr)
2612 2613 2614 2615
{
	unsigned long next;
	pud_t *pudp;

2616
	pudp = pud_offset(&p4d, addr);
2617
	do {
2618
		pud_t pud = READ_ONCE(*pudp);
2619 2620

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2621
		if (unlikely(!pud_present(pud)))
2622
			return 0;
2623
		if (unlikely(pud_huge(pud))) {
2624
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2625 2626 2627 2628
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2629
					 PUD_SHIFT, next, flags, pages, nr))
2630
				return 0;
2631
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2632 2633 2634 2635 2636 2637
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2638
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2639
			 unsigned int flags, struct page **pages, int *nr)
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2654
					 P4D_SHIFT, next, flags, pages, nr))
2655
				return 0;
2656
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2657 2658 2659 2660 2661 2662
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2663
static void gup_pgd_range(unsigned long addr, unsigned long end,
2664
		unsigned int flags, struct page **pages, int *nr)
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2677
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2678 2679 2680 2681
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2682
					 PGDIR_SHIFT, next, flags, pages, nr))
2683
				return;
2684
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2685 2686 2687
			return;
	} while (pgdp++, addr = next, addr != end);
}
2688 2689 2690 2691 2692 2693
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2694 2695 2696 2697 2698 2699

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2700
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2701
{
2702
	return true;
2703 2704 2705
}
#endif

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2729 2730 2731
static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
					unsigned int gup_flags,
					struct page **pages)
2732
{
2733
	unsigned long addr, len, end;
2734
	int nr_pinned = 0, ret = 0;
2735

2736
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2737
				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2738 2739
		return -EINVAL;

2740
	start = untagged_addr(start) & PAGE_MASK;
2741 2742 2743 2744
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2745
	if (end <= start)
2746
		return 0;
2747
	if (unlikely(!access_ok((void __user *)start, len)))
2748
		return -EFAULT;
2749

2750 2751 2752 2753 2754 2755 2756
	/*
	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
	 * because get_user_pages() may need to cause an early COW in
	 * order to avoid confusing the normal COW routines. So only
	 * targets that are already writable are safe to do by just
	 * looking at the page tables.
	 */
2757 2758
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2759
		local_irq_disable();
2760
		gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr_pinned);
2761
		local_irq_enable();
2762
		ret = nr_pinned;
2763
	}
2764

2765
	if (nr_pinned < nr_pages) {
2766
		/* Try to get the remaining pages with get_user_pages */
2767 2768
		start += nr_pinned << PAGE_SHIFT;
		pages += nr_pinned;
2769

2770
		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2771
					      gup_flags, pages);
2772 2773

		/* Have to be a bit careful with return values */
2774
		if (nr_pinned > 0) {
2775
			if (ret < 0)
2776
				ret = nr_pinned;
2777
			else
2778
				ret += nr_pinned;
2779 2780 2781 2782 2783
		}
	}

	return ret;
}
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
	unsigned long len, end;
	unsigned long flags;
	int nr_pinned = 0;
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
	 */
	unsigned int gup_flags = FOLL_GET;

	if (write)
		gup_flags |= FOLL_WRITE;

	start = untagged_addr(start) & PAGE_MASK;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

	if (end <= start)
		return 0;
	if (unlikely(!access_ok((void __user *)start, len)))
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 *
	 * NOTE! We allow read-only gup_fast() here, but you'd better be
	 * careful about possible COW pages. You'll get _a_ COW page, but
	 * not necessarily the one you intended to get depending on what
	 * COW event happens after this. COW may break the page copy in a
	 * random direction.
	 */

	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
		local_irq_save(flags);
		gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
		local_irq_restore(flags);
	}

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(__get_user_pages_fast);

2851 2852
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2853 2854 2855 2856 2857
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

2877 2878 2879 2880 2881 2882 2883
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2884 2885
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2886
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2887 2888 2889 2890

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2902
 * see Documentation/core-api/pin_user_pages.rst for further details.
2903
 *
2904
 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2905 2906 2907 2908 2909
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2910 2911 2912 2913 2914 2915
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2916 2917 2918 2919 2920 2921
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

/**
 * pin_user_pages_remote() - pin pages of a remote process (task != current)
 *
J
John Hubbard 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2942
 * see Documentation/core-api/pin_user_pages.rst for details.
2943
 *
2944
 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2945 2946 2947 2948 2949 2950 2951
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2952 2953 2954 2955 2956 2957 2958
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
				       pages, vmas, locked);
2959 2960 2961 2962 2963 2964
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2978
 * see Documentation/core-api/pin_user_pages.rst for details.
2979
 *
2980
 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2981 2982 2983 2984 2985 2986
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2987 2988 2989 2990 2991 2992 2993
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags);
2994 2995
}
EXPORT_SYMBOL(pin_user_pages);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);