gup.c 81.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
81 82
__maybe_unused struct page *try_grab_compound_head(struct page *page,
						   int refs, unsigned int flags)
J
John Hubbard 已提交
83 84 85 86
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
87 88
		int orig_refs = refs;

89 90 91 92 93 94 95 96
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

115 116 117
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

118
		return page;
J
John Hubbard 已提交
119 120 121 122 123 124
	}

	WARN_ON_ONCE(1);
	return NULL;
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
	if (flags & FOLL_PIN) {
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

J
John Hubbard 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
175 176
		int refs = 1;

J
John Hubbard 已提交
177 178 179 180 181
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

182 183 184 185 186 187 188 189 190 191 192 193
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
194 195

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	}

	return true;
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
212
	put_compound_head(compound_head(page), 1, FOLL_PIN);
J
John Hubbard 已提交
213 214 215
}
EXPORT_SYMBOL(unpin_user_page);

216
/**
217
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
218
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
219
 * @npages: number of pages in the @pages array.
220
 * @make_dirty: whether to mark the pages dirty
221 222 223 224 225
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
226
 * compound page) dirty, if @make_dirty is true, and if the page was previously
227 228
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
229
 *
230
 * Please see the unpin_user_page() documentation for details.
231
 *
232 233 234
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
235
 * set_page_dirty_lock(), unpin_user_page().
236 237
 *
 */
238 239
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
240
{
241
	unsigned long index;
242

243 244 245 246 247 248 249
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
250
		unpin_user_pages(pages, npages);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
278
		unpin_user_page(page);
279
	}
280
}
281
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
282 283

/**
284
 * unpin_user_pages() - release an array of gup-pinned pages.
285 286 287
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
288
 * For each page in the @pages array, release the page using unpin_user_page().
289
 *
290
 * Please see the unpin_user_page() documentation for details.
291
 */
292
void unpin_user_pages(struct page **pages, unsigned long npages)
293 294 295
{
	unsigned long index;

296 297 298 299 300 301 302
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
303 304 305 306 307 308
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
309
		unpin_user_page(pages[index]);
310
}
311
EXPORT_SYMBOL(unpin_user_pages);
312

313
#ifdef CONFIG_MMU
314 315
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
316
{
317 318 319 320 321 322 323 324
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
325 326
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
327 328 329
		return ERR_PTR(-EFAULT);
	return NULL;
}
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

355
/*
356 357
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
358 359 360
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
361 362
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
363 364
}

365
static struct page *follow_page_pte(struct vm_area_struct *vma,
366 367
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
368 369 370 371 372
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
373
	int ret;
374

375 376 377 378
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
379
retry:
380
	if (unlikely(pmd_bad(*pmd)))
381
		return no_page_table(vma, flags);
382 383 384 385 386 387 388 389 390 391 392 393

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
394
		if (pte_none(pte))
395 396 397 398 399 400
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
401
		goto retry;
402
	}
403
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
404
		goto no_page;
405
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
406 407 408
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
409 410

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
411
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
412
		/*
J
John Hubbard 已提交
413 414 415
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
416
		 */
417 418
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
419 420 421 422
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
423 424 425 426 427 428 429 430 431 432 433 434 435
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
436 437
	}

438 439 440 441 442 443 444 445 446 447 448 449
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
450 451 452 453
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
454
	}
455 456 457 458 459 460 461 462 463 464 465 466 467
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
468 469 470 471 472 473 474 475 476 477 478
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
479
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
480 481 482 483
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
505
out:
506 507 508 509 510
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
511 512 513 514
		return NULL;
	return no_page_table(vma, flags);
}

515 516
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
517 518
				    unsigned int flags,
				    struct follow_page_context *ctx)
519
{
520
	pmd_t *pmd, pmdval;
521 522 523 524
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

525
	pmd = pmd_offset(pudp, address);
526 527 528 529 530 531
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
532
		return no_page_table(vma, flags);
533
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
534 535 536 537
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
538
	}
539
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
540
		page = follow_huge_pd(vma, address,
541
				      __hugepd(pmd_val(pmdval)), flags,
542 543 544 545 546
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
547
retry:
548
	if (!pmd_present(pmdval)) {
549 550 551
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
552 553
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
554
			pmd_migration_entry_wait(mm, pmd);
555 556 557
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
558
		 * mmap_lock is held in read mode
559 560 561
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
562 563
		goto retry;
	}
564
	if (pmd_devmap(pmdval)) {
565
		ptl = pmd_lock(mm, pmd);
566
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
567 568 569 570
		spin_unlock(ptl);
		if (page)
			return page;
	}
571
	if (likely(!pmd_trans_huge(pmdval)))
572
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
573

574
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
575 576
		return no_page_table(vma, flags);

577
retry_locked:
578
	ptl = pmd_lock(mm, pmd);
579 580 581 582
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
583 584 585 586 587 588 589
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
590 591
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
592
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
593
	}
S
Song Liu 已提交
594
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
595 596 597 598 599
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
600
			split_huge_pmd(vma, pmd, address);
601 602
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
603
		} else if (flags & FOLL_SPLIT) {
604 605 606 607
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
608
			spin_unlock(ptl);
609 610 611 612
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
613 614
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
615 616 617 618
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
619 620 621
		}

		return ret ? ERR_PTR(ret) :
622
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
623
	}
624 625
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
626
	ctx->page_mask = HPAGE_PMD_NR - 1;
627
	return page;
628 629
}

630 631
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
632 633
				    unsigned int flags,
				    struct follow_page_context *ctx)
634 635 636 637 638 639 640 641 642
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
643
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
644 645 646 647 648
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
649 650 651 652 653 654 655 656
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
657 658
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
659
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
660 661 662 663 664 665 666
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

667
	return follow_pmd_mask(vma, address, pud, flags, ctx);
668 669 670 671
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
672 673
				    unsigned int flags,
				    struct follow_page_context *ctx)
674 675
{
	p4d_t *p4d;
676
	struct page *page;
677 678 679 680 681 682 683 684

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

685 686 687 688 689 690 691 692
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
693
	return follow_pud_mask(vma, address, p4d, flags, ctx);
694 695 696 697 698 699 700
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
701 702
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
703 704 705
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
706 707 708 709 710 711
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
712 713 714
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
715
static struct page *follow_page_mask(struct vm_area_struct *vma,
716
			      unsigned long address, unsigned int flags,
717
			      struct follow_page_context *ctx)
718 719 720 721 722
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

723
	ctx->page_mask = 0;
724 725 726 727

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
728
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
729 730 731 732 733 734 735 736
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

737 738 739 740 741 742
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
743 744 745 746 747 748 749 750
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
751

752 753 754 755 756 757 758 759 760 761 762 763 764
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
765 766
}

767 768 769 770 771
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
772
	p4d_t *p4d;
773 774 775 776 777 778 779 780 781 782 783 784
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
785 786
	if (pgd_none(*pgd))
		return -EFAULT;
787
	p4d = p4d_offset(pgd, address);
788 789
	if (p4d_none(*p4d))
		return -EFAULT;
790
	pud = pud_offset(p4d, address);
791 792
	if (pud_none(*pud))
		return -EFAULT;
793
	pmd = pmd_offset(pud, address);
794
	if (!pmd_present(*pmd))
795 796 797 798 799 800 801 802 803 804 805 806 807 808
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
809
	if (unlikely(!try_grab_page(*page, gup_flags))) {
810 811 812
		ret = -ENOMEM;
		goto unmap;
	}
813 814 815 816 817 818 819
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

820
/*
821 822
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
823
 * is, *@locked will be set to 0 and -EBUSY returned.
824
 */
825
static int faultin_page(struct vm_area_struct *vma,
826
		unsigned long address, unsigned int *flags, int *locked)
827 828
{
	unsigned int fault_flags = 0;
829
	vm_fault_t ret;
830

E
Eric B Munson 已提交
831 832 833
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
834 835
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
836 837
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
838
	if (locked)
839
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
840 841
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
842
	if (*flags & FOLL_TRIED) {
843 844 845 846
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
847 848
		fault_flags |= FAULT_FLAG_TRIED;
	}
849

850
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
851
	if (ret & VM_FAULT_ERROR) {
852 853 854 855
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
856 857 858 859
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
860 861
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
862 863 864 865 866 867 868 869 870 871 872 873 874
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
875
		*flags |= FOLL_COW;
876 877 878
	return 0;
}

879 880 881
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
882 883
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
884 885 886 887

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

888 889 890
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

891 892 893
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

894
	if (write) {
895 896 897 898 899 900 901 902 903 904 905 906
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
907
			if (!is_cow_mapping(vm_flags))
908 909 910 911 912 913 914 915 916 917 918 919
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
920 921 922 923 924
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
925
		return -EFAULT;
926 927 928
	return 0;
}

929 930 931 932 933 934 935 936 937 938 939
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
940
 * @locked:     whether we're still with the mmap_lock held
941
 *
942 943 944 945 946 947 948
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
949
 * -- 0 return value is possible when the fault would need to be retried.
950 951 952
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
953
 * @vmas are valid only as long as mmap_lock is held.
954
 *
955
 * Must be called with mmap_lock held.  It may be released.  See below.
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
976
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
977 978
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
979
 *
980
 * A caller using such a combination of @locked and @gup_flags
981
 * must therefore hold the mmap_lock for reading only, and recognize
982 983
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
984 985 986 987 988
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
989
static long __get_user_pages(struct mm_struct *mm,
990 991
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
992
		struct vm_area_struct **vmas, int *locked)
993
{
994
	long ret = 0, i = 0;
995
	struct vm_area_struct *vma = NULL;
996
	struct follow_page_context ctx = { NULL };
997 998 999 1000

	if (!nr_pages)
		return 0;

1001 1002
	start = untagged_addr(start);

1003
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1026
					goto out;
1027
				ctx.page_mask = 0;
1028 1029
				goto next_page;
			}
1030

1031
			if (!vma) {
1032 1033 1034
				ret = -EFAULT;
				goto out;
			}
1035 1036 1037 1038
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1039 1040 1041
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1042
						gup_flags, locked);
1043 1044 1045
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1046
					 * and we've lost mmap_lock.
1047 1048 1049 1050 1051 1052
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1053
				continue;
1054
			}
1055 1056 1057 1058 1059 1060
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1061
		if (fatal_signal_pending(current)) {
1062
			ret = -EINTR;
1063 1064
			goto out;
		}
1065
		cond_resched();
1066 1067

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1068
		if (!page) {
1069
			ret = faultin_page(vma, start, &foll_flags, locked);
1070 1071 1072
			switch (ret) {
			case 0:
				goto retry;
1073 1074
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1075
				fallthrough;
1076 1077 1078
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1079
				goto out;
1080 1081
			case -ENOENT:
				goto next_page;
1082
			}
1083
			BUG();
1084 1085 1086 1087 1088 1089 1090
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1091 1092
			ret = PTR_ERR(page);
			goto out;
1093
		}
1094 1095 1096 1097
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1098
			ctx.page_mask = 0;
1099 1100
		}
next_page:
1101 1102
		if (vmas) {
			vmas[i] = vma;
1103
			ctx.page_mask = 0;
1104
		}
1105
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1106 1107 1108 1109 1110
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1111
	} while (nr_pages);
1112 1113 1114 1115
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1116 1117
}

1118 1119
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1120
{
1121 1122
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1123
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1124 1125 1126 1127

	if (!(vm_flags & vma->vm_flags))
		return false;

1128 1129
	/*
	 * The architecture might have a hardware protection
1130
	 * mechanism other than read/write that can deny access.
1131 1132 1133
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1134
	 */
1135
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1136 1137
		return false;

1138 1139 1140
	return true;
}

1141
/**
1142 1143 1144 1145
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1146
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1147 1148
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1160
 * get_user_pages() only guarantees to update these in the struct page.
1161 1162 1163 1164 1165 1166
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1167 1168
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1169
 */
1170
int fixup_user_fault(struct mm_struct *mm,
1171 1172
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1173 1174
{
	struct vm_area_struct *vma;
1175
	vm_fault_t ret, major = 0;
1176

1177 1178
	address = untagged_addr(address);

1179
	if (unlocked)
1180
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1181

1182
retry:
1183 1184 1185 1186
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1187
	if (!vma_permits_fault(vma, fault_flags))
1188 1189
		return -EFAULT;

1190 1191 1192 1193
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1194
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1195
	major |= ret & VM_FAULT_MAJOR;
1196
	if (ret & VM_FAULT_ERROR) {
1197 1198 1199 1200
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1201 1202
		BUG();
	}
1203 1204

	if (ret & VM_FAULT_RETRY) {
1205
		mmap_read_lock(mm);
1206 1207 1208
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1209 1210
	}

1211 1212
	return 0;
}
1213
EXPORT_SYMBOL_GPL(fixup_user_fault);
1214

1215 1216 1217 1218
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1219
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1220 1221 1222 1223
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1224
						int *locked,
1225
						unsigned int flags)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

P
Peter Xu 已提交
1237
	if (flags & FOLL_PIN)
1238
		atomic_set(&mm->has_pinned, 1);
P
Peter Xu 已提交
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1250 1251 1252 1253 1254
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1255
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1274 1275 1276 1277
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1278 1279 1280 1281
			if (!pages_done)
				pages_done = ret;
			break;
		}
1282 1283 1284 1285 1286 1287
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1288
		start += ret << PAGE_SHIFT;
1289
		lock_dropped = true;
1290

1291
retry:
1292 1293
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1294 1295 1296 1297
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1298
		 */
1299

1300 1301 1302
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1303
			break;
1304
		}
1305

1306
		ret = mmap_read_lock_killable(mm);
1307 1308 1309 1310 1311 1312
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1313

1314
		*locked = 1;
1315
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1316 1317 1318 1319 1320 1321
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1332 1333
		if (likely(pages))
			pages++;
1334 1335
		start += PAGE_SIZE;
	}
1336
	if (lock_dropped && *locked) {
1337 1338 1339 1340
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1341
		mmap_read_unlock(mm);
1342 1343 1344 1345 1346
		*locked = 0;
	}
	return pages_done;
}

1347 1348 1349 1350 1351
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1352
 * @locked: whether the mmap_lock is still held
1353 1354 1355
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1356 1357
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1358
 *
1359
 * vma->vm_mm->mmap_lock must be held.
1360
 *
1361
 * If @locked is NULL, it may be held for read or write and will
1362 1363
 * be unperturbed.
 *
1364 1365
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1366 1367
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1368
		unsigned long start, unsigned long end, int *locked)
1369 1370 1371 1372 1373 1374 1375 1376 1377
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1378
	mmap_assert_locked(mm);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1395
	if (vma_is_accessible(vma))
1396 1397 1398 1399 1400 1401
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1402
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1403
				NULL, NULL, locked);
1404 1405 1406 1407 1408 1409 1410
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1411
 * mmap_lock must not be held.
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1430
			mmap_read_lock(mm);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1462
		mmap_read_unlock(mm);
1463 1464
	return ret;	/* 0 or negative error code */
}
1465
#else /* CONFIG_MMU */
1466
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1522
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1523 1524 1525 1526
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1527
	struct mm_struct *mm = current->mm;
1528
	struct page *page;
1529 1530
	int locked = 1;
	int ret;
1531

1532
	if (mmap_read_lock_killable(mm))
1533
		return NULL;
1534 1535 1536 1537 1538
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1539 1540 1541
}
#endif /* CONFIG_ELF_CORE */

1542
#ifdef CONFIG_CMA
1543
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1544 1545
					unsigned long start,
					unsigned long nr_pages,
1546
					struct page **pages,
1547 1548
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1549
{
1550 1551
	unsigned long i;
	unsigned long step;
1552 1553 1554
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1555
	long ret = nr_pages;
1556 1557 1558 1559
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1560 1561

check_again:
1562 1563 1564 1565 1566 1567 1568 1569
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1570
		step = compound_nr(head) - (pages[i] - head);
1571 1572 1573 1574 1575
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1576 1577
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1578
				isolate_huge_page(head, &cma_page_list);
1579
			else {
1580 1581 1582 1583 1584 1585 1586 1587 1588
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1589
							    page_is_file_lru(head),
1590
							    thp_nr_pages(head));
1591 1592 1593
				}
			}
		}
1594 1595

		i += step;
1596 1597 1598 1599 1600 1601
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
1602 1603 1604 1605 1606
		if (gup_flags & FOLL_PIN)
			unpin_user_pages(pages, nr_pages);
		else
			for (i = 0; i < nr_pages; i++)
				put_page(pages[i]);
1607

1608 1609
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1620 1621 1622
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1623
		 */
1624
		ret = __get_user_pages_locked(mm, start, nr_pages,
1625 1626 1627
						   pages, vmas, NULL,
						   gup_flags);

1628 1629
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1630 1631 1632 1633 1634
			drain_allow = true;
			goto check_again;
		}
	}

1635
	return ret;
1636 1637
}
#else
1638
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1639 1640 1641 1642 1643
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1644 1645 1646
{
	return nr_pages;
}
1647
#endif /* CONFIG_CMA */
1648

1649
/*
1650 1651
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1652
 */
1653
static long __gup_longterm_locked(struct mm_struct *mm,
1654 1655 1656 1657 1658
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1659
{
1660
	unsigned long flags = 0;
1661
	long rc;
1662

1663
	if (gup_flags & FOLL_LONGTERM)
1664
		flags = memalloc_nocma_save();
1665

1666 1667
	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
				     gup_flags);
1668

1669
	if (gup_flags & FOLL_LONGTERM) {
1670 1671 1672
		if (rc > 0)
			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
							 vmas, gup_flags);
1673
		memalloc_nocma_restore(flags);
1674
	}
1675 1676
	return rc;
}
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1697
#ifdef CONFIG_MMU
1698
static long __get_user_pages_remote(struct mm_struct *mm,
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1717
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1718 1719 1720 1721
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1722
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1723 1724 1725 1726
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1727
/**
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1752
 * @vmas are valid only as long as mmap_lock is held.
1753
 *
1754
 * Must be called with mmap_lock held for read or write.
1755
 *
1756 1757
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1758 1759 1760 1761
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1762
 * get_user_pages_remote returns, and there may even be a completely different
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1774 1775 1776 1777 1778
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1779 1780 1781
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1782
 * get_user_pages_remote should be phased out in favor of
1783
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1784
 * should use get_user_pages_remote because it cannot pass
1785 1786
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1787
long get_user_pages_remote(struct mm_struct *mm,
1788 1789 1790 1791
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1792
	if (!is_valid_gup_flags(gup_flags))
1793 1794
		return -EINVAL;

1795
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1796
				       pages, vmas, locked);
1797 1798 1799
}
EXPORT_SYMBOL(get_user_pages_remote);

1800
#else /* CONFIG_MMU */
1801
long get_user_pages_remote(struct mm_struct *mm,
1802 1803 1804 1805 1806 1807
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1808

1809
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1810 1811 1812 1813 1814 1815
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1816 1817
#endif /* !CONFIG_MMU */

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1829 1830 1831 1832
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1833 1834 1835 1836 1837
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1838
	if (!is_valid_gup_flags(gup_flags))
1839 1840
		return -EINVAL;

1841
	return __gup_longterm_locked(current->mm, start, nr_pages,
1842 1843 1844
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1845

1846
/**
M
Mauro Carvalho Chehab 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 * get_user_pages_locked() - variant of get_user_pages()
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * It is suitable to replace the form:
1860
 *
1861
 *      mmap_read_lock(mm);
1862
 *      do_something()
1863
 *      get_user_pages(mm, ..., pages, NULL);
1864
 *      mmap_read_unlock(mm);
1865
 *
1866
 *  to:
1867
 *
1868
 *      int locked = 1;
1869
 *      mmap_read_lock(mm);
1870
 *      do_something()
1871
 *      get_user_pages_locked(mm, ..., pages, &locked);
1872
 *      if (locked)
1873
 *          mmap_read_unlock(mm);
1874 1875 1876 1877 1878
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1879
 */
1880 1881 1882
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1883 1884
{
	/*
1885 1886 1887 1888
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1889
	 */
1890 1891
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1892 1893 1894 1895 1896 1897
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1898

1899
	return __get_user_pages_locked(current->mm, start, nr_pages,
1900 1901
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1902
}
1903
EXPORT_SYMBOL(get_user_pages_locked);
1904 1905

/*
1906
 * get_user_pages_unlocked() is suitable to replace the form:
1907
 *
1908
 *      mmap_read_lock(mm);
1909
 *      get_user_pages(mm, ..., pages, NULL);
1910
 *      mmap_read_unlock(mm);
1911 1912 1913
 *
 *  with:
 *
1914
 *      get_user_pages_unlocked(mm, ..., pages);
1915 1916 1917 1918
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1919
 */
1920 1921
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1922 1923
{
	struct mm_struct *mm = current->mm;
1924 1925
	int locked = 1;
	long ret;
1926

1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1935

1936
	mmap_read_lock(mm);
1937
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1938
				      &locked, gup_flags | FOLL_TOUCH);
1939
	if (locked)
1940
		mmap_read_unlock(mm);
1941
	return ret;
1942
}
1943
EXPORT_SYMBOL(get_user_pages_unlocked);
1944 1945

/*
1946
 * Fast GUP
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1967
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1968
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1969 1970 1971 1972 1973 1974 1975 1976 1977
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1978
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
1979

1980
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1981
					    unsigned int flags,
1982
					    struct page **pages)
1983 1984 1985 1986 1987
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
1988 1989 1990 1991
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
1992 1993 1994
	}
}

1995
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1996
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1997
			 unsigned int flags, struct page **pages, int *nr)
1998
{
1999 2000
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2001 2002 2003 2004
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2005
		pte_t pte = ptep_get_lockless(ptep);
2006
		struct page *head, *page;
2007 2008 2009

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2010
		 * path using the pte_protnone check.
2011
		 */
2012 2013 2014
		if (pte_protnone(pte))
			goto pte_unmap;

2015
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2016 2017
			goto pte_unmap;

2018
		if (pte_devmap(pte)) {
2019 2020 2021
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2022 2023
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2024
				undo_dev_pagemap(nr, nr_start, flags, pages);
2025 2026 2027
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2028 2029 2030 2031 2032
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2033
		head = try_grab_compound_head(page, 1, flags);
2034
		if (!head)
2035 2036 2037
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2038
			put_compound_head(head, 1, flags);
2039 2040 2041
			goto pte_unmap;
		}

2042
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2057
		SetPageReferenced(page);
2058 2059 2060 2061 2062 2063 2064 2065
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2066 2067
	if (pgmap)
		put_dev_pagemap(pgmap);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2079
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2080 2081 2082
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2083
			 unsigned int flags, struct page **pages, int *nr)
2084 2085 2086
{
	return 0;
}
2087
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2088

R
Robin Murphy 已提交
2089
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2090
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2091 2092
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2093 2094 2095 2096 2097 2098 2099 2100 2101
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2102
			undo_dev_pagemap(nr, nr_start, flags, pages);
2103 2104 2105 2106
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2107 2108 2109 2110
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2111 2112 2113
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2114 2115 2116

	if (pgmap)
		put_dev_pagemap(pgmap);
2117 2118 2119
	return 1;
}

2120
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2121 2122
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2123 2124
{
	unsigned long fault_pfn;
2125 2126 2127
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2128
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2129
		return 0;
2130

2131
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2132
		undo_dev_pagemap(nr, nr_start, flags, pages);
2133 2134 2135
		return 0;
	}
	return 1;
2136 2137
}

2138
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2139 2140
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2141 2142
{
	unsigned long fault_pfn;
2143 2144 2145
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2146
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2147
		return 0;
2148

2149
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2150
		undo_dev_pagemap(nr, nr_start, flags, pages);
2151 2152 2153
		return 0;
	}
	return 1;
2154 2155
}
#else
2156
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2157 2158
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2159 2160 2161 2162 2163
{
	BUILD_BUG();
	return 0;
}

2164
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2165 2166
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2167 2168 2169 2170 2171 2172
{
	BUILD_BUG();
	return 0;
}
#endif

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2193 2194
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2205
	pte = huge_ptep_get(ptep);
2206

2207
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2208 2209 2210 2211 2212 2213 2214
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2215
	refs = record_subpages(page, addr, end, pages + *nr);
2216

J
John Hubbard 已提交
2217
	head = try_grab_compound_head(head, refs, flags);
2218
	if (!head)
2219 2220 2221
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2222
		put_compound_head(head, refs, flags);
2223 2224 2225
		return 0;
	}

2226
	*nr += refs;
2227
	SetPageReferenced(head);
2228 2229 2230 2231
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2232
		unsigned int pdshift, unsigned long end, unsigned int flags,
2233 2234 2235 2236 2237 2238 2239 2240 2241
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2242
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2243 2244 2245 2246 2247 2248 2249
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2250
		unsigned int pdshift, unsigned long end, unsigned int flags,
2251 2252 2253 2254 2255 2256
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2257
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258 2259
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2260
{
2261
	struct page *head, *page;
2262 2263
	int refs;

2264
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2265 2266
		return 0;

2267 2268 2269
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2270 2271
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2272
	}
2273

2274
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2275
	refs = record_subpages(page, addr, end, pages + *nr);
2276

J
John Hubbard 已提交
2277
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2278
	if (!head)
2279 2280 2281
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2282
		put_compound_head(head, refs, flags);
2283 2284 2285
		return 0;
	}

2286
	*nr += refs;
2287
	SetPageReferenced(head);
2288 2289 2290 2291
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2292 2293
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2294
{
2295
	struct page *head, *page;
2296 2297
	int refs;

2298
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2299 2300
		return 0;

2301 2302 2303
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2304 2305
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2306
	}
2307

2308
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2309
	refs = record_subpages(page, addr, end, pages + *nr);
2310

J
John Hubbard 已提交
2311
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2312
	if (!head)
2313 2314 2315
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2316
		put_compound_head(head, refs, flags);
2317 2318 2319
		return 0;
	}

2320
	*nr += refs;
2321
	SetPageReferenced(head);
2322 2323 2324
	return 1;
}

2325
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2326
			unsigned long end, unsigned int flags,
2327 2328 2329
			struct page **pages, int *nr)
{
	int refs;
2330
	struct page *head, *page;
2331

2332
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2333 2334
		return 0;

2335
	BUILD_BUG_ON(pgd_devmap(orig));
2336

2337
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2338
	refs = record_subpages(page, addr, end, pages + *nr);
2339

J
John Hubbard 已提交
2340
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2341
	if (!head)
2342 2343 2344
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2345
		put_compound_head(head, refs, flags);
2346 2347 2348
		return 0;
	}

2349
	*nr += refs;
2350
	SetPageReferenced(head);
2351 2352 2353
	return 1;
}

2354
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2355
		unsigned int flags, struct page **pages, int *nr)
2356 2357 2358 2359
{
	unsigned long next;
	pmd_t *pmdp;

2360
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2361
	do {
2362
		pmd_t pmd = READ_ONCE(*pmdp);
2363 2364

		next = pmd_addr_end(addr, end);
2365
		if (!pmd_present(pmd))
2366 2367
			return 0;

Y
Yu Zhao 已提交
2368 2369
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2370 2371 2372 2373 2374
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2375
			if (pmd_protnone(pmd))
2376 2377
				return 0;

2378
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2379 2380 2381
				pages, nr))
				return 0;

2382 2383 2384 2385 2386 2387
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2388
					 PMD_SHIFT, next, flags, pages, nr))
2389
				return 0;
2390
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2391
			return 0;
2392 2393 2394 2395 2396
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2397
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2398
			 unsigned int flags, struct page **pages, int *nr)
2399 2400 2401 2402
{
	unsigned long next;
	pud_t *pudp;

2403
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2404
	do {
2405
		pud_t pud = READ_ONCE(*pudp);
2406 2407

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2408
		if (unlikely(!pud_present(pud)))
2409
			return 0;
2410
		if (unlikely(pud_huge(pud))) {
2411
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2412 2413 2414 2415
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2416
					 PUD_SHIFT, next, flags, pages, nr))
2417
				return 0;
2418
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2419 2420 2421 2422 2423 2424
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2425
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2426
			 unsigned int flags, struct page **pages, int *nr)
2427 2428 2429 2430
{
	unsigned long next;
	p4d_t *p4dp;

2431
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2432 2433 2434 2435 2436 2437 2438 2439 2440
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2441
					 P4D_SHIFT, next, flags, pages, nr))
2442
				return 0;
2443
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2444 2445 2446 2447 2448 2449
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2450
static void gup_pgd_range(unsigned long addr, unsigned long end,
2451
		unsigned int flags, struct page **pages, int *nr)
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2464
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2465 2466 2467 2468
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2469
					 PGDIR_SHIFT, next, flags, pages, nr))
2470
				return;
2471
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2472 2473 2474
			return;
	} while (pgdp++, addr = next, addr != end);
}
2475 2476 2477 2478 2479 2480
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2481 2482 2483

#ifndef gup_fast_permitted
/*
2484
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2485 2486
 * we need to fall back to the slow version:
 */
2487
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2488
{
2489
	return true;
2490 2491 2492
}
#endif

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2503
		mmap_read_lock(current->mm);
2504
		ret = __gup_longterm_locked(current->mm,
2505 2506
					    start, nr_pages,
					    pages, NULL, gup_flags);
2507
		mmap_read_unlock(current->mm);
2508 2509 2510 2511 2512 2513 2514 2515
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2516 2517 2518 2519 2520 2521 2522
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2523
	unsigned seq;
2524 2525 2526 2527 2528

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2529 2530 2531 2532 2533 2534
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2560 2561 2562 2563 2564
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2565 2566
					unsigned int gup_flags,
					struct page **pages)
2567
{
2568 2569 2570
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2571

2572
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2573 2574
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2575 2576
		return -EINVAL;

P
Peter Xu 已提交
2577 2578 2579
	if (gup_flags & FOLL_PIN)
		atomic_set(&current->mm->has_pinned, 1);

2580
	if (!(gup_flags & FOLL_FAST_ONLY))
2581
		might_lock_read(&current->mm->mmap_lock);
2582

2583
	start = untagged_addr(start) & PAGE_MASK;
2584 2585
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2586
		return 0;
2587
	if (unlikely(!access_ok((void __user *)start, len)))
2588
		return -EFAULT;
2589

2590 2591 2592
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2593

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2607
	}
2608
	return ret + nr_pinned;
2609
}
2610

2611 2612 2613 2614 2615 2616 2617 2618
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2631 2632
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2633
{
2634
	int nr_pinned;
2635 2636 2637
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2638 2639 2640
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2641
	 */
2642
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2643

2644 2645
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2646 2647

	/*
2648 2649 2650 2651
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2652
	 */
2653 2654
	if (nr_pinned < 0)
		nr_pinned = 0;
2655 2656 2657

	return nr_pinned;
}
2658
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2659

2660 2661
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2662 2663 2664 2665 2666
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2667
 *
2668
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2679
	if (!is_valid_gup_flags(gup_flags))
2680 2681
		return -EINVAL;

2682 2683 2684 2685 2686 2687 2688
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2689 2690
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2691
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2692 2693 2694 2695

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2707
 * see Documentation/core-api/pin_user_pages.rst for further details.
2708 2709 2710 2711
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2712 2713 2714 2715 2716 2717
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2718 2719 2720
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2721
/*
2722 2723
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2757
/**
2758
 * pin_user_pages_remote() - pin pages of a remote process
2759
 *
J
John Hubbard 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2778
 * see Documentation/core-api/pin_user_pages.rst for details.
2779
 */
2780
long pin_user_pages_remote(struct mm_struct *mm,
2781 2782 2783 2784
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2785 2786 2787 2788 2789
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2790
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2791
				       pages, vmas, locked);
2792 2793 2794 2795 2796 2797
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2811
 * see Documentation/core-api/pin_user_pages.rst for details.
2812 2813 2814 2815 2816
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2817 2818 2819 2820 2821
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2822
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2823
				     pages, vmas, gup_flags);
2824 2825
}
EXPORT_SYMBOL(pin_user_pages);
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2867
	return __get_user_pages_locked(current->mm, start, nr_pages,
2868 2869 2870 2871
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);