gup.c 83.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
88 89
		int orig_refs = refs;

90 91 92 93 94 95 96 97
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

116 117 118
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

119
		return page;
J
John Hubbard 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	}

	WARN_ON_ONCE(1);
	return NULL;
}

/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
154 155
		int refs = 1;

J
John Hubbard 已提交
156 157 158 159 160
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

161 162 163 164 165 166 167 168 169 170 171 172
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
173 174

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
175 176 177 178 179 180 181 182
	}

	return true;
}

#ifdef CONFIG_DEV_PAGEMAP_OPS
static bool __unpin_devmap_managed_user_page(struct page *page)
{
183
	int count, refs = 1;
J
John Hubbard 已提交
184 185 186 187

	if (!page_is_devmap_managed(page))
		return false;

188 189 190 191 192 193
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	count = page_ref_sub_return(page, refs);
J
John Hubbard 已提交
194

195
	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	/*
	 * devmap page refcounts are 1-based, rather than 0-based: if
	 * refcount is 1, then the page is free and the refcount is
	 * stable because nobody holds a reference on the page.
	 */
	if (count == 1)
		free_devmap_managed_page(page);
	else if (!count)
		__put_page(page);

	return true;
}
#else
static bool __unpin_devmap_managed_user_page(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
226 227
	int refs = 1;

J
John Hubbard 已提交
228 229 230 231 232 233 234 235 236 237 238
	page = compound_head(page);

	/*
	 * For devmap managed pages we need to catch refcount transition from
	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
	 * page is free and we need to inform the device driver through
	 * callback. See include/linux/memremap.h and HMM for details.
	 */
	if (__unpin_devmap_managed_user_page(page))
		return;

239 240 241 242 243 244
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	if (page_ref_sub_and_test(page, refs))
J
John Hubbard 已提交
245
		__put_page(page);
246 247

	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
248 249 250
}
EXPORT_SYMBOL(unpin_user_page);

251
/**
252
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
254
 * @npages: number of pages in the @pages array.
255
 * @make_dirty: whether to mark the pages dirty
256 257 258 259 260
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
261
 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 263
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
264
 *
265
 * Please see the unpin_user_page() documentation for details.
266
 *
267 268 269
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
270
 * set_page_dirty_lock(), unpin_user_page().
271 272
 *
 */
273 274
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
275
{
276
	unsigned long index;
277

278 279 280 281 282 283 284
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
285
		unpin_user_pages(pages, npages);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
313
		unpin_user_page(page);
314
	}
315
}
316
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 318

/**
319
 * unpin_user_pages() - release an array of gup-pinned pages.
320 321 322
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
323
 * For each page in the @pages array, release the page using unpin_user_page().
324
 *
325
 * Please see the unpin_user_page() documentation for details.
326
 */
327
void unpin_user_pages(struct page **pages, unsigned long npages)
328 329 330 331 332 333 334 335 336
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
337
		unpin_user_page(pages[index]);
338
}
339
EXPORT_SYMBOL(unpin_user_pages);
340

341
#ifdef CONFIG_MMU
342 343
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
344
{
345 346 347 348 349 350 351 352
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
353 354
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 356 357
		return ERR_PTR(-EFAULT);
	return NULL;
}
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

383
/*
384 385
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
386 387 388
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
389 390
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391 392
}

393
static struct page *follow_page_pte(struct vm_area_struct *vma,
394 395
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
396 397 398 399 400
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
401
	int ret;
402

403 404 405 406
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
407
retry:
408
	if (unlikely(pmd_bad(*pmd)))
409
		return no_page_table(vma, flags);
410 411 412 413 414 415 416 417 418 419 420 421

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
422
		if (pte_none(pte))
423 424 425 426 427 428
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
429
		goto retry;
430
	}
431
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
432
		goto no_page;
433
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
434 435 436
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
437 438

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
439
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
440
		/*
J
John Hubbard 已提交
441 442 443
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
444
		 */
445 446
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
447 448 449 450
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
451 452 453 454 455 456 457 458 459 460 461 462 463
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
464 465
	}

466 467 468 469 470 471 472 473 474 475 476 477
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
478 479 480 481
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
482
	}
483 484 485 486 487 488 489 490 491 492 493 494 495
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
496 497 498 499 500 501 502 503 504 505 506
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
507
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
508 509 510 511
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
533
out:
534 535 536 537 538
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
539 540 541 542
		return NULL;
	return no_page_table(vma, flags);
}

543 544
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
545 546
				    unsigned int flags,
				    struct follow_page_context *ctx)
547
{
548
	pmd_t *pmd, pmdval;
549 550 551 552
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

553
	pmd = pmd_offset(pudp, address);
554 555 556 557 558 559
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
560
		return no_page_table(vma, flags);
561
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
562 563 564 565
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
566
	}
567
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
568
		page = follow_huge_pd(vma, address,
569
				      __hugepd(pmd_val(pmdval)), flags,
570 571 572 573 574
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
575
retry:
576
	if (!pmd_present(pmdval)) {
577 578 579
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
580 581
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
582
			pmd_migration_entry_wait(mm, pmd);
583 584 585
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
586
		 * mmap_lock is held in read mode
587 588 589
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
590 591
		goto retry;
	}
592
	if (pmd_devmap(pmdval)) {
593
		ptl = pmd_lock(mm, pmd);
594
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
595 596 597 598
		spin_unlock(ptl);
		if (page)
			return page;
	}
599
	if (likely(!pmd_trans_huge(pmdval)))
600
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
601

602
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
603 604
		return no_page_table(vma, flags);

605
retry_locked:
606
	ptl = pmd_lock(mm, pmd);
607 608 609 610
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
611 612 613 614 615 616 617
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
618 619
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
620
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
621
	}
S
Song Liu 已提交
622
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
623 624 625 626 627
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
628
			split_huge_pmd(vma, pmd, address);
629 630
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
631
		} else if (flags & FOLL_SPLIT) {
632 633 634 635
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
636
			spin_unlock(ptl);
637 638 639 640
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
641 642
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
643 644 645 646
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
647 648 649
		}

		return ret ? ERR_PTR(ret) :
650
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
651
	}
652 653
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
654
	ctx->page_mask = HPAGE_PMD_NR - 1;
655
	return page;
656 657
}

658 659
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
660 661
				    unsigned int flags,
				    struct follow_page_context *ctx)
662 663 664 665 666 667 668 669 670
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
671
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
672 673 674 675 676
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
677 678 679 680 681 682 683 684
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
685 686
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
687
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
688 689 690 691 692 693 694
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

695
	return follow_pmd_mask(vma, address, pud, flags, ctx);
696 697 698 699
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
700 701
				    unsigned int flags,
				    struct follow_page_context *ctx)
702 703
{
	p4d_t *p4d;
704
	struct page *page;
705 706 707 708 709 710 711 712

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

713 714 715 716 717 718 719 720
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
721
	return follow_pud_mask(vma, address, p4d, flags, ctx);
722 723 724 725 726 727 728
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
729 730
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
731 732 733
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
734 735 736 737 738 739
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
740 741 742
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
743
static struct page *follow_page_mask(struct vm_area_struct *vma,
744
			      unsigned long address, unsigned int flags,
745
			      struct follow_page_context *ctx)
746 747 748 749 750
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

751
	ctx->page_mask = 0;
752 753 754 755

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
756
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
757 758 759 760 761 762 763 764
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

765 766 767 768 769 770
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
771 772 773 774 775 776 777 778
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
779

780 781 782 783 784 785 786 787 788 789 790 791 792
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
793 794
}

795 796 797 798 799
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
800
	p4d_t *p4d;
801 802 803 804 805 806 807 808 809 810 811 812
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
813 814
	if (pgd_none(*pgd))
		return -EFAULT;
815
	p4d = p4d_offset(pgd, address);
816 817
	if (p4d_none(*p4d))
		return -EFAULT;
818
	pud = pud_offset(p4d, address);
819 820
	if (pud_none(*pud))
		return -EFAULT;
821
	pmd = pmd_offset(pud, address);
822
	if (!pmd_present(*pmd))
823 824 825 826 827 828 829 830 831 832 833 834 835 836
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
837
	if (unlikely(!try_grab_page(*page, gup_flags))) {
838 839 840
		ret = -ENOMEM;
		goto unmap;
	}
841 842 843 844 845 846 847
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

848
/*
849 850
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
851
 * is, *@locked will be set to 0 and -EBUSY returned.
852
 */
853
static int faultin_page(struct vm_area_struct *vma,
854
		unsigned long address, unsigned int *flags, int *locked)
855 856
{
	unsigned int fault_flags = 0;
857
	vm_fault_t ret;
858

E
Eric B Munson 已提交
859 860 861
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
862 863
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
864 865
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
866
	if (locked)
867
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 869
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870
	if (*flags & FOLL_TRIED) {
871 872 873 874
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
875 876
		fault_flags |= FAULT_FLAG_TRIED;
	}
877

878
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
879
	if (ret & VM_FAULT_ERROR) {
880 881 882 883
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
884 885 886 887
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
888 889
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
890 891 892 893 894 895 896 897 898 899 900 901 902
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903
		*flags |= FOLL_COW;
904 905 906
	return 0;
}

907 908 909
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
910 911
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
912 913 914 915

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

916 917 918
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

919
	if (write) {
920 921 922 923 924 925 926 927 928 929 930 931
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
932
			if (!is_cow_mapping(vm_flags))
933 934 935 936 937 938 939 940 941 942 943 944
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
945 946 947 948 949
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
950
		return -EFAULT;
951 952 953
	return 0;
}

954 955 956 957 958 959 960 961 962 963 964
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
965
 * @locked:     whether we're still with the mmap_lock held
966
 *
967 968 969 970 971 972 973
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
974
 * -- 0 return value is possible when the fault would need to be retried.
975 976 977
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
978
 * @vmas are valid only as long as mmap_lock is held.
979
 *
980
 * Must be called with mmap_lock held.  It may be released.  See below.
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1001
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 1003
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1004
 *
1005
 * A caller using such a combination of @locked and @gup_flags
1006
 * must therefore hold the mmap_lock for reading only, and recognize
1007 1008
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1009 1010 1011 1012 1013
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1014
static long __get_user_pages(struct mm_struct *mm,
1015 1016
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1017
		struct vm_area_struct **vmas, int *locked)
1018
{
1019
	long ret = 0, i = 0;
1020
	struct vm_area_struct *vma = NULL;
1021
	struct follow_page_context ctx = { NULL };
1022 1023 1024 1025

	if (!nr_pages)
		return 0;

1026 1027
	start = untagged_addr(start);

1028
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1051
					goto out;
1052
				ctx.page_mask = 0;
1053 1054
				goto next_page;
			}
1055

1056 1057 1058 1059
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
1060 1061 1062
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1063
						gup_flags, locked);
1064 1065 1066
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1067
					 * and we've lost mmap_lock.
1068 1069 1070 1071 1072 1073
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1074
				continue;
1075
			}
1076 1077 1078 1079 1080 1081
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1082
		if (fatal_signal_pending(current)) {
1083
			ret = -EINTR;
1084 1085
			goto out;
		}
1086
		cond_resched();
1087 1088

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089
		if (!page) {
1090
			ret = faultin_page(vma, start, &foll_flags, locked);
1091 1092 1093
			switch (ret) {
			case 0:
				goto retry;
1094 1095
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1096
				fallthrough;
1097 1098 1099
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1100
				goto out;
1101 1102
			case -ENOENT:
				goto next_page;
1103
			}
1104
			BUG();
1105 1106 1107 1108 1109 1110 1111
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1112 1113
			ret = PTR_ERR(page);
			goto out;
1114
		}
1115 1116 1117 1118
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1119
			ctx.page_mask = 0;
1120 1121
		}
next_page:
1122 1123
		if (vmas) {
			vmas[i] = vma;
1124
			ctx.page_mask = 0;
1125
		}
1126
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127 1128 1129 1130 1131
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1132
	} while (nr_pages);
1133 1134 1135 1136
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1137 1138
}

1139 1140
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1141
{
1142 1143
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145 1146 1147 1148

	if (!(vm_flags & vma->vm_flags))
		return false;

1149 1150
	/*
	 * The architecture might have a hardware protection
1151
	 * mechanism other than read/write that can deny access.
1152 1153 1154
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1155
	 */
1156
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157 1158
		return false;

1159 1160 1161
	return true;
}

1162
/**
1163 1164 1165 1166
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1167
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 1169
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1181
 * get_user_pages() only guarantees to update these in the struct page.
1182 1183 1184 1185 1186 1187
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1188 1189
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190
 */
1191
int fixup_user_fault(struct mm_struct *mm,
1192 1193
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1194 1195
{
	struct vm_area_struct *vma;
1196
	vm_fault_t ret, major = 0;
1197

1198 1199
	address = untagged_addr(address);

1200
	if (unlocked)
1201
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202

1203
retry:
1204 1205 1206 1207
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1208
	if (!vma_permits_fault(vma, fault_flags))
1209 1210
		return -EFAULT;

1211 1212 1213 1214
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1215
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216
	major |= ret & VM_FAULT_MAJOR;
1217
	if (ret & VM_FAULT_ERROR) {
1218 1219 1220 1221
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1222 1223
		BUG();
	}
1224 1225

	if (ret & VM_FAULT_RETRY) {
1226
		mmap_read_lock(mm);
1227 1228 1229
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1230 1231
	}

1232 1233
	return 0;
}
1234
EXPORT_SYMBOL_GPL(fixup_user_fault);
1235

1236 1237 1238 1239
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1240
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241 1242 1243 1244
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1245
						int *locked,
1246
						unsigned int flags)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1268 1269 1270 1271 1272
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1273
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1292 1293 1294 1295
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1296 1297 1298 1299
			if (!pages_done)
				pages_done = ret;
			break;
		}
1300 1301 1302 1303 1304 1305
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1306
		start += ret << PAGE_SHIFT;
1307
		lock_dropped = true;
1308

1309
retry:
1310 1311
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1312 1313 1314 1315
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1316
		 */
1317

1318 1319 1320
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1321
			break;
1322
		}
1323

1324
		ret = mmap_read_lock_killable(mm);
1325 1326 1327 1328 1329 1330
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1331

1332
		*locked = 1;
1333
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1334 1335 1336 1337 1338 1339
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1350 1351
		if (likely(pages))
			pages++;
1352 1353
		start += PAGE_SIZE;
	}
1354
	if (lock_dropped && *locked) {
1355 1356 1357 1358
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1359
		mmap_read_unlock(mm);
1360 1361 1362 1363 1364
		*locked = 0;
	}
	return pages_done;
}

1365 1366 1367 1368 1369
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1370
 * @locked: whether the mmap_lock is still held
1371 1372 1373
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1374 1375
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1376
 *
1377
 * vma->vm_mm->mmap_lock must be held.
1378
 *
1379
 * If @locked is NULL, it may be held for read or write and will
1380 1381
 * be unperturbed.
 *
1382 1383
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1384 1385
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1386
		unsigned long start, unsigned long end, int *locked)
1387 1388 1389 1390 1391 1392 1393 1394 1395
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1396
	mmap_assert_locked(mm);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1413
	if (vma_is_accessible(vma))
1414 1415 1416 1417 1418 1419
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1420
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1421
				NULL, NULL, locked);
1422 1423 1424 1425 1426 1427 1428
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1429
 * mmap_lock must not be held.
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1448
			mmap_read_lock(mm);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1480
		mmap_read_unlock(mm);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	return ret;	/* 0 or negative error code */
}

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1496
 * Called without mmap_lock, but after all other threads have been killed.
1497 1498 1499 1500 1501 1502 1503
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

1504
	if (__get_user_pages(current->mm, addr, 1,
1505 1506 1507 1508 1509 1510 1511
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1512
#else /* CONFIG_MMU */
1513
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
1578
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1579 1580
					unsigned long start,
					unsigned long nr_pages,
1581
					struct page **pages,
1582 1583
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1584
{
1585 1586
	unsigned long i;
	unsigned long step;
1587 1588 1589
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1590
	long ret = nr_pages;
1591 1592 1593 1594
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1595 1596

check_again:
1597 1598 1599 1600 1601 1602 1603 1604
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1605
		step = compound_nr(head) - (pages[i] - head);
1606 1607 1608 1609 1610
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1611 1612
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1613
				isolate_huge_page(head, &cma_page_list);
1614
			else {
1615 1616 1617 1618 1619 1620 1621 1622 1623
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1624
							    page_is_file_lru(head),
1625
							    thp_nr_pages(head));
1626 1627 1628
				}
			}
		}
1629 1630

		i += step;
1631 1632 1633 1634 1635 1636 1637 1638 1639
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

1640 1641
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1652 1653 1654
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1655
		 */
1656
		ret = __get_user_pages_locked(mm, start, nr_pages,
1657 1658 1659
						   pages, vmas, NULL,
						   gup_flags);

1660 1661
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1662 1663 1664 1665 1666
			drain_allow = true;
			goto check_again;
		}
	}

1667
	return ret;
1668 1669
}
#else
1670
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1671 1672 1673 1674 1675
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1676 1677 1678
{
	return nr_pages;
}
1679
#endif /* CONFIG_CMA */
1680

1681
/*
1682 1683
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1684
 */
1685
static long __gup_longterm_locked(struct mm_struct *mm,
1686 1687 1688 1689 1690
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1691
{
1692 1693
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1694 1695
	long rc, i;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1708 1709
	}

1710
	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1711
				     vmas_tmp, NULL, gup_flags);
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (gup_flags & FOLL_LONGTERM) {
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

1724
		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1725
						 vmas_tmp, gup_flags);
1726 1727
out:
		memalloc_nocma_restore(flags);
1728
	}
1729

1730 1731
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1732 1733
	return rc;
}
1734
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1735
static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1736 1737 1738 1739 1740 1741
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
1742
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1743 1744 1745 1746
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

1747
#ifdef CONFIG_MMU
1748
static long __get_user_pages_remote(struct mm_struct *mm,
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1767
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1768 1769 1770 1771
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1772
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1773 1774 1775 1776
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1777
/**
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1802
 * @vmas are valid only as long as mmap_lock is held.
1803
 *
1804
 * Must be called with mmap_lock held for read or write.
1805
 *
1806 1807
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1808 1809 1810 1811
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1812
 * get_user_pages_remote returns, and there may even be a completely different
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1824 1825 1826 1827 1828
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1829 1830 1831
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1832
 * get_user_pages_remote should be phased out in favor of
1833
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1834
 * should use get_user_pages_remote because it cannot pass
1835 1836
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1837
long get_user_pages_remote(struct mm_struct *mm,
1838 1839 1840 1841
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1842 1843 1844 1845 1846 1847 1848
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1849
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1850
				       pages, vmas, locked);
1851 1852 1853
}
EXPORT_SYMBOL(get_user_pages_remote);

1854
#else /* CONFIG_MMU */
1855
long get_user_pages_remote(struct mm_struct *mm,
1856 1857 1858 1859 1860 1861
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1862

1863
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1864 1865 1866 1867 1868 1869
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1870 1871
#endif /* !CONFIG_MMU */

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1883 1884 1885 1886
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1887 1888 1889 1890 1891
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1892 1893 1894 1895 1896 1897 1898
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1899
	return __gup_longterm_locked(current->mm, start, nr_pages,
1900 1901 1902
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1903

1904
/**
1905
 * get_user_pages_locked() is suitable to replace the form:
1906
 *
1907
 *      mmap_read_lock(mm);
1908
 *      do_something()
1909
 *      get_user_pages(mm, ..., pages, NULL);
1910
 *      mmap_read_unlock(mm);
1911
 *
1912
 *  to:
1913
 *
1914
 *      int locked = 1;
1915
 *      mmap_read_lock(mm);
1916
 *      do_something()
1917
 *      get_user_pages_locked(mm, ..., pages, &locked);
1918
 *      if (locked)
1919
 *          mmap_read_unlock(mm);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1935
 */
1936 1937 1938
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1939 1940
{
	/*
1941 1942 1943 1944
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1945
	 */
1946 1947
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1948 1949 1950 1951 1952 1953
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1954

1955
	return __get_user_pages_locked(current->mm, start, nr_pages,
1956 1957
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1958
}
1959
EXPORT_SYMBOL(get_user_pages_locked);
1960 1961

/*
1962
 * get_user_pages_unlocked() is suitable to replace the form:
1963
 *
1964
 *      mmap_read_lock(mm);
1965
 *      get_user_pages(mm, ..., pages, NULL);
1966
 *      mmap_read_unlock(mm);
1967 1968 1969
 *
 *  with:
 *
1970
 *      get_user_pages_unlocked(mm, ..., pages);
1971 1972 1973 1974
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1975
 */
1976 1977
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1978 1979
{
	struct mm_struct *mm = current->mm;
1980 1981
	int locked = 1;
	long ret;
1982

1983 1984 1985 1986 1987 1988 1989 1990
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1991

1992
	mmap_read_lock(mm);
1993
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1994
				      &locked, gup_flags | FOLL_TOUCH);
1995
	if (locked)
1996
		mmap_read_unlock(mm);
1997
	return ret;
1998
}
1999
EXPORT_SYMBOL(get_user_pages_unlocked);
2000 2001

/*
2002
 * Fast GUP
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2023
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2024
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2025 2026 2027 2028 2029 2030 2031 2032 2033
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2034
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2035 2036 2037

static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
2038
	if (flags & FOLL_PIN) {
2039 2040 2041
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

2042 2043 2044 2045 2046
		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}
J
John Hubbard 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

2058
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
J
John Hubbard 已提交
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2105
/*
2106
 * We require that the PTE can be read atomically.
2107 2108 2109
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
2110
	return ptep_get(ptep);
2111
}
2112
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2113

2114
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2115
					    unsigned int flags,
2116
					    struct page **pages)
2117 2118 2119 2120 2121
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2122 2123 2124 2125
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2126 2127 2128
	}
}

2129
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2130
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2131
			 unsigned int flags, struct page **pages, int *nr)
2132
{
2133 2134
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2135 2136 2137 2138
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2139
		pte_t pte = gup_get_pte(ptep);
2140
		struct page *head, *page;
2141 2142 2143

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2144
		 * path using the pte_protnone check.
2145
		 */
2146 2147 2148
		if (pte_protnone(pte))
			goto pte_unmap;

2149
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2150 2151
			goto pte_unmap;

2152
		if (pte_devmap(pte)) {
2153 2154 2155
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2156 2157
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2158
				undo_dev_pagemap(nr, nr_start, flags, pages);
2159 2160 2161
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2162 2163 2164 2165 2166
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2167
		head = try_grab_compound_head(page, 1, flags);
2168
		if (!head)
2169 2170 2171
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2172
			put_compound_head(head, 1, flags);
2173 2174 2175
			goto pte_unmap;
		}

2176
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2191
		SetPageReferenced(page);
2192 2193 2194 2195 2196 2197 2198 2199
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2200 2201
	if (pgmap)
		put_dev_pagemap(pgmap);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2213
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2214 2215 2216
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2217
			 unsigned int flags, struct page **pages, int *nr)
2218 2219 2220
{
	return 0;
}
2221
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2222

R
Robin Murphy 已提交
2223
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2224
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2225 2226
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2236
			undo_dev_pagemap(nr, nr_start, flags, pages);
2237 2238 2239 2240
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2241 2242 2243 2244
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2245 2246 2247
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2248 2249 2250

	if (pgmap)
		put_dev_pagemap(pgmap);
2251 2252 2253
	return 1;
}

2254
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2255 2256
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2257 2258
{
	unsigned long fault_pfn;
2259 2260 2261
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2262
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2263
		return 0;
2264

2265
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2266
		undo_dev_pagemap(nr, nr_start, flags, pages);
2267 2268 2269
		return 0;
	}
	return 1;
2270 2271
}

2272
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2273 2274
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2275 2276
{
	unsigned long fault_pfn;
2277 2278 2279
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2280
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2281
		return 0;
2282

2283
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2284
		undo_dev_pagemap(nr, nr_start, flags, pages);
2285 2286 2287
		return 0;
	}
	return 1;
2288 2289
}
#else
2290
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2291 2292
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2293 2294 2295 2296 2297
{
	BUILD_BUG();
	return 0;
}

2298
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2299 2300
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2301 2302 2303 2304 2305 2306
{
	BUILD_BUG();
	return 0;
}
#endif

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2318 2319 2320 2321 2322 2323 2324 2325 2326
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2327 2328
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2339
	pte = huge_ptep_get(ptep);
2340

2341
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2342 2343 2344 2345 2346 2347 2348
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2349
	refs = record_subpages(page, addr, end, pages + *nr);
2350

J
John Hubbard 已提交
2351
	head = try_grab_compound_head(head, refs, flags);
2352
	if (!head)
2353 2354 2355
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2356
		put_compound_head(head, refs, flags);
2357 2358 2359
		return 0;
	}

2360
	*nr += refs;
2361
	SetPageReferenced(head);
2362 2363 2364 2365
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2366
		unsigned int pdshift, unsigned long end, unsigned int flags,
2367 2368 2369 2370 2371 2372 2373 2374 2375
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2376
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2377 2378 2379 2380 2381 2382 2383
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2384
		unsigned int pdshift, unsigned long end, unsigned int flags,
2385 2386 2387 2388 2389 2390
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2391
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2392 2393
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2394
{
2395
	struct page *head, *page;
2396 2397
	int refs;

2398
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2399 2400
		return 0;

2401 2402 2403
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2404 2405
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2406
	}
2407

2408
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2409
	refs = record_subpages(page, addr, end, pages + *nr);
2410

J
John Hubbard 已提交
2411
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2412
	if (!head)
2413 2414 2415
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416
		put_compound_head(head, refs, flags);
2417 2418 2419
		return 0;
	}

2420
	*nr += refs;
2421
	SetPageReferenced(head);
2422 2423 2424 2425
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2426 2427
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2428
{
2429
	struct page *head, *page;
2430 2431
	int refs;

2432
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2433 2434
		return 0;

2435 2436 2437
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2438 2439
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2440
	}
2441

2442
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2443
	refs = record_subpages(page, addr, end, pages + *nr);
2444

J
John Hubbard 已提交
2445
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2446
	if (!head)
2447 2448 2449
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2450
		put_compound_head(head, refs, flags);
2451 2452 2453
		return 0;
	}

2454
	*nr += refs;
2455
	SetPageReferenced(head);
2456 2457 2458
	return 1;
}

2459
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2460
			unsigned long end, unsigned int flags,
2461 2462 2463
			struct page **pages, int *nr)
{
	int refs;
2464
	struct page *head, *page;
2465

2466
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2467 2468
		return 0;

2469
	BUILD_BUG_ON(pgd_devmap(orig));
2470

2471
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2472
	refs = record_subpages(page, addr, end, pages + *nr);
2473

J
John Hubbard 已提交
2474
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2475
	if (!head)
2476 2477 2478
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2479
		put_compound_head(head, refs, flags);
2480 2481 2482
		return 0;
	}

2483
	*nr += refs;
2484
	SetPageReferenced(head);
2485 2486 2487
	return 1;
}

2488
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2489
		unsigned int flags, struct page **pages, int *nr)
2490 2491 2492 2493 2494 2495
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2496
		pmd_t pmd = READ_ONCE(*pmdp);
2497 2498

		next = pmd_addr_end(addr, end);
2499
		if (!pmd_present(pmd))
2500 2501
			return 0;

Y
Yu Zhao 已提交
2502 2503
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2504 2505 2506 2507 2508
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2509
			if (pmd_protnone(pmd))
2510 2511
				return 0;

2512
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2513 2514 2515
				pages, nr))
				return 0;

2516 2517 2518 2519 2520 2521
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2522
					 PMD_SHIFT, next, flags, pages, nr))
2523
				return 0;
2524
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2525
			return 0;
2526 2527 2528 2529 2530
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2531
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2532
			 unsigned int flags, struct page **pages, int *nr)
2533 2534 2535 2536
{
	unsigned long next;
	pud_t *pudp;

2537
	pudp = pud_offset(&p4d, addr);
2538
	do {
2539
		pud_t pud = READ_ONCE(*pudp);
2540 2541

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2542
		if (unlikely(!pud_present(pud)))
2543
			return 0;
2544
		if (unlikely(pud_huge(pud))) {
2545
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2546 2547 2548 2549
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2550
					 PUD_SHIFT, next, flags, pages, nr))
2551
				return 0;
2552
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2553 2554 2555 2556 2557 2558
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2559
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2560
			 unsigned int flags, struct page **pages, int *nr)
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2575
					 P4D_SHIFT, next, flags, pages, nr))
2576
				return 0;
2577
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2578 2579 2580 2581 2582 2583
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2584
static void gup_pgd_range(unsigned long addr, unsigned long end,
2585
		unsigned int flags, struct page **pages, int *nr)
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2598
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2599 2600 2601 2602
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2603
					 PGDIR_SHIFT, next, flags, pages, nr))
2604
				return;
2605
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2606 2607 2608
			return;
	} while (pgdp++, addr = next, addr != end);
}
2609 2610 2611 2612 2613 2614
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2615 2616 2617

#ifndef gup_fast_permitted
/*
2618
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2619 2620
 * we need to fall back to the slow version:
 */
2621
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2622
{
2623
	return true;
2624 2625 2626
}
#endif

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2637
		mmap_read_lock(current->mm);
2638
		ret = __gup_longterm_locked(current->mm,
2639 2640
					    start, nr_pages,
					    pages, NULL, gup_flags);
2641
		mmap_read_unlock(current->mm);
2642 2643 2644 2645 2646 2647 2648 2649
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2650 2651 2652
static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
					unsigned int gup_flags,
					struct page **pages)
2653
{
2654
	unsigned long addr, len, end;
2655
	unsigned long flags;
2656
	int nr_pinned = 0, ret = 0;
2657

2658
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2659 2660
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2661 2662
		return -EINVAL;

2663
	if (!(gup_flags & FOLL_FAST_ONLY))
2664
		might_lock_read(&current->mm->mmap_lock);
2665

2666
	start = untagged_addr(start) & PAGE_MASK;
2667 2668 2669 2670
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2671
	if (end <= start)
2672
		return 0;
2673
	if (unlikely(!access_ok((void __user *)start, len)))
2674
		return -EFAULT;
2675

2676
	/*
2677 2678 2679 2680 2681 2682 2683 2684 2685
	 * Disable interrupts. The nested form is used, in order to allow
	 * full, general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
2686
	 */
2687 2688 2689 2690 2691 2692
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
		unsigned long fast_flags = gup_flags;

		local_irq_save(flags);
		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
		local_irq_restore(flags);
2693
		ret = nr_pinned;
2694
	}
2695

2696
	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2697
		/* Try to get the remaining pages with get_user_pages */
2698 2699
		start += nr_pinned << PAGE_SHIFT;
		pages += nr_pinned;
2700

2701
		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2702
					      gup_flags, pages);
2703 2704

		/* Have to be a bit careful with return values */
2705
		if (nr_pinned > 0) {
2706
			if (ret < 0)
2707
				ret = nr_pinned;
2708
			else
2709
				ret += nr_pinned;
2710 2711 2712 2713 2714
		}
	}

	return ret;
}
2715 2716 2717 2718 2719 2720 2721 2722
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2735 2736
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2737
{
2738
	int nr_pinned;
2739 2740 2741
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2742 2743 2744
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2745
	 */
2746
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2747

2748 2749
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2750 2751

	/*
2752 2753 2754 2755
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2756
	 */
2757 2758
	if (nr_pinned < 0)
		nr_pinned = 0;
2759 2760 2761

	return nr_pinned;
}
2762
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2763

2764 2765
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2766 2767 2768 2769 2770
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2771
 *
2772
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

2790 2791 2792 2793 2794 2795 2796
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2797 2798
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2799
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2800 2801 2802 2803

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2815
 * see Documentation/core-api/pin_user_pages.rst for further details.
2816 2817 2818 2819
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2820 2821 2822 2823 2824 2825
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2826 2827 2828
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2829
/*
2830 2831
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2865
/**
2866
 * pin_user_pages_remote() - pin pages of a remote process
2867
 *
J
John Hubbard 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2886
 * see Documentation/core-api/pin_user_pages.rst for details.
2887
 */
2888
long pin_user_pages_remote(struct mm_struct *mm,
2889 2890 2891 2892
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2893 2894 2895 2896 2897
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2898
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2899
				       pages, vmas, locked);
2900 2901 2902 2903 2904 2905
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919
 * see Documentation/core-api/pin_user_pages.rst for details.
2920 2921 2922 2923 2924
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2925 2926 2927 2928 2929
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2930
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2931
				     pages, vmas, gup_flags);
2932 2933
}
EXPORT_SYMBOL(pin_user_pages);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2975
	return __get_user_pages_locked(current->mm, start, nr_pages,
2976 2977 2978 2979
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);