gup.c 66.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
typedef int (*set_dirty_func_t)(struct page *page);

static void __put_user_pages_dirty(struct page **pages,
				   unsigned long npages,
				   set_dirty_func_t sdf)
{
	unsigned long index;

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);

		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
		 *
		 * 1) This code sees the page as already dirty, so it skips
		 * the call to sdf(). That could happen because
		 * clear_page_dirty_for_io() called page_mkclean(),
		 * followed by set_page_dirty(). However, now the page is
		 * going to get written back, which meets the original
		 * intention of setting it dirty, so all is well:
		 * clear_page_dirty_for_io() goes on to call
		 * TestClearPageDirty(), and write the page back.
		 *
		 * 2) This code sees the page as clean, so it calls sdf().
		 * The page stays dirty, despite being written back, so it
		 * gets written back again in the next writeback cycle.
		 * This is harmless.
		 */
		if (!PageDirty(page))
			sdf(page);

		put_user_page(page);
	}
}

/**
 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * set_page_dirty(), which does not lock the page, is used here.
 * Therefore, it is the caller's responsibility to ensure that this is
 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
 *
 */
void put_user_pages_dirty(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty);
}
EXPORT_SYMBOL(put_user_pages_dirty);

/**
 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * This is just like put_user_pages_dirty(), except that it invokes
 * set_page_dirty_lock(), instead of set_page_dirty().
 *
 */
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

137
#ifdef CONFIG_MMU
138 139
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
140
{
141 142 143 144 145 146 147 148 149 150 151 152
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

178 179 180 181 182 183
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
184
	return pte_write(pte) ||
185 186 187
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

188
static struct page *follow_page_pte(struct vm_area_struct *vma,
189 190
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
191 192 193 194 195
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
196

197
retry:
198
	if (unlikely(pmd_bad(*pmd)))
199
		return no_page_table(vma, flags);
200 201 202 203 204 205 206 207 208 209 210 211

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
212
		if (pte_none(pte))
213 214 215 216 217 218
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
219
		goto retry;
220
	}
221
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
222
		goto no_page;
223
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224 225 226
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
227 228

	page = vm_normal_page(vma, address, pte);
229 230 231 232 233
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
234 235
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
236 237 238 239
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
255 256
	}

257 258 259 260 261 262 263 264 265 266 267 268 269
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

270 271 272 273 274 275
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
276 277 278 279 280 281 282 283 284 285 286
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
287
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288 289 290 291
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
313
out:
314 315 316 317 318
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
319 320 321 322
		return NULL;
	return no_page_table(vma, flags);
}

323 324
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
325 326
				    unsigned int flags,
				    struct follow_page_context *ctx)
327
{
328
	pmd_t *pmd, pmdval;
329 330 331 332
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

333
	pmd = pmd_offset(pudp, address);
334 335 336 337 338 339
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
340
		return no_page_table(vma, flags);
341
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342 343 344 345
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
346
	}
347
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348
		page = follow_huge_pd(vma, address,
349
				      __hugepd(pmd_val(pmdval)), flags,
350 351 352 353 354
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
355
retry:
356
	if (!pmd_present(pmdval)) {
357 358 359
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
360 361
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
362
			pmd_migration_entry_wait(mm, pmd);
363 364 365 366 367 368 369
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
370 371
		goto retry;
	}
372
	if (pmd_devmap(pmdval)) {
373
		ptl = pmd_lock(mm, pmd);
374
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375 376 377 378
		spin_unlock(ptl);
		if (page)
			return page;
	}
379
	if (likely(!pmd_trans_huge(pmdval)))
380
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381

382
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383 384
		return no_page_table(vma, flags);

385
retry_locked:
386
	ptl = pmd_lock(mm, pmd);
387 388 389 390
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
391 392 393 394 395 396 397
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
398 399
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
400
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401 402 403 404 405 406 407
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
408
			split_huge_pmd(vma, pmd, address);
409 410
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
411
		} else {
412 413 414 415
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
416
			spin_unlock(ptl);
417 418 419 420
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
421 422
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
423 424 425
		}

		return ret ? ERR_PTR(ret) :
426
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427
	}
428 429
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
430
	ctx->page_mask = HPAGE_PMD_NR - 1;
431
	return page;
432 433
}

434 435
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
436 437
				    unsigned int flags,
				    struct follow_page_context *ctx)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
453 454 455 456 457 458 459 460
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
461 462
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
463
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464 465 466 467 468 469 470
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

471
	return follow_pmd_mask(vma, address, pud, flags, ctx);
472 473 474 475
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
476 477
				    unsigned int flags,
				    struct follow_page_context *ctx)
478 479
{
	p4d_t *p4d;
480
	struct page *page;
481 482 483 484 485 486 487 488

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

489 490 491 492 493 494 495 496
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
497
	return follow_pud_mask(vma, address, p4d, flags, ctx);
498 499 500 501 502 503 504
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
505 506
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
507 508 509
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
510 511 512 513 514 515
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
516 517 518
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
519
static struct page *follow_page_mask(struct vm_area_struct *vma,
520
			      unsigned long address, unsigned int flags,
521
			      struct follow_page_context *ctx)
522 523 524 525 526
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

527
	ctx->page_mask = 0;
528 529 530 531 532 533 534 535 536 537 538 539 540

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

541 542 543 544 545 546
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
547 548 549 550 551 552 553 554
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
555

556 557 558 559 560 561 562 563 564 565 566 567 568
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
569 570
}

571 572 573 574 575
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
576
	p4d_t *p4d;
577 578 579 580 581 582 583 584 585 586 587 588 589
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
590 591 592
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
593 594
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
595
	if (!pmd_present(*pmd))
596 597 598 599 600 601 602 603 604 605 606 607 608
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
609 610 611 612 613 614 615

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
616
	}
617 618 619 620
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
621 622 623 624 625 626 627
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

628 629 630 631 632
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
633 634 635 636
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
637
	vm_fault_t ret;
638

E
Eric B Munson 已提交
639 640 641
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
642 643
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
644 645
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
646 647 648 649
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
650 651 652 653
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
654

655
	ret = handle_mm_fault(vma, address, fault_flags);
656
	if (ret & VM_FAULT_ERROR) {
657 658 659 660
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
661 662 663 664 665 666 667 668 669 670 671
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
672
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
673 674 675 676 677 678 679 680 681 682 683 684 685 686
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
687
		*flags |= FOLL_COW;
688 689 690
	return 0;
}

691 692 693
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
694 695
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
696 697 698 699

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

700 701 702
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

703
	if (write) {
704 705 706 707 708 709 710 711 712 713 714 715
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
716
			if (!is_cow_mapping(vm_flags))
717 718 719 720 721 722 723 724 725 726 727 728
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
729 730 731 732 733
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
734
		return -EFAULT;
735 736 737
	return 0;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
758
 * Must be called with mmap_sem held.  It may be released.  See below.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
781 782 783 784 785 786 787 788
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
789 790 791 792 793
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
794
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
795 796 797 798
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
799
	long ret = 0, i = 0;
800
	struct vm_area_struct *vma = NULL;
801
	struct follow_page_context ctx = { NULL };
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
817 818 819 820 821 822 823 824 825 826 827 828
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
829
					goto out;
830
				ctx.page_mask = 0;
831 832
				goto next_page;
			}
833

834 835 836 837
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
838 839 840
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
841
						gup_flags, nonblocking);
842
				continue;
843
			}
844 845 846 847 848 849
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
850
		if (fatal_signal_pending(current)) {
851 852 853
			ret = -ERESTARTSYS;
			goto out;
		}
854
		cond_resched();
855 856

		page = follow_page_mask(vma, start, foll_flags, &ctx);
857 858 859 860 861 862
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
863 864 865
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
866 867 868
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
869
				goto out;
870 871
			case -ENOENT:
				goto next_page;
872
			}
873
			BUG();
874 875 876 877 878 879 880
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
881 882
			ret = PTR_ERR(page);
			goto out;
883
		}
884 885 886 887
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
888
			ctx.page_mask = 0;
889 890
		}
next_page:
891 892
		if (vmas) {
			vmas[i] = vma;
893
			ctx.page_mask = 0;
894
		}
895
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
896 897 898 899 900
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
901
	} while (nr_pages);
902 903 904 905
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
906 907
}

908 909
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
910
{
911 912
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
913
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
914 915 916 917

	if (!(vm_flags & vma->vm_flags))
		return false;

918 919
	/*
	 * The architecture might have a hardware protection
920
	 * mechanism other than read/write that can deny access.
921 922 923
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
924
	 */
925
	if (!arch_vma_access_permitted(vma, write, false, foreign))
926 927
		return false;

928 929 930
	return true;
}

931 932 933 934 935 936 937
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
938 939
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
940 941 942 943 944 945 946 947 948 949 950
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
951
 * get_user_pages() only guarantees to update these in the struct page.
952 953 954 955 956 957
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
958 959
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
960 961
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
962 963
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
964 965
{
	struct vm_area_struct *vma;
966
	vm_fault_t ret, major = 0;
967 968 969

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
970

971
retry:
972 973 974 975
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

976
	if (!vma_permits_fault(vma, fault_flags))
977 978
		return -EFAULT;

979
	ret = handle_mm_fault(vma, address, fault_flags);
980
	major |= ret & VM_FAULT_MAJOR;
981
	if (ret & VM_FAULT_ERROR) {
982 983 984 985
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
986 987
		BUG();
	}
988 989 990 991 992 993 994 995 996 997 998

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

999
	if (tsk) {
1000
		if (major)
1001 1002 1003 1004 1005 1006
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1007
EXPORT_SYMBOL_GPL(fixup_user_fault);
1008

1009 1010 1011 1012 1013 1014
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1015
						int *locked,
1016
						unsigned int flags)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1053 1054 1055 1056
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1057 1058 1059 1060
			if (!pages_done)
				pages_done = ret;
			break;
		}
1061 1062 1063 1064 1065 1066
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1089 1090
		if (likely(pages))
			pages++;
1091 1092
		start += PAGE_SIZE;
	}
1093
	if (lock_dropped && *locked) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1104
/*
1105
 * get_user_pages_remote() - pin user pages in memory
1106 1107 1108 1109 1110
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1111
 * @gup_flags:	flags modifying lookup behaviour
1112 1113 1114 1115 1116
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1117 1118 1119
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1143 1144 1145
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1146 1147 1148 1149 1150 1151 1152 1153
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1154 1155 1156 1157 1158
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1159
 */
1160 1161
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1162
		unsigned int gup_flags, struct page **pages,
1163
		struct vm_area_struct **vmas, int *locked)
1164
{
1165 1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1174
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1175
				       locked,
1176
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1177 1178 1179
}
EXPORT_SYMBOL(get_user_pages_remote);

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long start,
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1444 1445 1446 1447
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1448
					struct page **pages,
1449 1450
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1451
{
1452 1453
	unsigned long i;
	unsigned long step;
1454 1455 1456 1457 1458
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);

check_again:
1459 1460 1461 1462 1463 1464 1465 1466 1467
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
		step = (1 << compound_order(head)) - (pages[i] - head);
1468 1469 1470 1471 1472
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1473 1474
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1475
				isolate_huge_page(head, &cma_page_list);
1476
			else {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
1491 1492

		i += step;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1514 1515 1516
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1517
		 */
1518 1519 1520 1521
		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
						   pages, vmas, NULL,
						   gup_flags);

1522 1523 1524 1525 1526 1527 1528 1529 1530
		if ((nr_pages > 0) && migrate_allow) {
			drain_allow = true;
			goto check_again;
		}
	}

	return nr_pages;
}
#else
1531 1532 1533 1534 1535 1536 1537
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1538 1539 1540
{
	return nr_pages;
}
1541
#endif /* CONFIG_CMA */
1542

1543
/*
1544 1545
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1546
 */
1547 1548 1549 1550 1551 1552 1553
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1554
{
1555 1556
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1557 1558
	long rc, i;

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1571 1572
	}

1573 1574
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1590
	}
1591 1592

out:
1593 1594
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1595 1596
	return rc;
}
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

/*
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1626

1627 1628 1629 1630
/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
1631
 *
1632
 * get_user_pages_locked() is suitable to replace the form:
1633
 *
1634 1635 1636 1637
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
1638
 *
1639
 *  to:
1640
 *
1641 1642 1643 1644 1645 1646
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
1647
 */
1648 1649 1650
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1651 1652
{
	/*
1653 1654 1655 1656
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1657
	 */
1658 1659
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1660

1661 1662 1663
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1664
}
1665
EXPORT_SYMBOL(get_user_pages_locked);
1666 1667

/*
1668
 * get_user_pages_unlocked() is suitable to replace the form:
1669
 *
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1681
 */
1682 1683
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1684 1685
{
	struct mm_struct *mm = current->mm;
1686 1687
	int locked = 1;
	long ret;
1688

1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1697

1698 1699 1700
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
				      &locked, gup_flags | FOLL_TOUCH);
1701 1702
	if (locked)
		up_read(&mm->mmap_sem);
1703
	return ret;
1704
}
1705
EXPORT_SYMBOL(get_user_pages_unlocked);
1706 1707

/*
1708
 * Fast GUP
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1729 1730
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1731 1732 1733 1734 1735 1736 1737 1738 1739
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1740
#ifdef CONFIG_HAVE_FAST_GUP
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1787
/*
1788
 * We require that the PTE can be read atomically.
1789 1790 1791 1792 1793
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
1794
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1820
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1821
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1822
			 unsigned int flags, struct page **pages, int *nr)
1823
{
1824 1825
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1826 1827 1828 1829
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1830
		pte_t pte = gup_get_pte(ptep);
1831
		struct page *head, *page;
1832 1833 1834

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1835
		 * path using the pte_protnone check.
1836
		 */
1837 1838 1839
		if (pte_protnone(pte))
			goto pte_unmap;

1840
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1841 1842
			goto pte_unmap;

1843
		if (pte_devmap(pte)) {
1844 1845 1846
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

1847 1848 1849 1850 1851 1852
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1853 1854 1855 1856 1857
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1858 1859
		head = try_get_compound_head(page, 1);
		if (!head)
1860 1861 1862
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1863
			put_page(head);
1864 1865 1866
			goto pte_unmap;
		}

1867
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1868 1869

		SetPageReferenced(page);
1870 1871 1872 1873 1874 1875 1876 1877
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1878 1879
	if (pgmap)
		put_dev_pagemap(pgmap);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1895
			 unsigned int flags, struct page **pages, int *nr)
1896 1897 1898
{
	return 0;
}
1899
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1900

1901
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1922 1923 1924

	if (pgmap)
		put_dev_pagemap(pgmap);
1925 1926 1927
	return 1;
}

1928
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1929 1930 1931
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1932 1933 1934 1935 1936
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1937

1938 1939 1940 1941 1942
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1943 1944
}

1945
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1946 1947 1948
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1949 1950 1951 1952 1953
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1954

1955 1956 1957 1958 1959
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1960 1961
}
#else
1962
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1963 1964 1965 1966 1967 1968
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1969
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1970 1971 1972 1973 1974 1975 1976
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		       unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = READ_ONCE(*ptep);

	if (!pte_access_permitted(pte, write))
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2017 2018
	head = try_get_compound_head(head, refs);
	if (!head) {
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2031
	SetPageReferenced(head);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
		unsigned int pdshift, unsigned long end, int write,
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
		unsigned pdshift, unsigned long end, int write,
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2061
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2062
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2063
{
2064
	struct page *head, *page;
2065 2066
	int refs;

2067
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2068 2069
		return 0;

2070 2071 2072
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2073
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2074
	}
2075

2076
	refs = 0;
2077
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2078 2079 2080 2081 2082 2083 2084
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2085 2086
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2098
	SetPageReferenced(head);
2099 2100 2101 2102
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2103
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2104
{
2105
	struct page *head, *page;
2106 2107
	int refs;

2108
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2109 2110
		return 0;

2111 2112 2113
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2114
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2115
	}
2116

2117
	refs = 0;
2118
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2119 2120 2121 2122 2123 2124 2125
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2126 2127
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2139
	SetPageReferenced(head);
2140 2141 2142
	return 1;
}

2143
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2144
			unsigned long end, unsigned int flags,
2145 2146 2147
			struct page **pages, int *nr)
{
	int refs;
2148
	struct page *head, *page;
2149

2150
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2151 2152
		return 0;

2153
	BUILD_BUG_ON(pgd_devmap(orig));
2154
	refs = 0;
2155
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2156 2157 2158 2159 2160 2161 2162
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2163 2164
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2176
	SetPageReferenced(head);
2177 2178 2179
	return 1;
}

2180
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2181
		unsigned int flags, struct page **pages, int *nr)
2182 2183 2184 2185 2186 2187
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2188
		pmd_t pmd = READ_ONCE(*pmdp);
2189 2190

		next = pmd_addr_end(addr, end);
2191
		if (!pmd_present(pmd))
2192 2193
			return 0;

Y
Yu Zhao 已提交
2194 2195
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2196 2197 2198 2199 2200
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2201
			if (pmd_protnone(pmd))
2202 2203
				return 0;

2204
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2205 2206 2207
				pages, nr))
				return 0;

2208 2209 2210 2211 2212 2213
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2214
					 PMD_SHIFT, next, flags, pages, nr))
2215
				return 0;
2216
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2217
			return 0;
2218 2219 2220 2221 2222
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2223
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2224
			 unsigned int flags, struct page **pages, int *nr)
2225 2226 2227 2228
{
	unsigned long next;
	pud_t *pudp;

2229
	pudp = pud_offset(&p4d, addr);
2230
	do {
2231
		pud_t pud = READ_ONCE(*pudp);
2232 2233 2234 2235

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
2236
		if (unlikely(pud_huge(pud))) {
2237
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2238 2239 2240 2241
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2242
					 PUD_SHIFT, next, flags, pages, nr))
2243
				return 0;
2244
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2245 2246 2247 2248 2249 2250
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2251
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2252
			 unsigned int flags, struct page **pages, int *nr)
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2267
					 P4D_SHIFT, next, flags, pages, nr))
2268
				return 0;
2269
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2270 2271 2272 2273 2274 2275
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2276
static void gup_pgd_range(unsigned long addr, unsigned long end,
2277
		unsigned int flags, struct page **pages, int *nr)
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2290
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2291 2292 2293 2294
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2295
					 PGDIR_SHIFT, next, flags, pages, nr))
2296
				return;
2297
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2298 2299 2300
			return;
	} while (pgdp++, addr = next, addr != end);
}
2301 2302 2303 2304 2305 2306
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2307 2308 2309 2310 2311 2312

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2313
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2314
{
2315
	return true;
2316 2317 2318
}
#endif

2319 2320
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2321 2322 2323
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
2324 2325 2326
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
2327 2328 2329 2330
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
2331
	unsigned long len, end;
2332
	unsigned long flags;
2333 2334
	int nr = 0;

2335
	start = untagged_addr(start) & PAGE_MASK;
2336 2337 2338
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2339 2340
	if (end <= start)
		return 0;
2341
	if (unlikely(!access_ok((void __user *)start, len)))
2342 2343 2344 2345 2346 2347 2348
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2349 2350
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2351 2352 2353 2354 2355
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2356 2357
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2358
		local_irq_save(flags);
2359
		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2360 2361
		local_irq_restore(flags);
	}
2362 2363 2364

	return nr;
}
2365
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2390 2391 2392 2393
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
2394
 * @gup_flags:	flags modifying pin behaviour
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
2406 2407
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
2408
{
2409
	unsigned long addr, len, end;
2410
	int nr = 0, ret = 0;
2411

2412 2413 2414
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
		return -EINVAL;

2415
	start = untagged_addr(start) & PAGE_MASK;
2416 2417 2418 2419
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2420
	if (end <= start)
2421
		return 0;
2422
	if (unlikely(!access_ok((void __user *)start, len)))
2423
		return -EFAULT;
2424

2425 2426
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2427
		local_irq_disable();
2428
		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2429
		local_irq_enable();
2430 2431
		ret = nr;
	}
2432 2433 2434 2435 2436 2437

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2438 2439
		ret = __gup_longterm_unlocked(start, nr_pages - nr,
					      gup_flags, pages);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}
2452
EXPORT_SYMBOL_GPL(get_user_pages_fast);