gup.c 80.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
89 90
		int orig_refs = refs;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

109 110 111
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

112
		return page;
J
John Hubbard 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	}

	WARN_ON_ONCE(1);
	return NULL;
}

/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
147 148
		int refs = 1;

J
John Hubbard 已提交
149 150 151 152 153
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

154 155 156 157 158 159 160 161 162 163 164 165
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
166 167

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
168 169 170 171 172 173 174 175
	}

	return true;
}

#ifdef CONFIG_DEV_PAGEMAP_OPS
static bool __unpin_devmap_managed_user_page(struct page *page)
{
176
	int count, refs = 1;
J
John Hubbard 已提交
177 178 179 180

	if (!page_is_devmap_managed(page))
		return false;

181 182 183 184 185 186
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	count = page_ref_sub_return(page, refs);
J
John Hubbard 已提交
187

188
	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * devmap page refcounts are 1-based, rather than 0-based: if
	 * refcount is 1, then the page is free and the refcount is
	 * stable because nobody holds a reference on the page.
	 */
	if (count == 1)
		free_devmap_managed_page(page);
	else if (!count)
		__put_page(page);

	return true;
}
#else
static bool __unpin_devmap_managed_user_page(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
219 220
	int refs = 1;

J
John Hubbard 已提交
221 222 223 224 225 226 227 228 229 230 231
	page = compound_head(page);

	/*
	 * For devmap managed pages we need to catch refcount transition from
	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
	 * page is free and we need to inform the device driver through
	 * callback. See include/linux/memremap.h and HMM for details.
	 */
	if (__unpin_devmap_managed_user_page(page))
		return;

232 233 234 235 236 237
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	if (page_ref_sub_and_test(page, refs))
J
John Hubbard 已提交
238
		__put_page(page);
239 240

	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
241 242 243
}
EXPORT_SYMBOL(unpin_user_page);

244
/**
245
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
246
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
247
 * @npages: number of pages in the @pages array.
248
 * @make_dirty: whether to mark the pages dirty
249 250 251 252 253
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
254
 * compound page) dirty, if @make_dirty is true, and if the page was previously
255 256
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
257
 *
258
 * Please see the unpin_user_page() documentation for details.
259
 *
260 261 262
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
263
 * set_page_dirty_lock(), unpin_user_page().
264 265
 *
 */
266 267
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
268
{
269
	unsigned long index;
270

271 272 273 274 275 276 277
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
278
		unpin_user_pages(pages, npages);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
306
		unpin_user_page(page);
307
	}
308
}
309
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
310 311

/**
312
 * unpin_user_pages() - release an array of gup-pinned pages.
313 314 315
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
316
 * For each page in the @pages array, release the page using unpin_user_page().
317
 *
318
 * Please see the unpin_user_page() documentation for details.
319
 */
320
void unpin_user_pages(struct page **pages, unsigned long npages)
321 322 323 324 325 326 327 328 329
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
330
		unpin_user_page(pages[index]);
331
}
332
EXPORT_SYMBOL(unpin_user_pages);
333

334
#ifdef CONFIG_MMU
335 336
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
337
{
338 339 340 341 342 343 344 345 346 347 348 349
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

375 376 377 378 379 380
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
381
	return pte_write(pte) ||
382 383 384
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

385
static struct page *follow_page_pte(struct vm_area_struct *vma,
386 387
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
388 389 390 391 392
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
393

394 395 396 397
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
398
retry:
399
	if (unlikely(pmd_bad(*pmd)))
400
		return no_page_table(vma, flags);
401 402 403 404 405 406 407 408 409 410 411 412

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
413
		if (pte_none(pte))
414 415 416 417 418 419
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
420
		goto retry;
421
	}
422
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
423
		goto no_page;
424
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
425 426 427
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
428 429

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
430
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
431
		/*
J
John Hubbard 已提交
432 433 434
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
435
		 */
436 437
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
438 439 440 441
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
457 458
	}

459 460 461 462 463 464 465 466 467 468 469 470 471
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
472 473 474 475
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
476
	}
477 478 479 480 481 482 483 484 485 486 487
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
488
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
489 490 491 492
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
514
out:
515 516 517 518 519
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
520 521 522 523
		return NULL;
	return no_page_table(vma, flags);
}

524 525
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
526 527
				    unsigned int flags,
				    struct follow_page_context *ctx)
528
{
529
	pmd_t *pmd, pmdval;
530 531 532 533
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

534
	pmd = pmd_offset(pudp, address);
535 536 537 538 539 540
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
541
		return no_page_table(vma, flags);
542
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
543 544 545 546
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
547
	}
548
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
549
		page = follow_huge_pd(vma, address,
550
				      __hugepd(pmd_val(pmdval)), flags,
551 552 553 554 555
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
556
retry:
557
	if (!pmd_present(pmdval)) {
558 559 560
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
561 562
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
563
			pmd_migration_entry_wait(mm, pmd);
564 565 566 567 568 569 570
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
571 572
		goto retry;
	}
573
	if (pmd_devmap(pmdval)) {
574
		ptl = pmd_lock(mm, pmd);
575
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
576 577 578 579
		spin_unlock(ptl);
		if (page)
			return page;
	}
580
	if (likely(!pmd_trans_huge(pmdval)))
581
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
582

583
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
584 585
		return no_page_table(vma, flags);

586
retry_locked:
587
	ptl = pmd_lock(mm, pmd);
588 589 590 591
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
592 593 594 595 596 597 598
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
599 600
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
601
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
602
	}
S
Song Liu 已提交
603
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
604 605 606 607 608
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
609
			split_huge_pmd(vma, pmd, address);
610 611
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
612
		} else if (flags & FOLL_SPLIT) {
613 614 615 616
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
617
			spin_unlock(ptl);
618 619 620 621
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
622 623
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
624 625 626 627
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
628 629 630
		}

		return ret ? ERR_PTR(ret) :
631
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
632
	}
633 634
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
635
	ctx->page_mask = HPAGE_PMD_NR - 1;
636
	return page;
637 638
}

639 640
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
641 642
				    unsigned int flags,
				    struct follow_page_context *ctx)
643 644 645 646 647 648 649 650 651
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
652
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
653 654 655 656 657
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
658 659 660 661 662 663 664 665
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
666 667
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
668
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
669 670 671 672 673 674 675
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

676
	return follow_pmd_mask(vma, address, pud, flags, ctx);
677 678 679 680
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
681 682
				    unsigned int flags,
				    struct follow_page_context *ctx)
683 684
{
	p4d_t *p4d;
685
	struct page *page;
686 687 688 689 690 691 692 693

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

694 695 696 697 698 699 700 701
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
702
	return follow_pud_mask(vma, address, p4d, flags, ctx);
703 704 705 706 707 708 709
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
710 711
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
712 713 714
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
715 716 717 718 719 720
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
721 722 723
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
724
static struct page *follow_page_mask(struct vm_area_struct *vma,
725
			      unsigned long address, unsigned int flags,
726
			      struct follow_page_context *ctx)
727 728 729 730 731
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

732
	ctx->page_mask = 0;
733 734 735 736

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
737
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
738 739 740 741 742 743 744 745
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

746 747 748 749 750 751
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
752 753 754 755 756 757 758 759
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
760

761 762 763 764 765 766 767 768 769 770 771 772 773
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
774 775
}

776 777 778 779 780
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
781
	p4d_t *p4d;
782 783 784 785 786 787 788 789 790 791 792 793
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
794 795
	if (pgd_none(*pgd))
		return -EFAULT;
796
	p4d = p4d_offset(pgd, address);
797 798
	if (p4d_none(*p4d))
		return -EFAULT;
799
	pud = pud_offset(p4d, address);
800 801
	if (pud_none(*pud))
		return -EFAULT;
802
	pmd = pmd_offset(pud, address);
803
	if (!pmd_present(*pmd))
804 805 806 807 808 809 810 811 812 813 814 815 816 817
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
818 819 820 821
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
822 823 824 825 826 827 828
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

829 830 831 832 833
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
834 835 836 837
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
838
	vm_fault_t ret;
839

E
Eric B Munson 已提交
840 841 842
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
843 844
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
845 846
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
847 848 849 850
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
851 852 853 854
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
855

856
	ret = handle_mm_fault(vma, address, fault_flags);
857
	if (ret & VM_FAULT_ERROR) {
858 859 860 861
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
862 863 864 865 866 867 868 869 870 871 872
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
873
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
874 875 876 877 878 879 880 881 882 883 884 885 886 887
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
888
		*flags |= FOLL_COW;
889 890 891
	return 0;
}

892 893 894
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
895 896
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
897 898 899 900

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

901 902 903
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

904
	if (write) {
905 906 907 908 909 910 911 912 913 914 915 916
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
917
			if (!is_cow_mapping(vm_flags))
918 919 920 921 922 923 924 925 926 927 928 929
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
930 931 932 933 934
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
935
		return -EFAULT;
936 937 938
	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
953 954 955 956 957 958 959 960 961 962 963
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
964
 *
965
 * Must be called with mmap_sem held.  It may be released.  See below.
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
988 989 990 991 992 993 994 995
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
996 997 998 999 1000
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
1001
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1002 1003 1004 1005
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
1006
	long ret = 0, i = 0;
1007
	struct vm_area_struct *vma = NULL;
1008
	struct follow_page_context ctx = { NULL };
1009 1010 1011 1012

	if (!nr_pages)
		return 0;

1013 1014
	start = untagged_addr(start);

1015
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1038
					goto out;
1039
				ctx.page_mask = 0;
1040 1041
				goto next_page;
			}
1042

1043 1044 1045 1046
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
1047 1048 1049
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1050
						gup_flags, nonblocking);
1051
				continue;
1052
			}
1053 1054 1055 1056 1057 1058
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1059
		if (fatal_signal_pending(current)) {
1060 1061 1062
			ret = -ERESTARTSYS;
			goto out;
		}
1063
		cond_resched();
1064 1065

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1066 1067 1068 1069 1070 1071
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
1072 1073 1074
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
1075 1076 1077
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1078
				goto out;
1079 1080
			case -ENOENT:
				goto next_page;
1081
			}
1082
			BUG();
1083 1084 1085 1086 1087 1088 1089
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1090 1091
			ret = PTR_ERR(page);
			goto out;
1092
		}
1093 1094 1095 1096
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1097
			ctx.page_mask = 0;
1098 1099
		}
next_page:
1100 1101
		if (vmas) {
			vmas[i] = vma;
1102
			ctx.page_mask = 0;
1103
		}
1104
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1105 1106 1107 1108 1109
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1110
	} while (nr_pages);
1111 1112 1113 1114
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1115 1116
}

1117 1118
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1119
{
1120 1121
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1122
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1123 1124 1125 1126

	if (!(vm_flags & vma->vm_flags))
		return false;

1127 1128
	/*
	 * The architecture might have a hardware protection
1129
	 * mechanism other than read/write that can deny access.
1130 1131 1132
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1133
	 */
1134
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1135 1136
		return false;

1137 1138 1139
	return true;
}

1140 1141 1142 1143 1144 1145 1146
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1147 1148
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1160
 * get_user_pages() only guarantees to update these in the struct page.
1161 1162 1163 1164 1165 1166
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1167 1168
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1169 1170
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1171 1172
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1173 1174
{
	struct vm_area_struct *vma;
1175
	vm_fault_t ret, major = 0;
1176

1177 1178
	address = untagged_addr(address);

1179 1180
	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1181

1182
retry:
1183 1184 1185 1186
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1187
	if (!vma_permits_fault(vma, fault_flags))
1188 1189
		return -EFAULT;

1190
	ret = handle_mm_fault(vma, address, fault_flags);
1191
	major |= ret & VM_FAULT_MAJOR;
1192
	if (ret & VM_FAULT_ERROR) {
1193 1194 1195 1196
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1197 1198
		BUG();
	}
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

1210
	if (tsk) {
1211
		if (major)
1212 1213 1214 1215 1216 1217
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1218
EXPORT_SYMBOL_GPL(fixup_user_fault);
1219

1220 1221 1222 1223 1224 1225
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1226
						int *locked,
1227
						unsigned int flags)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1273 1274 1275 1276
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1277 1278 1279 1280
			if (!pages_done)
				pages_done = ret;
			break;
		}
1281 1282 1283 1284 1285 1286
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1309 1310
		if (likely(pages))
			pages++;
1311 1312
		start += PAGE_SIZE;
	}
1313
	if (lock_dropped && *locked) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long start,
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1588 1589 1590 1591
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1592
					struct page **pages,
1593 1594
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1595
{
1596 1597
	unsigned long i;
	unsigned long step;
1598 1599 1600
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1601
	long ret = nr_pages;
1602 1603

check_again:
1604 1605 1606 1607 1608 1609 1610 1611
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1612
		step = compound_nr(head) - (pages[i] - head);
1613 1614 1615 1616 1617
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1618 1619
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1620
				isolate_huge_page(head, &cma_page_list);
1621
			else {
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
1636 1637

		i += step;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1659 1660 1661
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1662
		 */
1663
		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1664 1665 1666
						   pages, vmas, NULL,
						   gup_flags);

1667 1668
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1669 1670 1671 1672 1673
			drain_allow = true;
			goto check_again;
		}
	}

1674
	return ret;
1675 1676
}
#else
1677 1678 1679 1680 1681 1682 1683
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1684 1685 1686
{
	return nr_pages;
}
1687
#endif /* CONFIG_CMA */
1688

1689
/*
1690 1691
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1692
 */
1693 1694 1695 1696 1697 1698 1699
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1700
{
1701 1702
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1703 1704
	long rc, i;

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1717 1718
	}

1719 1720
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1736
	}
1737 1738

out:
1739 1740
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1741 1742
	return rc;
}
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_MMU
static long __get_user_pages_remote(struct task_struct *tsk,
				    struct mm_struct *mm,
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
/*
 * get_user_pages_remote() - pin user pages in memory
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1855 1856 1857 1858 1859 1860 1861
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1862 1863
	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
				       pages, vmas, locked);
1864 1865 1866
}
EXPORT_SYMBOL(get_user_pages_remote);

1867 1868 1869 1870 1871 1872 1873 1874
#else /* CONFIG_MMU */
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883

static long __get_user_pages_remote(struct task_struct *tsk,
				    struct mm_struct *mm,
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1884 1885
#endif /* !CONFIG_MMU */

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/*
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1897 1898 1899 1900 1901 1902 1903
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

1904 1905 1906 1907
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1908

1909 1910 1911 1912
/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
1913
 *
1914
 * get_user_pages_locked() is suitable to replace the form:
1915
 *
1916 1917 1918 1919
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
1920
 *
1921
 *  to:
1922
 *
1923 1924 1925 1926 1927 1928
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
1929
 */
1930 1931 1932
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1933 1934
{
	/*
1935 1936 1937 1938
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1939
	 */
1940 1941
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1942

1943 1944 1945
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1946
}
1947
EXPORT_SYMBOL(get_user_pages_locked);
1948 1949

/*
1950
 * get_user_pages_unlocked() is suitable to replace the form:
1951
 *
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1963
 */
1964 1965
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1966 1967
{
	struct mm_struct *mm = current->mm;
1968 1969
	int locked = 1;
	long ret;
1970

1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1979

1980 1981 1982
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
				      &locked, gup_flags | FOLL_TOUCH);
1983 1984
	if (locked)
		up_read(&mm->mmap_sem);
1985
	return ret;
1986
}
1987
EXPORT_SYMBOL(get_user_pages_unlocked);
1988 1989

/*
1990
 * Fast GUP
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2011
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2012
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2013 2014 2015 2016 2017 2018 2019 2020 2021
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2022
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2023 2024 2025

static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
2026
	if (flags & FOLL_PIN) {
2027 2028 2029
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

2030 2031 2032 2033 2034
		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}
J
John Hubbard 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

2046
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
J
John Hubbard 已提交
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2093
/*
2094
 * We require that the PTE can be read atomically.
2095 2096 2097 2098 2099
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
2100
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2101

2102
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2103
					    unsigned int flags,
2104
					    struct page **pages)
2105 2106 2107 2108 2109
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2110 2111 2112 2113
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2114 2115 2116
	}
}

2117
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2118
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2119
			 unsigned int flags, struct page **pages, int *nr)
2120
{
2121 2122
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2123 2124 2125 2126
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2127
		pte_t pte = gup_get_pte(ptep);
2128
		struct page *head, *page;
2129 2130 2131

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2132
		 * path using the pte_protnone check.
2133
		 */
2134 2135 2136
		if (pte_protnone(pte))
			goto pte_unmap;

2137
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2138 2139
			goto pte_unmap;

2140
		if (pte_devmap(pte)) {
2141 2142 2143
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2144 2145
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2146
				undo_dev_pagemap(nr, nr_start, flags, pages);
2147 2148 2149
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2150 2151 2152 2153 2154
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2155
		head = try_grab_compound_head(page, 1, flags);
2156
		if (!head)
2157 2158 2159
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2160
			put_compound_head(head, 1, flags);
2161 2162 2163
			goto pte_unmap;
		}

2164
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2165 2166

		SetPageReferenced(page);
2167 2168 2169 2170 2171 2172 2173 2174
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2175 2176
	if (pgmap)
		put_dev_pagemap(pgmap);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2192
			 unsigned int flags, struct page **pages, int *nr)
2193 2194 2195
{
	return 0;
}
2196
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2197

R
Robin Murphy 已提交
2198
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2199
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2200 2201
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2202 2203 2204 2205 2206 2207 2208 2209 2210
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2211
			undo_dev_pagemap(nr, nr_start, flags, pages);
2212 2213 2214 2215
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2216 2217 2218 2219
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2220 2221 2222
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2223 2224 2225

	if (pgmap)
		put_dev_pagemap(pgmap);
2226 2227 2228
	return 1;
}

2229
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2230 2231
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2232 2233
{
	unsigned long fault_pfn;
2234 2235 2236
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2237
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2238
		return 0;
2239

2240
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2241
		undo_dev_pagemap(nr, nr_start, flags, pages);
2242 2243 2244
		return 0;
	}
	return 1;
2245 2246
}

2247
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2248 2249
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2250 2251
{
	unsigned long fault_pfn;
2252 2253 2254
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2255
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2256
		return 0;
2257

2258
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2259
		undo_dev_pagemap(nr, nr_start, flags, pages);
2260 2261 2262
		return 0;
	}
	return 1;
2263 2264
}
#else
2265
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2266 2267
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2268 2269 2270 2271 2272
{
	BUILD_BUG();
	return 0;
}

2273
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2274 2275
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2276 2277 2278 2279 2280 2281
{
	BUILD_BUG();
	return 0;
}
#endif

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2293 2294 2295 2296 2297 2298 2299 2300 2301
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2302 2303
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = READ_ONCE(*ptep);

2316
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2317 2318 2319 2320 2321 2322 2323
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2324
	refs = record_subpages(page, addr, end, pages + *nr);
2325

J
John Hubbard 已提交
2326
	head = try_grab_compound_head(head, refs, flags);
2327
	if (!head)
2328 2329 2330
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2331
		put_compound_head(head, refs, flags);
2332 2333 2334
		return 0;
	}

2335
	*nr += refs;
2336
	SetPageReferenced(head);
2337 2338 2339 2340
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2341
		unsigned int pdshift, unsigned long end, unsigned int flags,
2342 2343 2344 2345 2346 2347 2348 2349 2350
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2351
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2352 2353 2354 2355 2356 2357 2358
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2359
		unsigned int pdshift, unsigned long end, unsigned int flags,
2360 2361 2362 2363 2364 2365
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2366
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2367 2368
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2369
{
2370
	struct page *head, *page;
2371 2372
	int refs;

2373
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2374 2375
		return 0;

2376 2377 2378
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2379 2380
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2381
	}
2382

2383
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2384
	refs = record_subpages(page, addr, end, pages + *nr);
2385

J
John Hubbard 已提交
2386
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2387
	if (!head)
2388 2389 2390
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2391
		put_compound_head(head, refs, flags);
2392 2393 2394
		return 0;
	}

2395
	*nr += refs;
2396
	SetPageReferenced(head);
2397 2398 2399 2400
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2401 2402
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2403
{
2404
	struct page *head, *page;
2405 2406
	int refs;

2407
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2408 2409
		return 0;

2410 2411 2412
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2413 2414
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2415
	}
2416

2417
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2418
	refs = record_subpages(page, addr, end, pages + *nr);
2419

J
John Hubbard 已提交
2420
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2421
	if (!head)
2422 2423 2424
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2425
		put_compound_head(head, refs, flags);
2426 2427 2428
		return 0;
	}

2429
	*nr += refs;
2430
	SetPageReferenced(head);
2431 2432 2433
	return 1;
}

2434
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2435
			unsigned long end, unsigned int flags,
2436 2437 2438
			struct page **pages, int *nr)
{
	int refs;
2439
	struct page *head, *page;
2440

2441
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2442 2443
		return 0;

2444
	BUILD_BUG_ON(pgd_devmap(orig));
2445

2446
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2447
	refs = record_subpages(page, addr, end, pages + *nr);
2448

J
John Hubbard 已提交
2449
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2450
	if (!head)
2451 2452 2453
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2454
		put_compound_head(head, refs, flags);
2455 2456 2457
		return 0;
	}

2458
	*nr += refs;
2459
	SetPageReferenced(head);
2460 2461 2462
	return 1;
}

2463
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2464
		unsigned int flags, struct page **pages, int *nr)
2465 2466 2467 2468 2469 2470
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2471
		pmd_t pmd = READ_ONCE(*pmdp);
2472 2473

		next = pmd_addr_end(addr, end);
2474
		if (!pmd_present(pmd))
2475 2476
			return 0;

Y
Yu Zhao 已提交
2477 2478
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2479 2480 2481 2482 2483
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2484
			if (pmd_protnone(pmd))
2485 2486
				return 0;

2487
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2488 2489 2490
				pages, nr))
				return 0;

2491 2492 2493 2494 2495 2496
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2497
					 PMD_SHIFT, next, flags, pages, nr))
2498
				return 0;
2499
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2500
			return 0;
2501 2502 2503 2504 2505
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2506
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2507
			 unsigned int flags, struct page **pages, int *nr)
2508 2509 2510 2511
{
	unsigned long next;
	pud_t *pudp;

2512
	pudp = pud_offset(&p4d, addr);
2513
	do {
2514
		pud_t pud = READ_ONCE(*pudp);
2515 2516

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2517
		if (unlikely(!pud_present(pud)))
2518
			return 0;
2519
		if (unlikely(pud_huge(pud))) {
2520
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2521 2522 2523 2524
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2525
					 PUD_SHIFT, next, flags, pages, nr))
2526
				return 0;
2527
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2528 2529 2530 2531 2532 2533
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2534
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2535
			 unsigned int flags, struct page **pages, int *nr)
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2550
					 P4D_SHIFT, next, flags, pages, nr))
2551
				return 0;
2552
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2553 2554 2555 2556 2557 2558
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2559
static void gup_pgd_range(unsigned long addr, unsigned long end,
2560
		unsigned int flags, struct page **pages, int *nr)
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2573
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2574 2575 2576 2577
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2578
					 PGDIR_SHIFT, next, flags, pages, nr))
2579
				return;
2580
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2581 2582 2583
			return;
	} while (pgdp++, addr = next, addr != end);
}
2584 2585 2586 2587 2588 2589
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2590 2591 2592 2593 2594 2595

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2596
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2597
{
2598
	return true;
2599 2600 2601
}
#endif

2602 2603
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2604 2605 2606
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
2607 2608 2609
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
2610 2611 2612 2613
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
2614
	unsigned long len, end;
2615
	unsigned long flags;
2616
	int nr = 0;
2617 2618 2619 2620 2621 2622 2623 2624
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
	 */
	unsigned int gup_flags = FOLL_GET;

	if (write)
		gup_flags |= FOLL_WRITE;
2625

2626
	start = untagged_addr(start) & PAGE_MASK;
2627 2628 2629
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2630 2631
	if (end <= start)
		return 0;
2632
	if (unlikely(!access_ok((void __user *)start, len)))
2633 2634 2635 2636 2637 2638 2639
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2640 2641
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2642 2643 2644 2645 2646
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2647 2648
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2649
		local_irq_save(flags);
2650
		gup_pgd_range(start, end, gup_flags, pages, &nr);
2651 2652
		local_irq_restore(flags);
	}
2653 2654 2655

	return nr;
}
2656
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2681 2682 2683
static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
					unsigned int gup_flags,
					struct page **pages)
2684
{
2685
	unsigned long addr, len, end;
2686
	int nr = 0, ret = 0;
2687

2688
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2689
				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2690 2691
		return -EINVAL;

2692
	start = untagged_addr(start) & PAGE_MASK;
2693 2694 2695 2696
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2697
	if (end <= start)
2698
		return 0;
2699
	if (unlikely(!access_ok((void __user *)start, len)))
2700
		return -EFAULT;
2701

2702 2703
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2704
		local_irq_disable();
2705
		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2706
		local_irq_enable();
2707 2708
		ret = nr;
	}
2709 2710 2711 2712 2713 2714

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2715 2716
		ret = __gup_longterm_unlocked(start, nr_pages - nr,
					      gup_flags, pages);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}
2729 2730 2731

/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2732 2733 2734 2735 2736
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;

2756 2757 2758 2759 2760 2761 2762
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2763 2764
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2765
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2766 2767 2768 2769

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 * see Documentation/vm/pin_user_pages.rst for further details.
2782 2783 2784 2785 2786 2787 2788
 *
 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2789 2790 2791 2792 2793 2794
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2795 2796 2797 2798 2799 2800
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

/**
 * pin_user_pages_remote() - pin pages of a remote process (task != current)
 *
J
John Hubbard 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 * see Documentation/vm/pin_user_pages.rst for details.
2822 2823 2824 2825 2826 2827 2828 2829 2830
 *
 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2831 2832 2833 2834 2835 2836 2837
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
				       pages, vmas, locked);
2838 2839 2840 2841 2842 2843
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 * see Documentation/vm/pin_user_pages.rst for details.
2858 2859 2860 2861 2862 2863 2864 2865
 *
 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
 * is NOT intended for Case 2 (RDMA: long-term pins).
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2866 2867 2868 2869 2870 2871 2872
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags);
2873 2874
}
EXPORT_SYMBOL(pin_user_pages);