gup.c 55.4 KB
Newer Older
1 2 3 4 5 6
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
7
#include <linux/memremap.h>
8 9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

13
#include <linux/sched/signal.h>
14
#include <linux/rwsem.h>
15
#include <linux/hugetlb.h>
16 17 18
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
19

20
#include <asm/mmu_context.h>
21
#include <asm/pgtable.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
33
{
34 35 36 37 38 39 40 41 42 43 44 45
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

71 72 73 74 75 76
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
77
	return pte_write(pte) ||
78 79 80
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

81
static struct page *follow_page_pte(struct vm_area_struct *vma,
82 83
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
84 85 86 87 88
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
89

90
retry:
91
	if (unlikely(pmd_bad(*pmd)))
92
		return no_page_table(vma, flags);
93 94 95 96 97 98 99 100 101 102 103 104

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
105
		if (pte_none(pte))
106 107 108 109 110 111
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
112
		goto retry;
113
	}
114
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
115
		goto no_page;
116
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
117 118 119
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
120 121

	page = vm_normal_page(vma, address, pte);
122 123 124 125 126
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
127 128
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
129 130 131 132
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
148 149
	}

150 151 152 153 154 155 156 157 158 159 160 161 162
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

163 164 165 166 167 168
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
169 170 171 172 173 174 175 176 177 178 179
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
180
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
181 182 183 184
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
206
out:
207 208 209 210 211
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
212 213 214 215
		return NULL;
	return no_page_table(vma, flags);
}

216 217
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
218 219
				    unsigned int flags,
				    struct follow_page_context *ctx)
220
{
221
	pmd_t *pmd, pmdval;
222 223 224 225
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

226
	pmd = pmd_offset(pudp, address);
227 228 229 230 231 232
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
233
		return no_page_table(vma, flags);
234
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
235 236 237 238
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
239
	}
240
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
241
		page = follow_huge_pd(vma, address,
242
				      __hugepd(pmd_val(pmdval)), flags,
243 244 245 246 247
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
248
retry:
249
	if (!pmd_present(pmdval)) {
250 251 252
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
253 254
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
255
			pmd_migration_entry_wait(mm, pmd);
256 257 258 259 260 261 262
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
263 264
		goto retry;
	}
265
	if (pmd_devmap(pmdval)) {
266
		ptl = pmd_lock(mm, pmd);
267
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
268 269 270 271
		spin_unlock(ptl);
		if (page)
			return page;
	}
272
	if (likely(!pmd_trans_huge(pmdval)))
273
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
274

275
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
276 277
		return no_page_table(vma, flags);

278
retry_locked:
279
	ptl = pmd_lock(mm, pmd);
280 281 282 283
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
284 285 286 287 288 289 290
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
291 292
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
293
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
294 295 296 297 298 299 300
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
301
			split_huge_pmd(vma, pmd, address);
302 303
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
304
		} else {
305 306 307 308
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
309
			spin_unlock(ptl);
310 311 312 313
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
314 315
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
316 317 318
		}

		return ret ? ERR_PTR(ret) :
319
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
320
	}
321 322
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
323
	ctx->page_mask = HPAGE_PMD_NR - 1;
324
	return page;
325 326
}

327 328
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
329 330
				    unsigned int flags,
				    struct follow_page_context *ctx)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
346 347 348 349 350 351 352 353
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
354 355
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
356
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
357 358 359 360 361 362 363
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

364
	return follow_pmd_mask(vma, address, pud, flags, ctx);
365 366 367 368
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
369 370
				    unsigned int flags,
				    struct follow_page_context *ctx)
371 372
{
	p4d_t *p4d;
373
	struct page *page;
374 375 376 377 378 379 380 381

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

382 383 384 385 386 387 388 389
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
390
	return follow_pud_mask(vma, address, p4d, flags, ctx);
391 392 393 394 395 396 397
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
398 399
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
400 401 402
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
403 404 405 406 407 408
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
409 410 411 412 413
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int flags,
414
			      struct follow_page_context *ctx)
415 416 417 418 419
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

420
	ctx->page_mask = 0;
421 422 423 424 425 426 427 428 429 430 431 432 433

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

434 435 436 437 438 439
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
440 441 442 443 444 445 446 447
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
448

449 450 451 452 453 454 455 456 457 458 459 460 461
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
462 463
}

464 465 466 467 468
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
469
	p4d_t *p4d;
470 471 472 473 474 475 476 477 478 479 480 481 482
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
483 484 485
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
486 487
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
488
	if (!pmd_present(*pmd))
489 490 491 492 493 494 495 496 497 498 499 500 501
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
502 503 504 505 506 507 508

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
509
	}
510 511 512 513
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
514 515 516 517 518 519 520
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

521 522 523 524 525
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
526 527 528 529
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
530
	vm_fault_t ret;
531

E
Eric B Munson 已提交
532 533 534
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
535 536
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
537 538
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
539 540 541 542
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
543 544 545 546
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
547

548
	ret = handle_mm_fault(vma, address, fault_flags);
549
	if (ret & VM_FAULT_ERROR) {
550 551 552 553
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
554 555 556 557 558 559 560 561 562 563 564
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
565
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
566 567 568 569 570 571 572 573 574 575 576 577 578 579
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
580
		*flags |= FOLL_COW;
581 582 583
	return 0;
}

584 585 586
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
587 588
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
589 590 591 592

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

593 594 595
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

596
	if (write) {
597 598 599 600 601 602 603 604 605 606 607 608
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
609
			if (!is_cow_mapping(vm_flags))
610 611 612 613 614 615 616 617 618 619 620 621
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
622 623 624 625 626
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
627
		return -EFAULT;
628 629 630
	return 0;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
651
 * Must be called with mmap_sem held.  It may be released.  See below.
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
674 675 676 677 678 679 680 681
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
682 683 684 685 686
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
687
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
688 689 690 691
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
692
	long ret = 0, i = 0;
693
	struct vm_area_struct *vma = NULL;
694
	struct follow_page_context ctx = { NULL };
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
710 711 712 713 714 715 716 717 718 719 720 721
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
722
					goto out;
723
				ctx.page_mask = 0;
724 725
				goto next_page;
			}
726

727 728 729 730
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
731 732 733
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
734
						gup_flags, nonblocking);
735
				continue;
736
			}
737 738 739 740 741 742
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
743
		if (fatal_signal_pending(current)) {
744 745 746
			ret = -ERESTARTSYS;
			goto out;
		}
747
		cond_resched();
748 749

		page = follow_page_mask(vma, start, foll_flags, &ctx);
750 751 752 753 754 755
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
756 757 758
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
759 760 761
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
762
				goto out;
763 764
			case -ENOENT:
				goto next_page;
765
			}
766
			BUG();
767 768 769 770 771 772 773
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
774 775
			ret = PTR_ERR(page);
			goto out;
776
		}
777 778 779 780
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
781
			ctx.page_mask = 0;
782 783
		}
next_page:
784 785
		if (vmas) {
			vmas[i] = vma;
786
			ctx.page_mask = 0;
787
		}
788
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
789 790 791 792 793
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
794
	} while (nr_pages);
795 796 797 798
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
799 800
}

801 802
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
803
{
804 805
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
806
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
807 808 809 810

	if (!(vm_flags & vma->vm_flags))
		return false;

811 812
	/*
	 * The architecture might have a hardware protection
813
	 * mechanism other than read/write that can deny access.
814 815 816
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
817
	 */
818
	if (!arch_vma_access_permitted(vma, write, false, foreign))
819 820
		return false;

821 822 823
	return true;
}

824 825 826 827 828 829 830
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
831 832
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
833 834 835 836 837 838 839 840 841 842 843
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
844
 * get_user_pages() only guarantees to update these in the struct page.
845 846 847 848 849 850
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
851 852
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
853 854
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
855 856
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
857 858
{
	struct vm_area_struct *vma;
859
	vm_fault_t ret, major = 0;
860 861 862

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
863

864
retry:
865 866 867 868
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

869
	if (!vma_permits_fault(vma, fault_flags))
870 871
		return -EFAULT;

872
	ret = handle_mm_fault(vma, address, fault_flags);
873
	major |= ret & VM_FAULT_MAJOR;
874
	if (ret & VM_FAULT_ERROR) {
875 876 877 878
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
879 880
		BUG();
	}
881 882 883 884 885 886 887 888 889 890 891

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

892
	if (tsk) {
893
		if (major)
894 895 896 897 898 899
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
900
EXPORT_SYMBOL_GPL(fixup_user_fault);
901

902 903 904 905 906 907
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
908
						int *locked,
909
						unsigned int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (!pages)
			/* If it's a prefault don't insist harder */
			return ret;

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
950 951 952 953
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
			if (!pages_done)
				pages_done = ret;
			break;
		}
		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
		pages += ret;
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
		pages++;
		start += PAGE_SIZE;
	}
985
	if (lock_dropped && *locked) {
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
1017
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1018
			   unsigned int gup_flags, struct page **pages,
1019 1020
			   int *locked)
{
1021
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1022
				       pages, NULL, locked,
1023
				       gup_flags | FOLL_TOUCH);
1024
}
1025
EXPORT_SYMBOL(get_user_pages_locked);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
1039 1040
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1041
 */
1042
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1043
			     struct page **pages, unsigned int gup_flags)
1044
{
1045 1046 1047 1048 1049 1050
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1051
				      &locked, gup_flags | FOLL_TOUCH);
1052 1053 1054
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1055
}
1056
EXPORT_SYMBOL(get_user_pages_unlocked);
1057

1058
/*
1059
 * get_user_pages_remote() - pin user pages in memory
1060 1061 1062 1063 1064
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1065
 * @gup_flags:	flags modifying lookup behaviour
1066 1067 1068 1069 1070
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1071 1072 1073
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1097 1098 1099
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1100 1101 1102 1103 1104 1105 1106 1107
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1108 1109 1110 1111 1112
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1113
 */
1114 1115
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1116
		unsigned int gup_flags, struct page **pages,
1117
		struct vm_area_struct **vmas, int *locked)
1118
{
1119
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1120
				       locked,
1121
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1122 1123 1124 1125
}
EXPORT_SYMBOL(get_user_pages_remote);

/*
1126 1127
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
1128 1129 1130
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
1131
 */
1132
long get_user_pages(unsigned long start, unsigned long nr_pages,
1133
		unsigned int gup_flags, struct page **pages,
1134 1135
		struct vm_area_struct **vmas)
{
1136
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1137
				       pages, vmas, NULL,
1138
				       gup_flags | FOLL_TOUCH);
1139
}
1140
EXPORT_SYMBOL(get_user_pages);
1141

1142 1143
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)

1144
#ifdef CONFIG_FS_DAX
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}
#else
static inline bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	return false;
}
#endif

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

static long check_and_migrate_cma_pages(unsigned long start, long nr_pages,
					unsigned int gup_flags,
					struct page **pages,
					struct vm_area_struct **vmas)
{
	long i;
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);

check_again:
	for (i = 0; i < nr_pages; i++) {
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
		if (is_migrate_cma_page(pages[i])) {

			struct page *head = compound_head(pages[i]);

			if (PageHuge(head)) {
				isolate_huge_page(head, &cma_page_list);
			} else {
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
		 * We did migrate all the pages, Try to get the page references again
		 * migrating any new CMA pages which we failed to isolate earlier.
		 */
		nr_pages = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
		if ((nr_pages > 0) && migrate_allow) {
			drain_allow = true;
			goto check_again;
		}
	}

	return nr_pages;
}
#else
static inline long check_and_migrate_cma_pages(unsigned long start, long nr_pages,
					       unsigned int gup_flags,
					       struct page **pages,
					       struct vm_area_struct **vmas)
{
	return nr_pages;
}
#endif

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * This is the same as get_user_pages() in that it assumes we are
 * operating on the current task's mm, but it goes further to validate
 * that the vmas associated with the address range are suitable for
 * longterm elevated page reference counts. For example, filesystem-dax
 * mappings are subject to the lifetime enforced by the filesystem and
 * we need guarantees that longterm users like RDMA and V4L2 only
 * establish mappings that have a kernel enforced revocation mechanism.
 *
 * "longterm" == userspace controlled elevated page count lifetime.
 * Contrast this to iov_iter_get_pages() usages which are transient.
 */
long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1316 1317
			     unsigned int gup_flags, struct page **pages,
			     struct vm_area_struct **vmas_arg)
1318 1319
{
	struct vm_area_struct **vmas = vmas_arg;
1320
	unsigned long flags;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	long rc, i;

	if (!pages)
		return -EINVAL;

	if (!vmas) {
		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
			       GFP_KERNEL);
		if (!vmas)
			return -ENOMEM;
	}

1333
	flags = memalloc_nocma_save();
1334
	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1335 1336 1337
	memalloc_nocma_restore(flags);
	if (rc < 0)
		goto out;
1338

1339 1340 1341 1342
	if (check_dax_vmas(vmas, rc)) {
		for (i = 0; i < rc; i++)
			put_page(pages[i]);
		rc = -EOPNOTSUPP;
1343
		goto out;
1344
	}
1345

1346
	rc = check_and_migrate_cma_pages(start, rc, gup_flags, pages, vmas);
1347 1348 1349 1350 1351 1352 1353 1354
out:
	if (vmas != vmas_arg)
		kfree(vmas);
	return rc;
}
EXPORT_SYMBOL(get_user_pages_longterm);
#endif /* CONFIG_FS_DAX */

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

E
Eric B Munson 已提交
1387 1388 1389
	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

1473 1474 1475 1476 1477
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
1478
 * to be freed afterwards by put_page().
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1501 1502

/*
1503
 * Generic Fast GUP
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1524 1525
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1526 1527 1528 1529 1530 1531 1532 1533 1534
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1535
#ifdef CONFIG_HAVE_GENERIC_GUP
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
#ifndef gup_get_pte
/*
 * We assume that the PTE can be read atomically. If this is not the case for
 * your architecture, please provide the helper.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1572
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1573 1574 1575
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
1576 1577
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1578 1579 1580 1581
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1582
		pte_t pte = gup_get_pte(ptep);
1583
		struct page *head, *page;
1584 1585 1586

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1587
		 * path using the pte_protnone check.
1588
		 */
1589 1590 1591 1592 1593 1594
		if (pte_protnone(pte))
			goto pte_unmap;

		if (!pte_access_permitted(pte, write))
			goto pte_unmap;

1595 1596 1597 1598 1599 1600 1601
		if (pte_devmap(pte)) {
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1602 1603 1604 1605 1606
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1607 1608
		head = try_get_compound_head(page, 1);
		if (!head)
1609 1610 1611
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1612
			put_page(head);
1613 1614 1615
			goto pte_unmap;
		}

1616
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1617 1618

		SetPageReferenced(page);
1619 1620 1621 1622 1623 1624 1625 1626
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1627 1628
	if (pgmap)
		put_dev_pagemap(pgmap);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	return 0;
}
1648
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1649

1650
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1671 1672 1673

	if (pgmap)
		put_dev_pagemap(pgmap);
1674 1675 1676
	return 1;
}

1677
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1678 1679 1680
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1681 1682 1683 1684 1685
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1686

1687 1688 1689 1690 1691
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1692 1693
}

1694
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1695 1696 1697
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1698 1699 1700 1701 1702
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1703

1704 1705 1706 1707 1708
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1709 1710
}
#else
1711
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1712 1713 1714 1715 1716 1717
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1718
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1719 1720 1721 1722 1723 1724 1725
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1726 1727 1728
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1729
	struct page *head, *page;
1730 1731
	int refs;

1732
	if (!pmd_access_permitted(orig, write))
1733 1734
		return 0;

1735
	if (pmd_devmap(orig))
1736
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1737

1738
	refs = 0;
1739
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1740 1741 1742 1743 1744 1745 1746
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1747 1748
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1760
	SetPageReferenced(head);
1761 1762 1763 1764 1765 1766
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1767
	struct page *head, *page;
1768 1769
	int refs;

1770
	if (!pud_access_permitted(orig, write))
1771 1772
		return 0;

1773
	if (pud_devmap(orig))
1774
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1775

1776
	refs = 0;
1777
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1778 1779 1780 1781 1782 1783 1784
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1785 1786
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1798
	SetPageReferenced(head);
1799 1800 1801
	return 1;
}

1802 1803 1804 1805 1806
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
			unsigned long end, int write,
			struct page **pages, int *nr)
{
	int refs;
1807
	struct page *head, *page;
1808

1809
	if (!pgd_access_permitted(orig, write))
1810 1811
		return 0;

1812
	BUILD_BUG_ON(pgd_devmap(orig));
1813
	refs = 0;
1814
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1815 1816 1817 1818 1819 1820 1821
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1822 1823
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1835
	SetPageReferenced(head);
1836 1837 1838
	return 1;
}

1839 1840 1841 1842 1843 1844 1845 1846
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
1847
		pmd_t pmd = READ_ONCE(*pmdp);
1848 1849

		next = pmd_addr_end(addr, end);
1850
		if (!pmd_present(pmd))
1851 1852
			return 0;

Y
Yu Zhao 已提交
1853 1854
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
1855 1856 1857 1858 1859
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
1860
			if (pmd_protnone(pmd))
1861 1862 1863 1864 1865 1866
				return 0;

			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
				pages, nr))
				return 0;

1867 1868 1869 1870 1871 1872 1873 1874
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
					 PMD_SHIFT, next, write, pages, nr))
				return 0;
1875
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1876
			return 0;
1877 1878 1879 1880 1881
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

1882
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1883
			 int write, struct page **pages, int *nr)
1884 1885 1886 1887
{
	unsigned long next;
	pud_t *pudp;

1888
	pudp = pud_offset(&p4d, addr);
1889
	do {
1890
		pud_t pud = READ_ONCE(*pudp);
1891 1892 1893 1894

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
1895
		if (unlikely(pud_huge(pud))) {
1896
			if (!gup_huge_pud(pud, pudp, addr, next, write,
1897 1898 1899 1900 1901
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
					 PUD_SHIFT, next, write, pages, nr))
1902 1903 1904 1905 1906 1907 1908 1909
				return 0;
		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
					 P4D_SHIFT, next, write, pages, nr))
				return 0;
1928
		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1929 1930 1931 1932 1933 1934
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static void gup_pgd_range(unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
					 PGDIR_SHIFT, next, write, pages, nr))
				return;
		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
			return;
	} while (pgdp++, addr = next, addr != end);
}

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
1966
bool gup_fast_permitted(unsigned long start, int nr_pages)
1967 1968 1969 1970 1971 1972 1973 1974 1975
{
	unsigned long len, end;

	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	return end >= start;
}
#endif

1976 1977
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1978 1979 1980
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
1981 1982 1983 1984
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
1985
	unsigned long len, end;
1986
	unsigned long flags;
1987 1988 1989 1990 1991 1992
	int nr = 0;

	start &= PAGE_MASK;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

1993
	if (unlikely(!access_ok((void __user *)start, len)))
1994 1995 1996 1997 1998 1999 2000
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2001 2002
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2003 2004 2005 2006 2007
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2008
	if (gup_fast_permitted(start, nr_pages)) {
2009
		local_irq_save(flags);
2010
		gup_pgd_range(start, end, write, pages, &nr);
2011 2012
		local_irq_restore(flags);
	}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

	return nr;
}

/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages)
{
2036
	unsigned long addr, len, end;
2037
	int nr = 0, ret = 0;
2038 2039

	start &= PAGE_MASK;
2040 2041 2042 2043
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2044 2045 2046
	if (nr_pages <= 0)
		return 0;

2047
	if (unlikely(!access_ok((void __user *)start, len)))
2048
		return -EFAULT;
2049

2050
	if (gup_fast_permitted(start, nr_pages)) {
2051 2052 2053
		local_irq_disable();
		gup_pgd_range(addr, end, write, pages, &nr);
		local_irq_enable();
2054 2055
		ret = nr;
	}
2056 2057 2058 2059 2060 2061

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2062 2063
		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
				write ? FOLL_WRITE : 0);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}

2077
#endif /* CONFIG_HAVE_GENERIC_GUP */