gup.c 81.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
81 82
__maybe_unused struct page *try_grab_compound_head(struct page *page,
						   int refs, unsigned int flags)
J
John Hubbard 已提交
83 84 85 86
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
87 88
		int orig_refs = refs;

89 90 91 92 93 94 95 96
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

115 116 117
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

118
		return page;
J
John Hubbard 已提交
119 120 121 122 123 124
	}

	WARN_ON_ONCE(1);
	return NULL;
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
	if (flags & FOLL_PIN) {
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

J
John Hubbard 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
175 176
		int refs = 1;

J
John Hubbard 已提交
177 178 179 180 181
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

182 183 184 185 186 187 188 189 190 191 192 193
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
194 195

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	}

	return true;
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
212
	put_compound_head(compound_head(page), 1, FOLL_PIN);
J
John Hubbard 已提交
213 214 215
}
EXPORT_SYMBOL(unpin_user_page);

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static inline void compound_next(unsigned long i, unsigned long npages,
				 struct page **list, struct page **head,
				 unsigned int *ntails)
{
	struct page *page;
	unsigned int nr;

	if (i >= npages)
		return;

	page = compound_head(list[i]);
	for (nr = i + 1; nr < npages; nr++) {
		if (compound_head(list[nr]) != page)
			break;
	}

	*head = page;
	*ntails = nr - i;
}

#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
	for (__i = 0, \
	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
	     __i < __npages; __i += __ntails, \
	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))

242
/**
243
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
244
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
245
 * @npages: number of pages in the @pages array.
246
 * @make_dirty: whether to mark the pages dirty
247 248 249 250 251
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
252
 * compound page) dirty, if @make_dirty is true, and if the page was previously
253 254
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
255
 *
256
 * Please see the unpin_user_page() documentation for details.
257
 *
258 259 260
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
261
 * set_page_dirty_lock(), unpin_user_page().
262 263
 *
 */
264 265
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
266
{
267
	unsigned long index;
268

269 270 271 272 273 274 275
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
276
		unpin_user_pages(pages, npages);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
304
		unpin_user_page(page);
305
	}
306
}
307
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
308 309

/**
310
 * unpin_user_pages() - release an array of gup-pinned pages.
311 312 313
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
314
 * For each page in the @pages array, release the page using unpin_user_page().
315
 *
316
 * Please see the unpin_user_page() documentation for details.
317
 */
318
void unpin_user_pages(struct page **pages, unsigned long npages)
319 320 321
{
	unsigned long index;

322 323 324 325 326 327 328
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
329 330 331 332 333 334
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
335
		unpin_user_page(pages[index]);
336
}
337
EXPORT_SYMBOL(unpin_user_pages);
338

339
#ifdef CONFIG_MMU
340 341
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
342
{
343 344 345 346 347 348 349 350
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
351 352
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
353 354 355
		return ERR_PTR(-EFAULT);
	return NULL;
}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

381
/*
382 383
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
384 385 386
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
387 388
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
389 390
}

391
static struct page *follow_page_pte(struct vm_area_struct *vma,
392 393
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
394 395 396 397 398
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
399
	int ret;
400

401 402 403 404
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
405
retry:
406
	if (unlikely(pmd_bad(*pmd)))
407
		return no_page_table(vma, flags);
408 409 410 411 412 413 414 415 416 417 418 419

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
420
		if (pte_none(pte))
421 422 423 424 425 426
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
427
		goto retry;
428
	}
429
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
430
		goto no_page;
431
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
432 433 434
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
435 436

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
437
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
438
		/*
J
John Hubbard 已提交
439 440 441
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
442
		 */
443 444
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
445 446 447 448
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
449 450 451 452 453 454 455 456 457 458 459 460 461
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
462 463
	}

464 465 466 467 468 469 470 471 472 473 474 475
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
476 477 478 479
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
480
	}
481 482 483 484 485 486 487 488 489 490 491 492 493
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
494 495 496 497 498 499 500 501 502 503 504
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
505
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
506 507 508 509
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
531
out:
532 533 534 535 536
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
537 538 539 540
		return NULL;
	return no_page_table(vma, flags);
}

541 542
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
543 544
				    unsigned int flags,
				    struct follow_page_context *ctx)
545
{
546
	pmd_t *pmd, pmdval;
547 548 549 550
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

551
	pmd = pmd_offset(pudp, address);
552 553 554 555 556 557
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
558
		return no_page_table(vma, flags);
559
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
560 561 562 563
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
564
	}
565
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
566
		page = follow_huge_pd(vma, address,
567
				      __hugepd(pmd_val(pmdval)), flags,
568 569 570 571 572
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
573
retry:
574
	if (!pmd_present(pmdval)) {
575 576 577
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
578 579
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
580
			pmd_migration_entry_wait(mm, pmd);
581 582 583
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
584
		 * mmap_lock is held in read mode
585 586 587
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
588 589
		goto retry;
	}
590
	if (pmd_devmap(pmdval)) {
591
		ptl = pmd_lock(mm, pmd);
592
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
593 594 595 596
		spin_unlock(ptl);
		if (page)
			return page;
	}
597
	if (likely(!pmd_trans_huge(pmdval)))
598
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
599

600
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
601 602
		return no_page_table(vma, flags);

603
retry_locked:
604
	ptl = pmd_lock(mm, pmd);
605 606 607 608
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
609 610 611 612 613 614 615
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
616 617
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
618
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
619
	}
S
Song Liu 已提交
620
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
621 622 623 624 625
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
626
			split_huge_pmd(vma, pmd, address);
627 628
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
629
		} else if (flags & FOLL_SPLIT) {
630 631 632 633
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
634
			spin_unlock(ptl);
635 636 637 638
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
639 640
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
641 642 643 644
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
645 646 647
		}

		return ret ? ERR_PTR(ret) :
648
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
649
	}
650 651
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
652
	ctx->page_mask = HPAGE_PMD_NR - 1;
653
	return page;
654 655
}

656 657
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
658 659
				    unsigned int flags,
				    struct follow_page_context *ctx)
660 661 662 663 664 665 666 667 668
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
669
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
670 671 672 673 674
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
675 676 677 678 679 680 681 682
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
683 684
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
685
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
686 687 688 689 690 691 692
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

693
	return follow_pmd_mask(vma, address, pud, flags, ctx);
694 695 696 697
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
698 699
				    unsigned int flags,
				    struct follow_page_context *ctx)
700 701
{
	p4d_t *p4d;
702
	struct page *page;
703 704 705 706 707 708 709 710

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

711 712 713 714 715 716 717 718
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
719
	return follow_pud_mask(vma, address, p4d, flags, ctx);
720 721 722 723 724 725 726
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
727 728
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
729 730 731
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
732 733 734 735 736 737
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
738 739 740
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
741
static struct page *follow_page_mask(struct vm_area_struct *vma,
742
			      unsigned long address, unsigned int flags,
743
			      struct follow_page_context *ctx)
744 745 746 747 748
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

749
	ctx->page_mask = 0;
750 751 752 753

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
754
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
755 756 757 758 759 760 761 762
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

763 764 765 766 767 768
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
769 770 771 772 773 774 775 776
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
777

778 779 780 781 782 783 784 785 786 787 788 789 790
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
791 792
}

793 794 795 796 797
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
798
	p4d_t *p4d;
799 800 801 802 803 804 805 806 807 808 809 810
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
811 812
	if (pgd_none(*pgd))
		return -EFAULT;
813
	p4d = p4d_offset(pgd, address);
814 815
	if (p4d_none(*p4d))
		return -EFAULT;
816
	pud = pud_offset(p4d, address);
817 818
	if (pud_none(*pud))
		return -EFAULT;
819
	pmd = pmd_offset(pud, address);
820
	if (!pmd_present(*pmd))
821 822 823 824 825 826 827 828 829 830 831 832 833 834
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
835
	if (unlikely(!try_grab_page(*page, gup_flags))) {
836 837 838
		ret = -ENOMEM;
		goto unmap;
	}
839 840 841 842 843 844 845
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

846
/*
847 848
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
849
 * is, *@locked will be set to 0 and -EBUSY returned.
850
 */
851
static int faultin_page(struct vm_area_struct *vma,
852
		unsigned long address, unsigned int *flags, int *locked)
853 854
{
	unsigned int fault_flags = 0;
855
	vm_fault_t ret;
856

E
Eric B Munson 已提交
857 858 859
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
860 861
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
862 863
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
864
	if (locked)
865
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
866 867
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
868
	if (*flags & FOLL_TRIED) {
869 870 871 872
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
873 874
		fault_flags |= FAULT_FLAG_TRIED;
	}
875

876
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
877
	if (ret & VM_FAULT_ERROR) {
878 879 880 881
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
882 883 884 885
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
886 887
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
888 889 890 891 892 893 894 895 896 897 898 899 900
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
901
		*flags |= FOLL_COW;
902 903 904
	return 0;
}

905 906 907
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
908 909
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
910 911 912 913

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

914 915 916
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

917 918 919
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

920
	if (write) {
921 922 923 924 925 926 927 928 929 930 931 932
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
933
			if (!is_cow_mapping(vm_flags))
934 935 936 937 938 939 940 941 942 943 944 945
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
946 947 948 949 950
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
951
		return -EFAULT;
952 953 954
	return 0;
}

955 956 957 958 959 960 961 962 963 964 965
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
966
 * @locked:     whether we're still with the mmap_lock held
967
 *
968 969 970 971 972 973 974
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
975
 * -- 0 return value is possible when the fault would need to be retried.
976 977 978
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
979
 * @vmas are valid only as long as mmap_lock is held.
980
 *
981
 * Must be called with mmap_lock held.  It may be released.  See below.
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1002
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1003 1004
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1005
 *
1006
 * A caller using such a combination of @locked and @gup_flags
1007
 * must therefore hold the mmap_lock for reading only, and recognize
1008 1009
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1010 1011 1012 1013 1014
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1015
static long __get_user_pages(struct mm_struct *mm,
1016 1017
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1018
		struct vm_area_struct **vmas, int *locked)
1019
{
1020
	long ret = 0, i = 0;
1021
	struct vm_area_struct *vma = NULL;
1022
	struct follow_page_context ctx = { NULL };
1023 1024 1025 1026

	if (!nr_pages)
		return 0;

1027 1028
	start = untagged_addr(start);

1029
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1052
					goto out;
1053
				ctx.page_mask = 0;
1054 1055
				goto next_page;
			}
1056

1057
			if (!vma) {
1058 1059 1060
				ret = -EFAULT;
				goto out;
			}
1061 1062 1063 1064
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1065 1066 1067
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1068
						gup_flags, locked);
1069 1070 1071
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1072
					 * and we've lost mmap_lock.
1073 1074 1075 1076 1077 1078
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1079
				continue;
1080
			}
1081 1082 1083 1084 1085 1086
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1087
		if (fatal_signal_pending(current)) {
1088
			ret = -EINTR;
1089 1090
			goto out;
		}
1091
		cond_resched();
1092 1093

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1094
		if (!page) {
1095
			ret = faultin_page(vma, start, &foll_flags, locked);
1096 1097 1098
			switch (ret) {
			case 0:
				goto retry;
1099 1100
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1101
				fallthrough;
1102 1103 1104
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1105
				goto out;
1106 1107
			case -ENOENT:
				goto next_page;
1108
			}
1109
			BUG();
1110 1111 1112 1113 1114 1115 1116
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1117 1118
			ret = PTR_ERR(page);
			goto out;
1119
		}
1120 1121 1122 1123
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1124
			ctx.page_mask = 0;
1125 1126
		}
next_page:
1127 1128
		if (vmas) {
			vmas[i] = vma;
1129
			ctx.page_mask = 0;
1130
		}
1131
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1132 1133 1134 1135 1136
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1137
	} while (nr_pages);
1138 1139 1140 1141
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1142 1143
}

1144 1145
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1146
{
1147 1148
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1149
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1150 1151 1152 1153

	if (!(vm_flags & vma->vm_flags))
		return false;

1154 1155
	/*
	 * The architecture might have a hardware protection
1156
	 * mechanism other than read/write that can deny access.
1157 1158 1159
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1160
	 */
1161
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1162 1163
		return false;

1164 1165 1166
	return true;
}

1167
/**
1168 1169 1170 1171
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1172
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1173 1174
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1186
 * get_user_pages() only guarantees to update these in the struct page.
1187 1188 1189 1190 1191 1192
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1193 1194
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1195
 */
1196
int fixup_user_fault(struct mm_struct *mm,
1197 1198
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1199 1200
{
	struct vm_area_struct *vma;
1201
	vm_fault_t ret, major = 0;
1202

1203 1204
	address = untagged_addr(address);

1205
	if (unlocked)
1206
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1207

1208
retry:
1209 1210 1211 1212
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1213
	if (!vma_permits_fault(vma, fault_flags))
1214 1215
		return -EFAULT;

1216 1217 1218 1219
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1220
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1221
	major |= ret & VM_FAULT_MAJOR;
1222
	if (ret & VM_FAULT_ERROR) {
1223 1224 1225 1226
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1227 1228
		BUG();
	}
1229 1230

	if (ret & VM_FAULT_RETRY) {
1231
		mmap_read_lock(mm);
1232 1233 1234
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1235 1236
	}

1237 1238
	return 0;
}
1239
EXPORT_SYMBOL_GPL(fixup_user_fault);
1240

1241 1242 1243 1244
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1245
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1246 1247 1248 1249
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1250
						int *locked,
1251
						unsigned int flags)
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

P
Peter Xu 已提交
1263
	if (flags & FOLL_PIN)
1264
		atomic_set(&mm->has_pinned, 1);
P
Peter Xu 已提交
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1276 1277 1278 1279 1280
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1281
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1300 1301 1302 1303
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1304 1305 1306 1307
			if (!pages_done)
				pages_done = ret;
			break;
		}
1308 1309 1310 1311 1312 1313
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1314
		start += ret << PAGE_SHIFT;
1315
		lock_dropped = true;
1316

1317
retry:
1318 1319
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1320 1321 1322 1323
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1324
		 */
1325

1326 1327 1328
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1329
			break;
1330
		}
1331

1332
		ret = mmap_read_lock_killable(mm);
1333 1334 1335 1336 1337 1338
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1339

1340
		*locked = 1;
1341
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1342 1343 1344 1345 1346 1347
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1358 1359
		if (likely(pages))
			pages++;
1360 1361
		start += PAGE_SIZE;
	}
1362
	if (lock_dropped && *locked) {
1363 1364 1365 1366
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1367
		mmap_read_unlock(mm);
1368 1369 1370 1371 1372
		*locked = 0;
	}
	return pages_done;
}

1373 1374 1375 1376 1377
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1378
 * @locked: whether the mmap_lock is still held
1379 1380 1381
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1382 1383
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1384
 *
1385
 * vma->vm_mm->mmap_lock must be held.
1386
 *
1387
 * If @locked is NULL, it may be held for read or write and will
1388 1389
 * be unperturbed.
 *
1390 1391
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1392 1393
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1394
		unsigned long start, unsigned long end, int *locked)
1395 1396 1397 1398 1399 1400 1401 1402 1403
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1404
	mmap_assert_locked(mm);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1421
	if (vma_is_accessible(vma))
1422 1423 1424 1425 1426 1427
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1428
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1429
				NULL, NULL, locked);
1430 1431 1432 1433 1434 1435 1436
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1437
 * mmap_lock must not be held.
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1456
			mmap_read_lock(mm);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1488
		mmap_read_unlock(mm);
1489 1490
	return ret;	/* 0 or negative error code */
}
1491
#else /* CONFIG_MMU */
1492
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1548
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1549 1550 1551 1552
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1553
	struct mm_struct *mm = current->mm;
1554
	struct page *page;
1555 1556
	int locked = 1;
	int ret;
1557

1558
	if (mmap_read_lock_killable(mm))
1559
		return NULL;
1560 1561 1562 1563
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
1564 1565 1566 1567

	if (ret == 1 && is_page_poisoned(page))
		return NULL;

1568
	return (ret == 1) ? page : NULL;
1569 1570 1571
}
#endif /* CONFIG_ELF_CORE */

1572
#ifdef CONFIG_CMA
1573
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1574 1575
					unsigned long start,
					unsigned long nr_pages,
1576
					struct page **pages,
1577 1578
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1579
{
1580 1581
	unsigned long i;
	unsigned long step;
1582 1583 1584
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1585
	long ret = nr_pages;
1586 1587 1588 1589
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1590 1591

check_again:
1592 1593 1594 1595 1596 1597 1598 1599
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1600
		step = compound_nr(head) - (pages[i] - head);
1601 1602 1603 1604 1605
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1606 1607
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1608
				isolate_huge_page(head, &cma_page_list);
1609
			else {
1610 1611 1612 1613 1614 1615 1616 1617 1618
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1619
							    page_is_file_lru(head),
1620
							    thp_nr_pages(head));
1621 1622 1623
				}
			}
		}
1624 1625

		i += step;
1626 1627 1628 1629 1630 1631
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
1632 1633 1634 1635 1636
		if (gup_flags & FOLL_PIN)
			unpin_user_pages(pages, nr_pages);
		else
			for (i = 0; i < nr_pages; i++)
				put_page(pages[i]);
1637

1638 1639
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1650 1651 1652
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1653
		 */
1654
		ret = __get_user_pages_locked(mm, start, nr_pages,
1655 1656 1657
						   pages, vmas, NULL,
						   gup_flags);

1658 1659
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1660 1661 1662 1663 1664
			drain_allow = true;
			goto check_again;
		}
	}

1665
	return ret;
1666 1667
}
#else
1668
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1669 1670 1671 1672 1673
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1674 1675 1676
{
	return nr_pages;
}
1677
#endif /* CONFIG_CMA */
1678

1679
/*
1680 1681
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1682
 */
1683
static long __gup_longterm_locked(struct mm_struct *mm,
1684 1685 1686 1687 1688
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1689
{
1690
	unsigned long flags = 0;
1691
	long rc;
1692

1693
	if (gup_flags & FOLL_LONGTERM)
1694
		flags = memalloc_nocma_save();
1695

1696 1697
	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
				     gup_flags);
1698

1699
	if (gup_flags & FOLL_LONGTERM) {
1700 1701 1702
		if (rc > 0)
			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
							 vmas, gup_flags);
1703
		memalloc_nocma_restore(flags);
1704
	}
1705 1706
	return rc;
}
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1727
#ifdef CONFIG_MMU
1728
static long __get_user_pages_remote(struct mm_struct *mm,
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1747
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1748 1749 1750 1751
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1752
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1753 1754 1755 1756
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1757
/**
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1782
 * @vmas are valid only as long as mmap_lock is held.
1783
 *
1784
 * Must be called with mmap_lock held for read or write.
1785
 *
1786 1787
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1788 1789 1790 1791
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1792
 * get_user_pages_remote returns, and there may even be a completely different
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1804 1805 1806 1807 1808
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1809 1810 1811
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1812
 * get_user_pages_remote should be phased out in favor of
1813
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1814
 * should use get_user_pages_remote because it cannot pass
1815 1816
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1817
long get_user_pages_remote(struct mm_struct *mm,
1818 1819 1820 1821
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1822
	if (!is_valid_gup_flags(gup_flags))
1823 1824
		return -EINVAL;

1825
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1826
				       pages, vmas, locked);
1827 1828 1829
}
EXPORT_SYMBOL(get_user_pages_remote);

1830
#else /* CONFIG_MMU */
1831
long get_user_pages_remote(struct mm_struct *mm,
1832 1833 1834 1835 1836 1837
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1838

1839
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1840 1841 1842 1843 1844 1845
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1846 1847
#endif /* !CONFIG_MMU */

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1859 1860 1861 1862
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1863 1864 1865 1866 1867
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1868
	if (!is_valid_gup_flags(gup_flags))
1869 1870
		return -EINVAL;

1871
	return __gup_longterm_locked(current->mm, start, nr_pages,
1872 1873 1874
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1875

1876
/**
M
Mauro Carvalho Chehab 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
 * get_user_pages_locked() - variant of get_user_pages()
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * It is suitable to replace the form:
1890
 *
1891
 *      mmap_read_lock(mm);
1892
 *      do_something()
1893
 *      get_user_pages(mm, ..., pages, NULL);
1894
 *      mmap_read_unlock(mm);
1895
 *
1896
 *  to:
1897
 *
1898
 *      int locked = 1;
1899
 *      mmap_read_lock(mm);
1900
 *      do_something()
1901
 *      get_user_pages_locked(mm, ..., pages, &locked);
1902
 *      if (locked)
1903
 *          mmap_read_unlock(mm);
1904 1905 1906 1907 1908
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1909
 */
1910 1911 1912
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1913 1914
{
	/*
1915 1916 1917 1918
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1919
	 */
1920 1921
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1922 1923 1924 1925 1926 1927
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1928

1929
	return __get_user_pages_locked(current->mm, start, nr_pages,
1930 1931
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1932
}
1933
EXPORT_SYMBOL(get_user_pages_locked);
1934 1935

/*
1936
 * get_user_pages_unlocked() is suitable to replace the form:
1937
 *
1938
 *      mmap_read_lock(mm);
1939
 *      get_user_pages(mm, ..., pages, NULL);
1940
 *      mmap_read_unlock(mm);
1941 1942 1943
 *
 *  with:
 *
1944
 *      get_user_pages_unlocked(mm, ..., pages);
1945 1946 1947 1948
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1949
 */
1950 1951
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1952 1953
{
	struct mm_struct *mm = current->mm;
1954 1955
	int locked = 1;
	long ret;
1956

1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1965

1966
	mmap_read_lock(mm);
1967
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1968
				      &locked, gup_flags | FOLL_TOUCH);
1969
	if (locked)
1970
		mmap_read_unlock(mm);
1971
	return ret;
1972
}
1973
EXPORT_SYMBOL(get_user_pages_unlocked);
1974 1975

/*
1976
 * Fast GUP
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1997
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1998
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1999 2000 2001 2002 2003 2004 2005 2006 2007
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2008
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2009

2010
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2011
					    unsigned int flags,
2012
					    struct page **pages)
2013 2014 2015 2016 2017
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2018 2019 2020 2021
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2022 2023 2024
	}
}

2025
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2026
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2027
			 unsigned int flags, struct page **pages, int *nr)
2028
{
2029 2030
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2031 2032 2033 2034
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2035
		pte_t pte = ptep_get_lockless(ptep);
2036
		struct page *head, *page;
2037 2038 2039

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2040
		 * path using the pte_protnone check.
2041
		 */
2042 2043 2044
		if (pte_protnone(pte))
			goto pte_unmap;

2045
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2046 2047
			goto pte_unmap;

2048
		if (pte_devmap(pte)) {
2049 2050 2051
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2052 2053
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2054
				undo_dev_pagemap(nr, nr_start, flags, pages);
2055 2056 2057
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2058 2059 2060 2061 2062
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2063
		head = try_grab_compound_head(page, 1, flags);
2064
		if (!head)
2065 2066 2067
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2068
			put_compound_head(head, 1, flags);
2069 2070 2071
			goto pte_unmap;
		}

2072
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2087
		SetPageReferenced(page);
2088 2089 2090 2091 2092 2093 2094 2095
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2096 2097
	if (pgmap)
		put_dev_pagemap(pgmap);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2109
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2110 2111 2112
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2113
			 unsigned int flags, struct page **pages, int *nr)
2114 2115 2116
{
	return 0;
}
2117
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2118

R
Robin Murphy 已提交
2119
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2120
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2121 2122
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2123 2124 2125 2126 2127 2128 2129 2130 2131
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2132
			undo_dev_pagemap(nr, nr_start, flags, pages);
2133 2134 2135 2136
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2137 2138 2139 2140
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2141 2142 2143
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2144 2145 2146

	if (pgmap)
		put_dev_pagemap(pgmap);
2147 2148 2149
	return 1;
}

2150
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2151 2152
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2153 2154
{
	unsigned long fault_pfn;
2155 2156 2157
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2158
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2159
		return 0;
2160

2161
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2162
		undo_dev_pagemap(nr, nr_start, flags, pages);
2163 2164 2165
		return 0;
	}
	return 1;
2166 2167
}

2168
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2169 2170
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2171 2172
{
	unsigned long fault_pfn;
2173 2174 2175
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2176
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2177
		return 0;
2178

2179
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2180
		undo_dev_pagemap(nr, nr_start, flags, pages);
2181 2182 2183
		return 0;
	}
	return 1;
2184 2185
}
#else
2186
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2187 2188
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2189 2190 2191 2192 2193
{
	BUILD_BUG();
	return 0;
}

2194
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2195 2196
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2197 2198 2199 2200 2201 2202
{
	BUILD_BUG();
	return 0;
}
#endif

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2214 2215 2216 2217 2218 2219 2220 2221 2222
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2223 2224
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2235
	pte = huge_ptep_get(ptep);
2236

2237
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2238 2239 2240 2241 2242 2243 2244
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2245
	refs = record_subpages(page, addr, end, pages + *nr);
2246

J
John Hubbard 已提交
2247
	head = try_grab_compound_head(head, refs, flags);
2248
	if (!head)
2249 2250 2251
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2252
		put_compound_head(head, refs, flags);
2253 2254 2255
		return 0;
	}

2256
	*nr += refs;
2257
	SetPageReferenced(head);
2258 2259 2260 2261
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2262
		unsigned int pdshift, unsigned long end, unsigned int flags,
2263 2264 2265 2266 2267 2268 2269 2270 2271
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2272
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2273 2274 2275 2276 2277 2278 2279
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2280
		unsigned int pdshift, unsigned long end, unsigned int flags,
2281 2282 2283 2284 2285 2286
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2287
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2288 2289
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2290
{
2291
	struct page *head, *page;
2292 2293
	int refs;

2294
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2295 2296
		return 0;

2297 2298 2299
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2300 2301
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2302
	}
2303

2304
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2305
	refs = record_subpages(page, addr, end, pages + *nr);
2306

J
John Hubbard 已提交
2307
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2308
	if (!head)
2309 2310 2311
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2312
		put_compound_head(head, refs, flags);
2313 2314 2315
		return 0;
	}

2316
	*nr += refs;
2317
	SetPageReferenced(head);
2318 2319 2320 2321
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2322 2323
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2324
{
2325
	struct page *head, *page;
2326 2327
	int refs;

2328
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2329 2330
		return 0;

2331 2332 2333
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2334 2335
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2336
	}
2337

2338
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2339
	refs = record_subpages(page, addr, end, pages + *nr);
2340

J
John Hubbard 已提交
2341
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2342
	if (!head)
2343 2344 2345
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2346
		put_compound_head(head, refs, flags);
2347 2348 2349
		return 0;
	}

2350
	*nr += refs;
2351
	SetPageReferenced(head);
2352 2353 2354
	return 1;
}

2355
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2356
			unsigned long end, unsigned int flags,
2357 2358 2359
			struct page **pages, int *nr)
{
	int refs;
2360
	struct page *head, *page;
2361

2362
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2363 2364
		return 0;

2365
	BUILD_BUG_ON(pgd_devmap(orig));
2366

2367
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2368
	refs = record_subpages(page, addr, end, pages + *nr);
2369

J
John Hubbard 已提交
2370
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2371
	if (!head)
2372 2373 2374
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2375
		put_compound_head(head, refs, flags);
2376 2377 2378
		return 0;
	}

2379
	*nr += refs;
2380
	SetPageReferenced(head);
2381 2382 2383
	return 1;
}

2384
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2385
		unsigned int flags, struct page **pages, int *nr)
2386 2387 2388 2389
{
	unsigned long next;
	pmd_t *pmdp;

2390
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2391
	do {
2392
		pmd_t pmd = READ_ONCE(*pmdp);
2393 2394

		next = pmd_addr_end(addr, end);
2395
		if (!pmd_present(pmd))
2396 2397
			return 0;

Y
Yu Zhao 已提交
2398 2399
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2400 2401 2402 2403 2404
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2405
			if (pmd_protnone(pmd))
2406 2407
				return 0;

2408
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2409 2410 2411
				pages, nr))
				return 0;

2412 2413 2414 2415 2416 2417
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2418
					 PMD_SHIFT, next, flags, pages, nr))
2419
				return 0;
2420
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2421
			return 0;
2422 2423 2424 2425 2426
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2427
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2428
			 unsigned int flags, struct page **pages, int *nr)
2429 2430 2431 2432
{
	unsigned long next;
	pud_t *pudp;

2433
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2434
	do {
2435
		pud_t pud = READ_ONCE(*pudp);
2436 2437

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2438
		if (unlikely(!pud_present(pud)))
2439
			return 0;
2440
		if (unlikely(pud_huge(pud))) {
2441
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2442 2443 2444 2445
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2446
					 PUD_SHIFT, next, flags, pages, nr))
2447
				return 0;
2448
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2449 2450 2451 2452 2453 2454
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2455
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2456
			 unsigned int flags, struct page **pages, int *nr)
2457 2458 2459 2460
{
	unsigned long next;
	p4d_t *p4dp;

2461
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2462 2463 2464 2465 2466 2467 2468 2469 2470
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2471
					 P4D_SHIFT, next, flags, pages, nr))
2472
				return 0;
2473
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2474 2475 2476 2477 2478 2479
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2480
static void gup_pgd_range(unsigned long addr, unsigned long end,
2481
		unsigned int flags, struct page **pages, int *nr)
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2494
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2495 2496 2497 2498
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2499
					 PGDIR_SHIFT, next, flags, pages, nr))
2500
				return;
2501
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2502 2503 2504
			return;
	} while (pgdp++, addr = next, addr != end);
}
2505 2506 2507 2508 2509 2510
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2511 2512 2513

#ifndef gup_fast_permitted
/*
2514
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2515 2516
 * we need to fall back to the slow version:
 */
2517
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2518
{
2519
	return true;
2520 2521 2522
}
#endif

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2533
		mmap_read_lock(current->mm);
2534
		ret = __gup_longterm_locked(current->mm,
2535 2536
					    start, nr_pages,
					    pages, NULL, gup_flags);
2537
		mmap_read_unlock(current->mm);
2538 2539 2540 2541 2542 2543 2544 2545
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2546 2547 2548 2549 2550 2551 2552
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2553
	unsigned seq;
2554 2555 2556 2557 2558

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2559 2560 2561 2562 2563 2564
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2590 2591 2592 2593 2594
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2595 2596
					unsigned int gup_flags,
					struct page **pages)
2597
{
2598 2599 2600
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2601

2602
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2603 2604
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2605 2606
		return -EINVAL;

P
Peter Xu 已提交
2607 2608 2609
	if (gup_flags & FOLL_PIN)
		atomic_set(&current->mm->has_pinned, 1);

2610
	if (!(gup_flags & FOLL_FAST_ONLY))
2611
		might_lock_read(&current->mm->mmap_lock);
2612

2613
	start = untagged_addr(start) & PAGE_MASK;
2614 2615
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2616
		return 0;
2617
	if (unlikely(!access_ok((void __user *)start, len)))
2618
		return -EFAULT;
2619

2620 2621 2622
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2637
	}
2638
	return ret + nr_pinned;
2639
}
2640

2641 2642 2643 2644 2645 2646 2647 2648
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2661 2662
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2663
{
2664
	int nr_pinned;
2665 2666 2667
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2668 2669 2670
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2671
	 */
2672
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2673

2674 2675
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2676 2677

	/*
2678 2679 2680 2681
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2682
	 */
2683 2684
	if (nr_pinned < 0)
		nr_pinned = 0;
2685 2686 2687

	return nr_pinned;
}
2688
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2689

2690 2691
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2692 2693 2694 2695 2696
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2697
 *
2698
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2709
	if (!is_valid_gup_flags(gup_flags))
2710 2711
		return -EINVAL;

2712 2713 2714 2715 2716 2717 2718
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2719 2720
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2721
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2722 2723 2724 2725

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2737
 * see Documentation/core-api/pin_user_pages.rst for further details.
2738 2739 2740 2741
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2742 2743 2744 2745 2746 2747
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2748 2749 2750
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2751
/*
2752 2753
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2787
/**
2788
 * pin_user_pages_remote() - pin pages of a remote process
2789
 *
J
John Hubbard 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2808
 * see Documentation/core-api/pin_user_pages.rst for details.
2809
 */
2810
long pin_user_pages_remote(struct mm_struct *mm,
2811 2812 2813 2814
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2815 2816 2817 2818 2819
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2820
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2821
				       pages, vmas, locked);
2822 2823 2824 2825 2826 2827
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2841
 * see Documentation/core-api/pin_user_pages.rst for details.
2842 2843 2844 2845 2846
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2847 2848 2849 2850 2851
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2852
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2853
				     pages, vmas, gup_flags);
2854 2855
}
EXPORT_SYMBOL(pin_user_pages);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2897
	return __get_user_pages_locked(current->mm, start, nr_pages,
2898 2899 2900 2901
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);