intel_ringbuffer.c 73.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411 412 413
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
414
	if (INTEL_GEN(dev_priv) >= 4)
415 416 417 418
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

419
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_private *dev_priv = engine->i915;
422
	i915_reg_t mmio;
423 424 425 426

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
427
	if (IS_GEN7(dev_priv)) {
428
		switch (engine->id) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
447
	} else if (IS_GEN6(dev_priv)) {
448
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 450
	} else {
		/* XXX: gen8 returns to sanity */
451
		mmio = RING_HWS_PGA(engine->mmio_base);
452 453
	}

454
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 456 457 458 459 460 461 462 463
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
464
	if (IS_GEN(dev_priv, 6, 7)) {
465
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 467

		/* ring should be idle before issuing a sync flush*/
468
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 470 471 472

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
473 474 475
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
476
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477
				  engine->name);
478 479 480
	}
}

481
static bool stop_ring(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484

485
	if (INTEL_GEN(dev_priv) > 2) {
486
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 488 489 490 491
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
492 493
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
494 495 496 497
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
498
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499
				return false;
500 501
		}
	}
502

503 504
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
505
	I915_WRITE_TAIL(engine, 0);
506

507
	if (INTEL_GEN(dev_priv) > 2) {
508 509
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510
	}
511

512
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513
}
514

515
static int init_ring_common(struct intel_engine_cs *engine)
516
{
517
	struct drm_i915_private *dev_priv = engine->i915;
518
	struct intel_ring *ring = engine->buffer;
519 520
	int ret = 0;

521
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522

523
	if (!stop_ring(engine)) {
524
		/* G45 ring initialization often fails to reset head to zero */
525 526
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
527 528 529 530 531
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
532

533
		if (!stop_ring(engine)) {
534 535
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
536 537 538 539 540
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
541 542
			ret = -EIO;
			goto out;
543
		}
544 545
	}

546
	if (HWS_NEEDS_PHYSICAL(dev_priv))
547
		ring_setup_phys_status_page(engine);
548 549
	else
		intel_ring_setup_status_page(engine);
550

551
	intel_engine_reset_breadcrumbs(engine);
552

553
	/* Enforce ordering by reading HEAD register back */
554
	I915_READ_HEAD(engine);
555

556 557 558 559
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
560
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 562

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563
	if (I915_READ_HEAD(engine))
564
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565
			  engine->name, I915_READ_HEAD(engine));
566 567 568 569 570

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
571

572
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 574

	/* If the head is still not zero, the ring is dead */
575 576 577
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
578
		DRM_ERROR("%s initialization failed "
579
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 581 582
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
583 584
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
585
			  I915_READ_START(engine),
586
			  i915_ggtt_offset(ring->vma));
587 588
		ret = -EIO;
		goto out;
589 590
	}

591
	intel_engine_init_hangcheck(engine);
592

593
out:
594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 596

	return ret;
597 598
}

599 600 601 602 603 604 605 606 607
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

608
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609
{
610
	struct intel_ring *ring = req->ring;
611 612
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
613

614
	if (w->count == 0)
615
		return 0;
616

617
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 619
	if (ret)
		return ret;
620

621
	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 623 624
	if (ret)
		return ret;

625
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626
	for (i = 0; i < w->count; i++) {
627 628
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
629
	}
630
	intel_ring_emit(ring, MI_NOOP);
631

632
	intel_ring_advance(ring);
633

634
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 636
	if (ret)
		return ret;
637

638
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639

640
	return 0;
641 642
}

643
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 645 646
{
	int ret;

647
	ret = intel_ring_workarounds_emit(req);
648 649 650
	if (ret != 0)
		return ret;

651
	ret = i915_gem_render_state_init(req);
652
	if (ret)
653
		return ret;
654

655
	return 0;
656 657
}

658
static int wa_add(struct drm_i915_private *dev_priv,
659 660
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
661 662 663 664 665 666 667 668 669 670 671 672 673
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
674 675
}

676
#define WA_REG(addr, mask, val) do { \
677
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 679
		if (r) \
			return r; \
680
	} while (0)
681 682

#define WA_SET_BIT_MASKED(addr, mask) \
683
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 685

#define WA_CLR_BIT_MASKED(addr, mask) \
686
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687

688
#define WA_SET_FIELD_MASKED(addr, mask, value) \
689
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690

691 692
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693

694
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695

696 697
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
698
{
699
	struct drm_i915_private *dev_priv = engine->i915;
700
	struct i915_workarounds *wa = &dev_priv->workarounds;
701
	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 703 704 705

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

706
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707
		 i915_mmio_reg_offset(reg));
708
	wa->hw_whitelist_count[engine->id]++;
709 710 711 712

	return 0;
}

713
static int gen8_init_workarounds(struct intel_engine_cs *engine)
714
{
715
	struct drm_i915_private *dev_priv = engine->i915;
716 717

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718

719 720 721
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

722 723 724 725
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

726 727 728 729 730
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
731
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 735
			  HDC_FORCE_NON_COHERENT);

736 737 738 739 740 741 742 743 744 745
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

746 747 748
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

761 762 763
	return 0;
}

764
static int bdw_init_workarounds(struct intel_engine_cs *engine)
765
{
766
	struct drm_i915_private *dev_priv = engine->i915;
767
	int ret;
768

769
	ret = gen8_init_workarounds(engine);
770 771 772
	if (ret)
		return ret;

773
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775

776
	/* WaDisableDopClockGating:bdw */
777 778
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
779

780 781
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782

783
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 785 786
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 789 790 791

	return 0;
}

792
static int chv_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795
	int ret;
796

797
	ret = gen8_init_workarounds(engine);
798 799 800
	if (ret)
		return ret;

801
	/* WaDisableThreadStallDopClockGating:chv */
802
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803

804 805 806
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

807 808 809
	return 0;
}

810
static int gen9_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815 816 817
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

818
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 820 821
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

822
	/* WaDisableKillLogic:bxt,skl,kbl */
823 824 825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

826 827
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
828
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829
			  FLOW_CONTROL_ENABLE |
830 831
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 834 835
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

836 837
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 839
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
840

841 842
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 844
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 846 847 848 849
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
850 851
	}

852 853
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
854 855 856
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
857

858 859
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
860 861
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
862

863
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
864 865 866
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

867 868
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
869 870 871
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

872 873 874 875
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

898 899 900 901
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
902 903 904
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

905
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
906 907
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

908
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
909 910 911
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

912 913 914 915 916
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

917
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
918
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
919 920 921
	if (ret)
		return ret;

922
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
923
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
924 925 926
	if (ret)
		return ret;

927 928 929
	return 0;
}

930
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
931
{
932
	struct drm_i915_private *dev_priv = engine->i915;
933 934 935 936 937 938 939 940 941 942
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
943
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
944 945 946 947 948 949 950 951
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
952
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

971
static int skl_init_workarounds(struct intel_engine_cs *engine)
972
{
973
	struct drm_i915_private *dev_priv = engine->i915;
974
	int ret;
975

976
	ret = gen9_init_workarounds(engine);
977 978
	if (ret)
		return ret;
979

980 981 982 983 984
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
985 986
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
987

988
	/* WaEnableGapsTsvCreditFix:skl */
989 990
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
991

992 993 994
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

995 996 997 998 999
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1000
	/* WaDisableLSQCROPERFforOCL:skl */
1001
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1002 1003 1004
	if (ret)
		return ret;

1005
	return skl_tune_iz_hashing(engine);
1006 1007
}

1008
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1009
{
1010
	struct drm_i915_private *dev_priv = engine->i915;
1011
	int ret;
1012

1013
	ret = gen9_init_workarounds(engine);
1014 1015
	if (ret)
		return ret;
1016

1017 1018
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1019
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1020 1021 1022
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1023
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1024 1025 1026 1027
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1028 1029 1030 1031
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1032 1033 1034 1035 1036 1037
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1038
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1039
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1040 1041 1042 1043 1044
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1045 1046 1047
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1048
	/* WaDisableLSQCROPERFforOCL:bxt */
1049
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1050
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1051 1052
		if (ret)
			return ret;
1053

1054
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1055 1056
		if (ret)
			return ret;
1057 1058
	}

1059
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1060
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1061 1062
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1063

1064 1065
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1066 1067 1068
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1069 1070 1071 1072 1073
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1074 1075 1076
	return 0;
}

1077 1078
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1079
	struct drm_i915_private *dev_priv = engine->i915;
1080 1081 1082 1083 1084 1085
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1086 1087 1088 1089
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1090 1091 1092 1093 1094
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1095 1096 1097 1098 1099
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1100 1101 1102 1103 1104 1105 1106 1107
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1108 1109
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1110 1111 1112
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1113 1114 1115
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1116 1117 1118 1119 1120
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1121 1122 1123 1124
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1125 1126 1127 1128 1129
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1130 1131 1132
	return 0;
}

1133
int init_workarounds_ring(struct intel_engine_cs *engine)
1134
{
1135
	struct drm_i915_private *dev_priv = engine->i915;
1136

1137
	WARN_ON(engine->id != RCS);
1138 1139

	dev_priv->workarounds.count = 0;
1140
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1141

1142
	if (IS_BROADWELL(dev_priv))
1143
		return bdw_init_workarounds(engine);
1144

1145
	if (IS_CHERRYVIEW(dev_priv))
1146
		return chv_init_workarounds(engine);
1147

1148
	if (IS_SKYLAKE(dev_priv))
1149
		return skl_init_workarounds(engine);
1150

1151
	if (IS_BROXTON(dev_priv))
1152
		return bxt_init_workarounds(engine);
1153

1154 1155 1156
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1157 1158 1159
	return 0;
}

1160
static int init_render_ring(struct intel_engine_cs *engine)
1161
{
1162
	struct drm_i915_private *dev_priv = engine->i915;
1163
	int ret = init_ring_common(engine);
1164 1165
	if (ret)
		return ret;
1166

1167
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168
	if (IS_GEN(dev_priv, 4, 6))
1169
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1170 1171 1172 1173

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1174
	 *
1175
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1176
	 */
1177
	if (IS_GEN(dev_priv, 6, 7))
1178 1179
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1180
	/* Required for the hardware to program scanline values for waiting */
1181
	/* WaEnableFlushTlbInvalidationMode:snb */
1182
	if (IS_GEN6(dev_priv))
1183
		I915_WRITE(GFX_MODE,
1184
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1185

1186
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1187
	if (IS_GEN7(dev_priv))
1188
		I915_WRITE(GFX_MODE_GEN7,
1189
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1190
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1191

1192
	if (IS_GEN6(dev_priv)) {
1193 1194 1195 1196 1197 1198
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1199
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1200 1201
	}

1202
	if (IS_GEN(dev_priv, 6, 7))
1203
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204

1205 1206
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1207

1208
	return init_workarounds_ring(engine);
1209 1210
}

1211
static void render_ring_cleanup(struct intel_engine_cs *engine)
1212
{
1213
	struct drm_i915_private *dev_priv = engine->i915;
1214

1215
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1216 1217
}

1218
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1219
{
1220 1221
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1222
	struct intel_engine_cs *waiter;
1223 1224
	enum intel_engine_id id;
	int ret, num_rings;
1225

1226
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1227
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1228 1229 1230
	if (ret)
		return ret;

1231
	for_each_engine(waiter, dev_priv, id) {
1232
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1233 1234 1235
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1236 1237
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1238 1239 1240
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1241 1242 1243 1244 1245
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1246 1247
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1248
		intel_ring_emit(ring, 0);
1249
	}
1250
	intel_ring_advance(ring);
1251 1252 1253 1254

	return 0;
}

1255
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1256
{
1257 1258
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1259
	struct intel_engine_cs *waiter;
1260 1261
	enum intel_engine_id id;
	int ret, num_rings;
1262

1263
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1264
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1265 1266 1267
	if (ret)
		return ret;

1268
	for_each_engine(waiter, dev_priv, id) {
1269
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1270 1271 1272
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1273
		intel_ring_emit(ring,
1274
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1275
		intel_ring_emit(ring,
1276 1277
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1278 1279 1280
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1281 1282
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1283
		intel_ring_emit(ring, 0);
1284
	}
1285
	intel_ring_advance(ring);
1286 1287 1288 1289

	return 0;
}

1290
static int gen6_signal(struct drm_i915_gem_request *req)
1291
{
1292 1293
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1294
	struct intel_engine_cs *engine;
1295
	enum intel_engine_id id;
1296
	int ret, num_rings;
1297

1298
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1299
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1300 1301 1302
	if (ret)
		return ret;

1303
	for_each_engine(engine, dev_priv, id) {
1304 1305 1306 1307
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1308

1309
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1310
		if (i915_mmio_reg_valid(mbox_reg)) {
1311 1312 1313
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1314 1315
		}
	}
1316

1317 1318
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1319 1320
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1321

1322
	return 0;
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1334
{
1335
	struct intel_ring *ring = req->ring;
1336
	int ret;
1337

1338
	ret = intel_ring_begin(req, 4);
1339 1340 1341
	if (ret)
		return ret;

1342 1343 1344 1345
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1346 1347 1348
	intel_ring_advance(ring);

	req->tail = ring->tail;
1349 1350 1351 1352

	return 0;
}

1353
/**
1354
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1355 1356 1357 1358 1359 1360
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1361
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1362
{
1363
	int ret;
1364

1365 1366 1367
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1368 1369 1370 1371

	return i9xx_emit_request(req);
}

1372
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1373 1374
{
	struct intel_engine_cs *engine = req->engine;
1375
	struct intel_ring *ring = req->ring;
1376 1377
	int ret;

1378 1379 1380 1381 1382 1383 1384
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1385 1386 1387
	if (ret)
		return ret;

1388 1389 1390 1391 1392 1393 1394
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1395
	/* We're thrashing one dword of HWS. */
1396 1397 1398
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1399
	intel_ring_advance(ring);
1400 1401

	req->tail = ring->tail;
1402 1403 1404 1405

	return 0;
}

1406 1407 1408 1409 1410 1411 1412
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1413 1414

static int
1415 1416
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1417
{
1418 1419 1420
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1421
	struct i915_hw_ppgtt *ppgtt;
1422 1423
	int ret;

1424
	ret = intel_ring_begin(req, 4);
1425 1426 1427
	if (ret)
		return ret;

1428 1429 1430 1431 1432 1433 1434 1435
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1436 1437 1438 1439 1440 1441

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1442 1443 1444
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1445 1446 1447
	return 0;
}

1448
static int
1449 1450
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1451
{
1452
	struct intel_ring *ring = req->ring;
1453 1454 1455
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1456
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1457
	int ret;
1458

1459
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1460

1461
	ret = intel_ring_begin(req, 4);
1462 1463 1464
	if (ret)
		return ret;

1465
	intel_ring_emit(ring, dw1 | wait_mbox);
1466 1467 1468 1469
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1470 1471 1472 1473
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1474 1475 1476 1477

	return 0;
}

1478
static void
1479
gen5_seqno_barrier(struct intel_engine_cs *engine)
1480
{
1481 1482 1483
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1484
	 *
1485 1486 1487 1488 1489 1490 1491
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1492
	 */
1493
	usleep_range(125, 250);
1494 1495
}

1496 1497
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1498
{
1499
	struct drm_i915_private *dev_priv = engine->i915;
1500

1501 1502
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1503 1504 1505 1506 1507 1508 1509 1510 1511
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1512 1513 1514
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1515
	 */
1516
	spin_lock_irq(&dev_priv->uncore.lock);
1517
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1518
	spin_unlock_irq(&dev_priv->uncore.lock);
1519 1520
}

1521 1522
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1523
{
1524
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1525 1526 1527
}

static void
1528
gen5_irq_disable(struct intel_engine_cs *engine)
1529
{
1530
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1531 1532
}

1533 1534
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1535
{
1536
	struct drm_i915_private *dev_priv = engine->i915;
1537

1538 1539 1540
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1541 1542
}

1543
static void
1544
i9xx_irq_disable(struct intel_engine_cs *engine)
1545
{
1546
	struct drm_i915_private *dev_priv = engine->i915;
1547

1548 1549
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1550 1551
}

1552 1553
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1554
{
1555
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1556

1557 1558 1559
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1560 1561 1562
}

static void
1563
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1564
{
1565
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1566

1567 1568
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1569 1570
}

1571
static int
1572
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1573
{
1574
	struct intel_ring *ring = req->ring;
1575 1576
	int ret;

1577
	ret = intel_ring_begin(req, 2);
1578 1579 1580
	if (ret)
		return ret;

1581 1582 1583
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1584
	return 0;
1585 1586
}

1587 1588
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1589
{
1590
	struct drm_i915_private *dev_priv = engine->i915;
1591

1592 1593 1594
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1595
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1596 1597 1598
}

static void
1599
gen6_irq_disable(struct intel_engine_cs *engine)
1600
{
1601
	struct drm_i915_private *dev_priv = engine->i915;
1602

1603
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1604
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1605 1606
}

1607 1608
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1609
{
1610
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1611

1612 1613
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1614 1615 1616
}

static void
1617
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1618
{
1619
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1620

1621 1622
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1623 1624
}

1625 1626
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1627
{
1628
	struct drm_i915_private *dev_priv = engine->i915;
1629

1630 1631 1632
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1633
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1634 1635 1636
}

static void
1637
gen8_irq_disable(struct intel_engine_cs *engine)
1638
{
1639
	struct drm_i915_private *dev_priv = engine->i915;
1640

1641
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1642 1643
}

1644
static int
1645 1646 1647
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1648
{
1649
	struct intel_ring *ring = req->ring;
1650
	int ret;
1651

1652
	ret = intel_ring_begin(req, 2);
1653 1654 1655
	if (ret)
		return ret;

1656
	intel_ring_emit(ring,
1657 1658
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1659 1660
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1661 1662
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1663

1664 1665 1666
	return 0;
}

1667 1668
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1669 1670
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1671
static int
1672 1673 1674
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1675
{
1676
	struct intel_ring *ring = req->ring;
1677
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1678
	int ret;
1679

1680
	ret = intel_ring_begin(req, 6);
1681 1682
	if (ret)
		return ret;
1683

1684
	/* Evict the invalid PTE TLBs */
1685 1686 1687 1688 1689 1690 1691
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1692

1693
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1694 1695 1696
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1697
		ret = intel_ring_begin(req, 6 + 2);
1698 1699
		if (ret)
			return ret;
1700 1701 1702 1703 1704

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1705 1706
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1707
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1708 1709 1710 1711
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1712

1713 1714 1715
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1716 1717

		/* ... and execute it. */
1718
		offset = cs_offset;
1719
	}
1720

1721
	ret = intel_ring_begin(req, 2);
1722 1723 1724
	if (ret)
		return ret;

1725 1726 1727 1728
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1729

1730 1731 1732 1733
	return 0;
}

static int
1734 1735 1736
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1737
{
1738
	struct intel_ring *ring = req->ring;
1739 1740
	int ret;

1741
	ret = intel_ring_begin(req, 2);
1742 1743 1744
	if (ret)
		return ret;

1745 1746 1747 1748
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1749 1750 1751 1752

	return 0;
}

1753
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1754
{
1755
	struct drm_i915_private *dev_priv = engine->i915;
1756 1757 1758 1759

	if (!dev_priv->status_page_dmah)
		return;

1760
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1761
	engine->status_page.page_addr = NULL;
1762 1763
}

1764
static void cleanup_status_page(struct intel_engine_cs *engine)
1765
{
1766
	struct i915_vma *vma;
1767

1768 1769
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1770 1771
		return;

1772 1773 1774
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1775 1776
}

1777
static int init_status_page(struct intel_engine_cs *engine)
1778
{
1779 1780 1781 1782
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1783

1784 1785 1786 1787 1788
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1789

1790 1791 1792
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1793

1794 1795 1796 1797
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1798
	}
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1816

1817
	engine->status_page.vma = vma;
1818
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1819 1820
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1821

1822 1823
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1824
	return 0;
1825 1826 1827 1828

err:
	i915_gem_object_put(obj);
	return ret;
1829 1830
}

1831
static int init_phys_status_page(struct intel_engine_cs *engine)
1832
{
1833
	struct drm_i915_private *dev_priv = engine->i915;
1834

1835 1836 1837 1838
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1839

1840 1841
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1842 1843 1844 1845

	return 0;
}

1846
int intel_ring_pin(struct intel_ring *ring)
1847
{
1848
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1849
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1850
	enum i915_map_type map;
1851
	struct i915_vma *vma = ring->vma;
1852
	void *addr;
1853 1854
	int ret;

1855
	GEM_BUG_ON(ring->vaddr);
1856

1857 1858 1859
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1860
		flags |= PIN_MAPPABLE;
1861

1862
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1863
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1864 1865 1866 1867
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1868
			return ret;
1869
	}
1870

1871 1872 1873
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1874

1875
	if (i915_vma_is_map_and_fenceable(vma))
1876 1877
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1878
		addr = i915_gem_object_pin_map(vma->obj, map);
1879 1880
	if (IS_ERR(addr))
		goto err;
1881

1882
	ring->vaddr = addr;
1883
	return 0;
1884

1885 1886 1887
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1888 1889
}

1890 1891 1892 1893 1894
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1895
	if (i915_vma_is_map_and_fenceable(ring->vma))
1896
		i915_vma_unpin_iomap(ring->vma);
1897 1898
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1899 1900
	ring->vaddr = NULL;

1901
	i915_vma_unpin(ring->vma);
1902 1903
}

1904 1905
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1906
{
1907
	struct drm_i915_gem_object *obj;
1908
	struct i915_vma *vma;
1909

1910 1911
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1912 1913 1914
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1915

1916 1917 1918
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1919 1920 1921 1922 1923
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1924

1925 1926 1927
err:
	i915_gem_object_put(obj);
	return vma;
1928 1929
}

1930 1931
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1932
{
1933
	struct intel_ring *ring;
1934
	struct i915_vma *vma;
1935

1936
	GEM_BUG_ON(!is_power_of_2(size));
1937
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1938

1939
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1940
	if (!ring)
1941 1942
		return ERR_PTR(-ENOMEM);

1943
	ring->engine = engine;
1944

1945 1946
	INIT_LIST_HEAD(&ring->request_list);

1947 1948 1949 1950 1951 1952
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1953
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1954 1955 1956 1957 1958
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1959 1960
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1961
		kfree(ring);
1962
		return ERR_CAST(vma);
1963
	}
1964
	ring->vma = vma;
1965 1966 1967 1968 1969

	return ring;
}

void
1970
intel_ring_free(struct intel_ring *ring)
1971
{
1972
	i915_vma_put(ring->vma);
1973 1974 1975
	kfree(ring);
}

1976 1977 1978 1979 1980 1981
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1982
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1983 1984 1985 1986 1987

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
1988 1989 1990 1991
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

1992 1993
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
1994 1995 1996 1997
		if (ret)
			goto error;
	}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2008
	i915_gem_context_get(ctx);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2021
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2022 2023 2024 2025 2026

	if (--ce->pin_count)
		return;

	if (ce->state)
2027
		i915_vma_unpin(ce->state);
2028

2029
	i915_gem_context_put(ctx);
2030 2031
}

2032
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2033
{
2034
	struct drm_i915_private *dev_priv = engine->i915;
2035
	struct intel_ring *ring;
2036 2037
	int ret;

2038
	WARN_ON(engine->buffer);
2039

2040 2041
	intel_engine_setup_common(engine);

2042 2043
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2044

2045
	ret = intel_engine_init_common(engine);
2046 2047
	if (ret)
		goto error;
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2060 2061 2062
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2063 2064
		goto error;
	}
2065

2066 2067 2068
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2069
		if (ret)
2070
			goto error;
2071
	} else {
2072
		ret = init_status_page(engine);
2073
		if (ret)
2074
			goto error;
2075 2076
	}

2077
	ret = intel_ring_pin(ring);
2078
	if (ret) {
2079
		intel_ring_free(ring);
2080
		goto error;
2081
	}
2082
	engine->buffer = ring;
2083

2084
	return 0;
2085

2086
error:
2087
	intel_engine_cleanup(engine);
2088
	return ret;
2089 2090
}

2091
void intel_engine_cleanup(struct intel_engine_cs *engine)
2092
{
2093
	struct drm_i915_private *dev_priv;
2094

2095
	dev_priv = engine->i915;
2096

2097
	if (engine->buffer) {
2098 2099
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2100

2101
		intel_ring_unpin(engine->buffer);
2102
		intel_ring_free(engine->buffer);
2103
		engine->buffer = NULL;
2104
	}
2105

2106 2107
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2108

2109
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2110 2111
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2112 2113
	} else {
		cleanup_status_page(engine);
2114
	}
2115

2116
	intel_engine_cleanup_common(engine);
2117 2118 2119

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2120
	engine->i915 = NULL;
2121 2122
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2123 2124
}

2125 2126 2127
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
2128
	enum intel_engine_id id;
2129

2130
	for_each_engine(engine, dev_priv, id) {
2131 2132 2133 2134 2135
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2136
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2137
{
2138 2139 2140 2141 2142 2143
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2144
	request->reserved_space += LEGACY_REQUEST_SIZE;
2145

2146
	request->ring = request->engine->buffer;
2147 2148 2149 2150 2151

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2152
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2153
	return 0;
2154 2155
}

2156 2157
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2158
	struct intel_ring *ring = req->ring;
2159
	struct drm_i915_gem_request *target;
2160
	int ret;
2161

2162 2163
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2175
	GEM_BUG_ON(!req->reserved_space);
2176

2177
	list_for_each_entry(target, &ring->request_list, ring_link) {
2178 2179 2180
		unsigned space;

		/* Would completion of this request free enough space? */
2181 2182
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2183 2184
		if (space >= bytes)
			break;
2185
	}
2186

2187
	if (WARN_ON(&target->ring_link == &ring->request_list))
2188 2189
		return -ENOSPC;

2190 2191
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2192
				NULL, NO_WAITBOOST);
2193 2194 2195 2196 2197 2198 2199 2200
	if (ret)
		return ret;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2201 2202
}

2203
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2204
{
2205
	struct intel_ring *ring = req->ring;
2206 2207
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2208 2209
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2210
	bool need_wrap = false;
2211

2212
	total_bytes = bytes + req->reserved_space;
2213

2214 2215 2216 2217 2218 2219 2220
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2221 2222 2223 2224 2225 2226 2227
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2228
		wait_bytes = remain_actual + req->reserved_space;
2229
	} else {
2230 2231
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2232 2233
	}

2234
	if (wait_bytes > ring->space) {
2235
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2236 2237 2238 2239
		if (unlikely(ret))
			return ret;
	}

2240
	if (unlikely(need_wrap)) {
2241 2242
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2243

2244
		/* Fill the tail with MI_NOOP */
2245 2246 2247
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2248
	}
2249

2250 2251
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2252
	return 0;
2253
}
2254

2255
/* Align the ring tail to a cacheline boundary */
2256
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2257
{
2258
	struct intel_ring *ring = req->ring;
2259 2260
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2261 2262 2263 2264 2265
	int ret;

	if (num_dwords == 0)
		return 0;

2266
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2267
	ret = intel_ring_begin(req, num_dwords);
2268 2269 2270 2271
	if (ret)
		return ret;

	while (num_dwords--)
2272
		intel_ring_emit(ring, MI_NOOP);
2273

2274
	intel_ring_advance(ring);
2275 2276 2277 2278

	return 0;
}

2279
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2280
{
2281
	struct drm_i915_private *dev_priv = request->i915;
2282

2283 2284
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2285
       /* Every tail move must follow the sequence below */
2286 2287 2288 2289

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2290 2291
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2292 2293

	/* Clear the context id. Here be magic! */
2294
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2295

2296
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2297 2298 2299 2300 2301
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2302
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2303

2304
	/* Now that the ring is fully powered up, update the tail */
2305
	i9xx_submit_request(request);
2306 2307 2308 2309

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2310 2311 2312 2313
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2314 2315
}

2316
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2317
{
2318
	struct intel_ring *ring = req->ring;
2319
	uint32_t cmd;
2320 2321
	int ret;

2322
	ret = intel_ring_begin(req, 4);
2323 2324 2325
	if (ret)
		return ret;

2326
	cmd = MI_FLUSH_DW;
2327
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2328
		cmd += 1;
2329 2330 2331 2332 2333 2334 2335 2336

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2337 2338 2339 2340 2341 2342
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2343
	if (mode & EMIT_INVALIDATE)
2344 2345
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2346 2347
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2348
	if (INTEL_GEN(req->i915) >= 8) {
2349 2350
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2351
	} else  {
2352 2353
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2354
	}
2355
	intel_ring_advance(ring);
2356
	return 0;
2357 2358
}

2359
static int
2360 2361 2362
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2363
{
2364
	struct intel_ring *ring = req->ring;
2365
	bool ppgtt = USES_PPGTT(req->i915) &&
2366
			!(dispatch_flags & I915_DISPATCH_SECURE);
2367 2368
	int ret;

2369
	ret = intel_ring_begin(req, 4);
2370 2371 2372 2373
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2374
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2375 2376
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2377 2378 2379 2380
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2381 2382 2383 2384

	return 0;
}

2385
static int
2386 2387 2388
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2389
{
2390
	struct intel_ring *ring = req->ring;
2391 2392
	int ret;

2393
	ret = intel_ring_begin(req, 2);
2394 2395 2396
	if (ret)
		return ret;

2397
	intel_ring_emit(ring,
2398
			MI_BATCH_BUFFER_START |
2399
			(dispatch_flags & I915_DISPATCH_SECURE ?
2400 2401 2402
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2403
	/* bit0-7 is the length on GEN6+ */
2404 2405
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2406 2407 2408 2409

	return 0;
}

2410
static int
2411 2412 2413
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2414
{
2415
	struct intel_ring *ring = req->ring;
2416
	int ret;
2417

2418
	ret = intel_ring_begin(req, 2);
2419 2420
	if (ret)
		return ret;
2421

2422
	intel_ring_emit(ring,
2423
			MI_BATCH_BUFFER_START |
2424 2425
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2426
	/* bit0-7 is the length on GEN6+ */
2427 2428
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2429

2430
	return 0;
2431 2432
}

2433 2434
/* Blitter support (SandyBridge+) */

2435
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2436
{
2437
	struct intel_ring *ring = req->ring;
2438
	uint32_t cmd;
2439 2440
	int ret;

2441
	ret = intel_ring_begin(req, 4);
2442 2443 2444
	if (ret)
		return ret;

2445
	cmd = MI_FLUSH_DW;
2446
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2447
		cmd += 1;
2448 2449 2450 2451 2452 2453 2454 2455

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2456 2457 2458 2459 2460 2461
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2462
	if (mode & EMIT_INVALIDATE)
2463
		cmd |= MI_INVALIDATE_TLB;
2464 2465
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2466
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2467
	if (INTEL_GEN(req->i915) >= 8) {
2468 2469
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2470
	} else  {
2471 2472
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2473
	}
2474
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2475

2476
	return 0;
Z
Zou Nan hai 已提交
2477 2478
}

2479 2480 2481
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2482
	struct drm_i915_gem_object *obj;
2483
	int ret, i;
2484

2485
	if (!i915.semaphores)
2486 2487
		return;

2488 2489 2490
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2491
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2492 2493
		if (IS_ERR(obj))
			goto err;
2494

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2509 2510

	if (INTEL_GEN(dev_priv) >= 8) {
2511
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2512

2513
		engine->semaphore.sync_to = gen8_ring_sync_to;
2514
		engine->semaphore.signal = gen8_xcs_signal;
2515 2516

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2517
			u32 ring_offset;
2518 2519 2520 2521 2522 2523 2524 2525

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2526
	} else if (INTEL_GEN(dev_priv) >= 6) {
2527
		engine->semaphore.sync_to = gen6_ring_sync_to;
2528
		engine->semaphore.signal = gen6_signal;
2529 2530 2531 2532 2533 2534 2535 2536

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2537
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2538 2539 2540
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2541 2542 2543 2544 2545
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2546
				},
2547 2548 2549 2550
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2551
				},
2552 2553 2554 2555
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2556
				},
2557 2558 2559 2560
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2561 2562 2563 2564 2565
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2566
			if (i == engine->hw_id) {
2567 2568 2569
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2570 2571
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2572 2573 2574 2575 2576
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2577
	}
2578 2579 2580 2581 2582 2583 2584 2585

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2586 2587
}

2588 2589 2590
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2591 2592
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2593
	if (INTEL_GEN(dev_priv) >= 8) {
2594 2595
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2596 2597
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2598 2599
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2600 2601
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2602 2603
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2604
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2605
	} else if (INTEL_GEN(dev_priv) >= 3) {
2606 2607
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2608
	} else {
2609 2610
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2611 2612 2613
	}
}

2614 2615 2616
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2617 2618 2619
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2620
	engine->init_hw = init_ring_common;
2621
	engine->reset_hw = reset_ring_common;
2622

2623
	engine->emit_request = i9xx_emit_request;
2624 2625
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2626
	engine->submit_request = i9xx_submit_request;
2627 2628

	if (INTEL_GEN(dev_priv) >= 8)
2629
		engine->emit_bb_start = gen8_emit_bb_start;
2630
	else if (INTEL_GEN(dev_priv) >= 6)
2631
		engine->emit_bb_start = gen6_emit_bb_start;
2632
	else if (INTEL_GEN(dev_priv) >= 4)
2633
		engine->emit_bb_start = i965_emit_bb_start;
2634
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2635
		engine->emit_bb_start = i830_emit_bb_start;
2636
	else
2637
		engine->emit_bb_start = i915_emit_bb_start;
2638 2639
}

2640
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2641
{
2642
	struct drm_i915_private *dev_priv = engine->i915;
2643
	int ret;
2644

2645 2646
	intel_ring_default_vfuncs(dev_priv, engine);

2647 2648
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2649

2650
	if (INTEL_GEN(dev_priv) >= 8) {
2651
		engine->init_context = intel_rcs_ctx_init;
2652
		engine->emit_request = gen8_render_emit_request;
2653
		engine->emit_flush = gen8_render_ring_flush;
2654
		if (i915.semaphores)
2655
			engine->semaphore.signal = gen8_rcs_signal;
2656
	} else if (INTEL_GEN(dev_priv) >= 6) {
2657
		engine->init_context = intel_rcs_ctx_init;
2658
		engine->emit_flush = gen7_render_ring_flush;
2659
		if (IS_GEN6(dev_priv))
2660
			engine->emit_flush = gen6_render_ring_flush;
2661
	} else if (IS_GEN5(dev_priv)) {
2662
		engine->emit_flush = gen4_render_ring_flush;
2663
	} else {
2664
		if (INTEL_GEN(dev_priv) < 4)
2665
			engine->emit_flush = gen2_render_ring_flush;
2666
		else
2667
			engine->emit_flush = gen4_render_ring_flush;
2668
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2669
	}
B
Ben Widawsky 已提交
2670

2671
	if (IS_HASWELL(dev_priv))
2672
		engine->emit_bb_start = hsw_emit_bb_start;
2673

2674 2675
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2676

2677
	ret = intel_init_ring_buffer(engine);
2678 2679 2680
	if (ret)
		return ret;

2681
	if (INTEL_GEN(dev_priv) >= 6) {
2682
		ret = intel_engine_create_scratch(engine, 4096);
2683 2684 2685
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2686
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2687 2688 2689 2690 2691
		if (ret)
			return ret;
	}

	return 0;
2692 2693
}

2694
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2695
{
2696
	struct drm_i915_private *dev_priv = engine->i915;
2697

2698 2699
	intel_ring_default_vfuncs(dev_priv, engine);

2700
	if (INTEL_GEN(dev_priv) >= 6) {
2701
		/* gen6 bsd needs a special wa for tail updates */
2702
		if (IS_GEN6(dev_priv))
2703
			engine->submit_request = gen6_bsd_submit_request;
2704
		engine->emit_flush = gen6_bsd_ring_flush;
2705
		if (INTEL_GEN(dev_priv) < 8)
2706
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2707
	} else {
2708
		engine->mmio_base = BSD_RING_BASE;
2709
		engine->emit_flush = bsd_ring_flush;
2710
		if (IS_GEN5(dev_priv))
2711
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2712
		else
2713
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2714 2715
	}

2716
	return intel_init_ring_buffer(engine);
2717
}
2718

2719
/**
2720
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2721
 */
2722
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2723
{
2724
	struct drm_i915_private *dev_priv = engine->i915;
2725 2726 2727

	intel_ring_default_vfuncs(dev_priv, engine);

2728
	engine->emit_flush = gen6_bsd_ring_flush;
2729

2730
	return intel_init_ring_buffer(engine);
2731 2732
}

2733
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2734
{
2735
	struct drm_i915_private *dev_priv = engine->i915;
2736 2737 2738

	intel_ring_default_vfuncs(dev_priv, engine);

2739
	engine->emit_flush = gen6_ring_flush;
2740
	if (INTEL_GEN(dev_priv) < 8)
2741
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2742

2743
	return intel_init_ring_buffer(engine);
2744
}
2745

2746
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2747
{
2748
	struct drm_i915_private *dev_priv = engine->i915;
2749 2750 2751

	intel_ring_default_vfuncs(dev_priv, engine);

2752
	engine->emit_flush = gen6_ring_flush;
2753

2754
	if (INTEL_GEN(dev_priv) < 8) {
2755
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2756 2757
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2758
	}
B
Ben Widawsky 已提交
2759

2760
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2761
}