xfs_icache.c 46.7 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
8
#include "xfs_shared.h"
9
#include "xfs_format.h"
10 11
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
12 13 14
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
15 16
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
17
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
18
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_icache.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22 23
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
24
#include "xfs_reflink.h"
C
Christoph Hellwig 已提交
25
#include "xfs_ialloc.h"
26

J
Jeff Layton 已提交
27
#include <linux/iversion.h>
28

D
Dave Chinner 已提交
29 30 31
/*
 * Allocate and initialise an xfs_inode.
 */
32
struct xfs_inode *
D
Dave Chinner 已提交
33 34 35 36 37 38 39 40 41 42 43
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
44
	ip = kmem_zone_alloc(xfs_inode_zone, 0);
D
Dave Chinner 已提交
45 46 47
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
48
		kmem_cache_free(xfs_inode_zone, ip);
D
Dave Chinner 已提交
49 50 51
		return NULL;
	}

D
Dave Chinner 已提交
52 53 54
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

55
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
56 57 58 59 60 61 62 63 64
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
65
	ip->i_cowfp = NULL;
66
	memset(&ip->i_df, 0, sizeof(ip->i_df));
D
Dave Chinner 已提交
67 68
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
69
	memset(&ip->i_d, 0, sizeof(ip->i_d));
70 71
	ip->i_sick = 0;
	ip->i_checked = 0;
72 73 74
	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
	INIT_LIST_HEAD(&ip->i_ioend_list);
	spin_lock_init(&ip->i_ioend_lock);
D
Dave Chinner 已提交
75 76 77 78 79 80 81 82 83 84 85

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
86
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
87 88 89
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
90
		xfs_idestroy_fork(&ip->i_df);
D
Dave Chinner 已提交
91 92 93
		break;
	}

94 95 96 97 98 99 100 101
	if (ip->i_afp) {
		xfs_idestroy_fork(ip->i_afp);
		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
	}
	if (ip->i_cowfp) {
		xfs_idestroy_fork(ip->i_cowfp);
		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
	}
D
Dave Chinner 已提交
102
	if (ip->i_itemp) {
D
Dave Chinner 已提交
103 104
		ASSERT(!test_bit(XFS_LI_IN_AIL,
				 &ip->i_itemp->ili_item.li_flags));
D
Dave Chinner 已提交
105 106 107 108
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

109
	kmem_cache_free(xfs_inode_zone, ip);
110 111
}

112 113 114 115 116 117 118 119 120 121 122
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

123 124 125 126
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
127 128
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
129 130 131 132 133 134 135 136 137 138 139
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

140
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
141 142
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

187
	lockdep_assert_held(&pag->pag_ici_lock);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

209
	lockdep_assert_held(&pag->pag_ici_lock);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

259 260 261 262 263 264 265 266
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
267
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
268 269 270 271
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
272
	finish_wait(wq, &wait.wq_entry);
273 274
}

275 276 277 278
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
279
 * overwrite the values unconditionally. Hence we save the parameters we
280
 * need to retain across reinitialisation, and rewrite them into the VFS inode
281
 * after reinitialisation even if it fails.
282 283 284 285 286 287 288
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
289
	uint32_t	nlink = inode->i_nlink;
290
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
291
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
292
	umode_t		mode = inode->i_mode;
293
	dev_t		dev = inode->i_rdev;
294 295
	kuid_t		uid = inode->i_uid;
	kgid_t		gid = inode->i_gid;
296 297 298

	error = inode_init_always(mp->m_super, inode);

299
	set_nlink(inode, nlink);
300
	inode->i_generation = generation;
J
Jeff Layton 已提交
301
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
302
	inode->i_mode = mode;
303
	inode->i_rdev = dev;
304 305
	inode->i_uid = uid;
	inode->i_gid = gid;
306 307 308
	return error;
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * If we are allocating a new inode, then check what was returned is
 * actually a free, empty inode. If we are not allocating an inode,
 * then check we didn't find a free inode.
 *
 * Returns:
 *	0		if the inode free state matches the lookup context
 *	-ENOENT		if the inode is free and we are not allocating
 *	-EFSCORRUPTED	if there is any state mismatch at all
 */
static int
xfs_iget_check_free_state(
	struct xfs_inode	*ip,
	int			flags)
{
	if (flags & XFS_IGET_CREATE) {
		/* should be a free inode */
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
				ip->i_ino, VFS_I(ip)->i_mode);
			return -EFSCORRUPTED;
		}

		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ip->i_ino);
			return -EFSCORRUPTED;
		}
		return 0;
	}

	/* should be an allocated inode */
	if (VFS_I(ip)->i_mode == 0)
		return -ENOENT;

	return 0;
}

D
Dave Chinner 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
374
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
375
		error = -EAGAIN;
D
Dave Chinner 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
392
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
393
		error = -EAGAIN;
D
Dave Chinner 已提交
394 395 396 397
		goto out_error;
	}

	/*
398 399
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
D
Dave Chinner 已提交
400
	 */
401 402
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
403 404 405 406 407 408 409 410 411
		goto out_error;

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

412 413 414 415 416
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
417 418 419 420 421 422 423 424 425 426 427
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

428
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
429
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
430
		if (error) {
431
			bool wake;
D
Dave Chinner 已提交
432 433 434 435 436 437
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
438
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
439
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
440 441
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
457
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
458
		inode->i_state = I_NEW;
459 460
		ip->i_sick = 0;
		ip->i_checked = 0;
D
Dave Chinner 已提交
461 462 463 464 465 466 467

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
468
			error = -EAGAIN;
D
Dave Chinner 已提交
469 470 471 472 473 474 475 476 477 478 479 480
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

481 482
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
483
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
511
		return -ENOMEM;
D
Dave Chinner 已提交
512

C
Christoph Hellwig 已提交
513
	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
D
Dave Chinner 已提交
514 515 516
	if (error)
		goto out_destroy;

C
Christoph Hellwig 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	/*
	 * For version 5 superblocks, if we are initialising a new inode and we
	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
	 * simply build the new inode core with a random generation number.
	 *
	 * For version 4 (and older) superblocks, log recovery is dependent on
	 * the di_flushiter field being initialised from the current on-disk
	 * value and hence we must also read the inode off disk even when
	 * initializing new inodes.
	 */
	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
		VFS_I(ip)->i_generation = prandom_u32();
	} else {
		struct xfs_dinode	*dip;
		struct xfs_buf		*bp;

		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
		if (error)
			goto out_destroy;

		error = xfs_inode_from_disk(ip, dip);
		if (!error)
			xfs_buf_set_ref(bp, XFS_INO_REF);
		xfs_trans_brelse(tp, bp);

		if (error)
			goto out_destroy;
	}

D
Dave Chinner 已提交
547 548
	trace_xfs_iget_miss(ip);

549
	/*
550 551
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
552
	 */
553 554
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
555 556 557 558 559 560 561 562 563
		goto out_destroy;

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
564
		error = -EAGAIN;
D
Dave Chinner 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
589 590
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
591
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
592 593 594 595 596 597 598
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
599
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
600
		error = -EAGAIN;
D
Dave Chinner 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
667
		return -EINVAL;
D
Dave Chinner 已提交
668

669
	XFS_STATS_INC(mp, xs_ig_attempts);
670

D
Dave Chinner 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
686
		if (flags & XFS_IGET_INCORE) {
687
			error = -ENODATA;
688 689
			goto out_error_or_again;
		}
690
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
691 692 693 694 695 696 697 698 699 700 701

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
702
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
703 704
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
705
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
706
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
707 708 709
	return 0;

out_error_or_again:
710
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
711 712 713 714 715 716 717
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
752
	xfs_irele(ip);
753 754 755
	return 0;
}

756 757 758 759 760 761 762 763
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

764 765 766 767 768 769
/*
 * Decide if the given @ip is eligible to be a part of the inode walk, and
 * grab it if so.  Returns true if it's ready to go or false if we should just
 * ignore it.
 */
STATIC bool
770
xfs_inode_ag_walk_grab(
771 772
	struct xfs_inode	*ip,
	int			flags)
773 774
{
	struct inode		*inode = VFS_I(ip);
775
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
793 794
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
795 796 797
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

798 799
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
800
		return false;
801 802 803

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
804
		return false;
805 806

	/* inode is valid */
807
	return true;
808 809 810

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
811
	return false;
812 813
}

814 815 816
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
817
	struct xfs_perag	*pag,
818
	int			(*execute)(struct xfs_inode *ip, void *args),
819
	void			*args,
820 821
	int			tag,
	int			iter_flags)
822 823 824 825
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
826
	int			done;
827
	int			nr_found;
828 829

restart:
830
	done = 0;
831 832
	skipped = 0;
	first_index = 0;
833
	nr_found = 0;
834
	do {
835
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
836
		int		error = 0;
837
		int		i;
838

839
		rcu_read_lock();
840

841
		if (tag == XFS_ICI_NO_TAG)
842
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
843 844
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
845 846 847 848 849 850
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

851
		if (!nr_found) {
852
			rcu_read_unlock();
853
			break;
854
		}
855

856
		/*
857 858
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
859
		 */
860 861 862
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

863
			if (done || !xfs_inode_ag_walk_grab(ip, iter_flags))
864 865 866
				batch[i] = NULL;

			/*
867 868 869 870 871 872 873 874 875 876
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
877
			 */
878 879
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
880 881 882
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
883
		}
884 885

		/* unlock now we've grabbed the inodes. */
886
		rcu_read_unlock();
887

888 889 890
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
891 892 893
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
894
			error = execute(batch[i], args);
895
			xfs_irele(batch[i]);
D
Dave Chinner 已提交
896
			if (error == -EAGAIN) {
897 898 899
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
900
			if (error && last_error != -EFSCORRUPTED)
901
				last_error = error;
902
		}
903 904

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
905
		if (error == -EFSCORRUPTED)
906 907
			break;

908 909
		cond_resched();

910
	} while (nr_found && !done);
911 912 913 914 915 916 917 918

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

919 920
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
921
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
922
 */
923
void
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
941 942 943

	if (!sb_start_write_trylock(mp->m_super))
		return;
944
	xfs_icache_free_eofblocks(mp, NULL);
945 946
	sb_end_write(mp->m_super);

947 948 949
	xfs_queue_eofblocks(mp);
}

950 951 952 953 954
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
955
void
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
973 974 975

	if (!sb_start_write_trylock(mp->m_super))
		return;
976
	xfs_icache_free_cowblocks(mp, NULL);
977 978
	sb_end_write(mp->m_super);

979 980 981
	xfs_queue_cowblocks(mp);
}

982 983 984
/* Fetch the next (possibly tagged) per-AG structure. */
static inline struct xfs_perag *
xfs_inode_walk_get_perag(
985
	struct xfs_mount	*mp,
986 987
	xfs_agnumber_t		agno,
	int			tag)
988
{
989 990 991
	if (tag == XFS_ICI_NO_TAG)
		return xfs_perag_get(mp, agno);
	return xfs_perag_get_tag(mp, agno, tag);
992 993 994
}

int
995
xfs_inode_ag_iterator(
996
	struct xfs_mount	*mp,
997
	int			iter_flags,
998
	int			(*execute)(struct xfs_inode *ip, void *args),
999 1000 1001 1002 1003 1004 1005 1006 1007
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
1008
	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
1009
		ag = pag->pag_agno + 1;
1010
		error = xfs_inode_ag_walk(mp, pag, execute, args, tag,
1011
				iter_flags);
D
Dave Chinner 已提交
1012
		xfs_perag_put(pag);
1013 1014
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
1015
			if (error == -EFSCORRUPTED)
1016 1017 1018
				break;
		}
	}
E
Eric Sandeen 已提交
1019
	return last_error;
1020 1021
}

D
Dave Chinner 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1031 1032 1033 1034 1035
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1036 1037

	/*
1038 1039 1040
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1041 1042
	 */
	if ((flags & SYNC_TRYLOCK) &&
1043
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1044 1045 1046 1047 1048 1049
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1050 1051 1052 1053 1054
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1055 1056
	 */
	spin_lock(&ip->i_flags_lock);
1057 1058 1059
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1060 1061 1062 1063 1064 1065 1066 1067
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1068
/*
1069 1070
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1071 1072 1073 1074 1075 1076 1077
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1078 1079
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1080 1081
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1082 1083 1084 1085
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1086 1087
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1088
 * the inode is clean.
1089
 *
1090 1091 1092 1093 1094 1095
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1096
 *
1097 1098 1099
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1100
 *	pinned, async	=> requeue
1101
 *	pinned, sync	=> unpin
1102 1103
 *	stale		=> reclaim
 *	clean		=> reclaim
1104
 *	dirty, async	=> requeue
1105
 *	dirty, sync	=> flush, wait and reclaim
1106
 */
1107
STATIC int
1108
xfs_reclaim_inode(
1109 1110
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1111
	int			sync_mode)
1112
{
1113
	struct xfs_buf		*bp = NULL;
1114
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1115
	int			error;
1116

1117 1118
restart:
	error = 0;
1119
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1120 1121 1122 1123 1124
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1125

1126 1127
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1128
		/* xfs_iflush_abort() drops the flush lock */
1129
		xfs_iflush_abort(ip);
1130 1131
		goto reclaim;
	}
1132
	if (xfs_ipincount(ip)) {
1133 1134
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1135
		xfs_iunpin_wait(ip);
1136
	}
1137 1138
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1139
		goto reclaim;
1140
	}
1141

1142 1143 1144 1145 1146 1147 1148
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1149 1150 1151
	/*
	 * Now we have an inode that needs flushing.
	 *
1152
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1153
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1154
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1155 1156
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1157 1158 1159 1160
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1161 1162 1163
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1164
	 */
1165
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1166
	if (error == -EAGAIN) {
1167 1168 1169 1170
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1171 1172
	}

1173 1174 1175 1176 1177
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1178
reclaim:
1179 1180
	ASSERT(!xfs_isiflocked(ip));

1181 1182 1183
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1184
	 * We do this as early as possible under the ILOCK so that
1185 1186 1187 1188 1189
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1190 1191 1192 1193 1194 1195
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1196
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1197

1198
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1199 1200 1201 1202 1203 1204 1205
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1206
	spin_lock(&pag->pag_ici_lock);
1207
	if (!radix_tree_delete(&pag->pag_ici_root,
1208
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1209
		ASSERT(0);
1210
	xfs_perag_clear_reclaim_tag(pag);
1211
	spin_unlock(&pag->pag_ici_lock);
1212 1213 1214 1215 1216 1217 1218

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1219
	 * unlocked after the lookup before we go ahead and free it.
1220
	 */
1221
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1222
	xfs_qm_dqdetach(ip);
1223
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224

1225
	__xfs_inode_free(ip);
1226
	return error;
1227 1228 1229 1230 1231 1232 1233

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1234
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1235
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1236 1237 1238
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1239 1240
	 */
	return 0;
1241 1242
}

1243 1244 1245 1246 1247 1248
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1249
STATIC int
1250 1251 1252 1253 1254 1255 1256 1257 1258
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1259 1260
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1261

1262
restart:
1263
	ag = 0;
1264
	skipped = 0;
1265 1266 1267
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1268
		int		nr_found = 0;
1269 1270 1271

		ag = pag->pag_agno + 1;

1272 1273 1274
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1275
				xfs_perag_put(pag);
1276 1277 1278 1279 1280 1281
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1282
		do {
D
Dave Chinner 已提交
1283 1284
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1285

1286
			rcu_read_lock();
D
Dave Chinner 已提交
1287 1288 1289 1290
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1291 1292
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1293
				done = 1;
1294
				rcu_read_unlock();
1295 1296 1297 1298
				break;
			}

			/*
D
Dave Chinner 已提交
1299 1300
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1301
			 */
D
Dave Chinner 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1314 1315 1316 1317 1318 1319 1320
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1321
				 */
1322 1323 1324
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1325 1326 1327 1328
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1329

D
Dave Chinner 已提交
1330
			/* unlock now we've grabbed the inodes. */
1331
			rcu_read_unlock();
D
Dave Chinner 已提交
1332 1333 1334 1335 1336

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1337
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1338 1339 1340 1341
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1342

1343 1344
			cond_resched();

D
Dave Chinner 已提交
1345
		} while (nr_found && !done && *nr_to_scan > 0);
1346

1347 1348 1349 1350 1351
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1352 1353
		xfs_perag_put(pag);
	}
1354 1355 1356 1357 1358 1359 1360 1361

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1362
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1363 1364 1365
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1366
	return last_error;
1367 1368
}

1369 1370 1371 1372 1373
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1374 1375 1376
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1377 1378 1379
}

/*
1380
 * Scan a certain number of inodes for reclaim.
1381 1382
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1383
 * progress, while we will throttle the speed of reclaim via doing synchronous
1384 1385 1386
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1387
 */
1388
long
1389 1390 1391
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1392
{
1393
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1394
	xfs_reclaim_work_queue(mp);
1395
	xfs_ail_push_all(mp->m_ail);
1396

1397
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1398
}
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1411

1412 1413
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1414 1415
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1416 1417 1418 1419
	}
	return reclaimable;
}

1420
STATIC bool
1421 1422 1423 1424
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1425 1426
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1427
		return false;
1428

1429 1430
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1431
		return false;
1432

1433
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1434
	    ip->i_d.di_projid != eofb->eof_prid)
1435
		return false;
1436

1437
	return true;
1438 1439
}

1440 1441 1442 1443
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
1444
STATIC bool
1445 1446 1447 1448 1449 1450
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1451
		return true;
1452 1453 1454

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1455
		return true;
1456 1457

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1458
	    ip->i_d.di_projid == eofb->eof_prid)
1459
		return true;
1460

1461
	return false;
1462 1463
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/*
 * Is this inode @ip eligible for eof/cow block reclamation, given some
 * filtering parameters @eofb?  The inode is eligible if @eofb is null or
 * if the predicate functions match.
 */
static bool
xfs_inode_matches_eofb(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1474
	bool			match;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	if (!eofb)
		return true;

	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
		match = xfs_inode_match_id_union(ip, eofb);
	else
		match = xfs_inode_match_id(ip, eofb);
	if (!match)
		return false;

	/* skip the inode if the file size is too small */
	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
		return false;

	return true;
}

1494 1495 1496 1497 1498
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	void			*args)
{
1499 1500 1501 1502 1503
	struct xfs_eofblocks	*eofb = args;
	bool			wait;
	int			ret;

	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
1516
	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1517 1518
		return 0;

1519 1520
	if (!xfs_inode_matches_eofb(ip, eofb))
		return 0;
1521

1522 1523 1524 1525
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1526
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1527 1528 1529
		if (wait)
			return -EAGAIN;
		return 0;
1530
	}
1531

1532
	ret = xfs_free_eofblocks(ip);
1533
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1534 1535 1536 1537

	return ret;
}

1538 1539 1540 1541 1542
int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
1543
	return xfs_inode_ag_iterator(mp, 0, xfs_inode_free_eofblocks, eofb,
1544
			XFS_ICI_EOFBLOCKS_TAG);
1545 1546
}

1547 1548 1549 1550 1551 1552
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1553 1554 1555 1556 1557
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1558 1559 1560 1561 1562 1563
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1564
	 * Run a sync scan to increase effectiveness and use the union filter to
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1588
		execute(ip->i_mount, &eofb);
1589 1590 1591 1592

	return scan;
}

1593 1594 1595 1596 1597 1598 1599
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1615
static void
1616
__xfs_inode_set_blocks_tag(
1617 1618 1619 1620 1621
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1622 1623 1624 1625 1626
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1627 1628 1629 1630
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1631
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1632 1633
		return;
	spin_lock(&ip->i_flags_lock);
1634
	ip->i_flags |= xfs_iflag_for_tag(tag);
1635 1636
	spin_unlock(&ip->i_flags_lock);

1637 1638 1639
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1640
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1641
	radix_tree_tag_set(&pag->pag_ici_root,
1642
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1643 1644 1645 1646 1647
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1648
				   tag);
1649
		spin_unlock(&ip->i_mount->m_perag_lock);
1650 1651

		/* kick off background trimming */
1652
		execute(ip->i_mount);
1653

1654
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1655 1656 1657 1658 1659 1660 1661
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1662
xfs_inode_set_eofblocks_tag(
1663
	xfs_inode_t	*ip)
1664 1665
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1666
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1667 1668 1669 1670 1671
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1672
__xfs_inode_clear_blocks_tag(
1673 1674 1675 1676
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1677 1678 1679 1680
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1681
	spin_lock(&ip->i_flags_lock);
1682
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1683 1684
	spin_unlock(&ip->i_flags_lock);

1685 1686 1687 1688
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1689 1690
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1691 1692 1693 1694
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1695
				     tag);
1696
		spin_unlock(&ip->i_mount->m_perag_lock);
1697
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1698 1699 1700 1701 1702 1703
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1704 1705 1706 1707 1708
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1709
	return __xfs_inode_clear_blocks_tag(ip,
1710 1711 1712 1713
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1714 1715 1716
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1717
 */
1718 1719
static bool
xfs_prep_free_cowblocks(
1720
	struct xfs_inode	*ip)
1721
{
1722 1723 1724 1725
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
1726
	if (!xfs_inode_has_cow_data(ip)) {
1727 1728
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1729
		return false;
1730 1731 1732 1733 1734 1735
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1736 1737
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1738 1739
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	int			ret = 0;

1765
	if (!xfs_prep_free_cowblocks(ip))
1766 1767
		return 0;

1768 1769
	if (!xfs_inode_matches_eofb(ip, eofb))
		return 0;
1770 1771

	/* Free the CoW blocks */
1772 1773
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1774

1775 1776 1777 1778
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
1779
	if (xfs_prep_free_cowblocks(ip))
1780
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1781

1782 1783
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1784 1785 1786 1787 1788 1789 1790 1791 1792

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
1793
	return xfs_inode_ag_iterator(mp, 0, xfs_inode_free_cowblocks, eofb,
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1808
	trace_xfs_inode_set_cowblocks_tag(ip);
1809
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1810
			trace_xfs_perag_set_cowblocks,
1811 1812 1813 1814 1815 1816 1817
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1818
	trace_xfs_inode_clear_cowblocks_tag(ip);
1819
	return __xfs_inode_clear_blocks_tag(ip,
1820
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1821
}
1822 1823 1824

/* Disable post-EOF and CoW block auto-reclamation. */
void
1825
xfs_stop_block_reaping(
1826 1827 1828 1829 1830 1831 1832 1833
	struct xfs_mount	*mp)
{
	cancel_delayed_work_sync(&mp->m_eofblocks_work);
	cancel_delayed_work_sync(&mp->m_cowblocks_work);
}

/* Enable post-EOF and CoW block auto-reclamation. */
void
1834
xfs_start_block_reaping(
1835 1836 1837 1838 1839
	struct xfs_mount	*mp)
{
	xfs_queue_eofblocks(mp);
	xfs_queue_cowblocks(mp);
}