m25p80.c 33.3 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
47
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
48
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
49
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
50 51
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

52 53 54 55 56 57
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

58 59 60 61 62
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

63
/* Used for Macronix and Winbond flashes. */
64 65 66
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

67 68 69
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

70 71 72
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
73
/* meaning of other SR_* bits may differ between vendors */
74 75 76 77 78 79
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
80
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
81
#define	MAX_CMD_SIZE		5
82

83 84
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

85 86 87 88
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
89
	struct mutex		lock;
90
	struct mtd_info		mtd;
91 92
	u16			page_size;
	u16			addr_width;
93
	u8			erase_opcode;
94 95
	u8			read_opcode;
	u8			program_opcode;
96
	u8			*command;
97
	bool			fast_read;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

133 134 135 136 137 138 139 140 141 142 143
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
144 145 146 147 148 149 150 151 152

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

153
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
154 155
}

156 157 158 159 160 161 162 163 164
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
165

166 167 168
/*
 * Enable/disable 4-byte addressing mode.
 */
169
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
170
{
171 172 173
	int status;
	bool need_wren = false;

174
	switch (JEDEC_MFR(jedec_id)) {
175
	case CFI_MFR_ST: /* Micron, actually */
176 177 178
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
179
	case 0xEF /* winbond */:
180 181 182
		if (need_wren)
			write_enable(flash);

183
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
184 185 186 187 188 189
		status = spi_write(flash->spi, flash->command, 1);

		if (need_wren)
			write_disable(flash);

		return status;
190 191 192 193 194 195
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
196 197
}

198 199 200 201 202 203
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
204
	unsigned long deadline;
205 206
	int sr;

P
Peter Horton 已提交
207 208 209
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
210 211 212 213 214
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
215 216 217
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
218 219 220 221

	return 1;
}

C
Chen Gong 已提交
222 223 224 225 226
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
227
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
228
{
229 230
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
231 232 233 234 235 236 237 238 239

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
240
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
241 242 243 244 245

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
246

247 248 249 250 251 252
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
253
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
254 255 256 257 258 259 260
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

261 262 263 264 265 266 267 268
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
269 270
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
271 272 273 274 275 276 277 278 279

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
280
	flash->command[0] = flash->erase_opcode;
281
	m25p_addr2cmd(flash, offset, flash->command);
282

283
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
302
	uint32_t rem;
303

304 305 306
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
307

308 309
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
310 311 312 313 314
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
315
	mutex_lock(&flash->lock);
316

317
	/* whole-chip erase? */
318 319 320 321 322 323
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
324 325 326 327 328 329 330

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
331 332 333 334 335 336 337 338 339 340
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
341 342 343
		}
	}

D
David Brownell 已提交
344
	mutex_unlock(&flash->lock);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
362
	uint8_t opcode;
363

364 365
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
366

367 368 369
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

370 371 372 373
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
374
	t[0].tx_buf = flash->command;
375
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
376 377 378 379 380 381
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
382
	mutex_lock(&flash->lock);
383 384 385 386

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
387
		mutex_unlock(&flash->lock);
388 389 390
		return 1;
	}

391 392 393 394
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
395 396

	/* Set up the write data buffer. */
397
	opcode = flash->read_opcode;
398
	flash->command[0] = opcode;
399
	m25p_addr2cmd(flash, from, flash->command);
400 401 402

	spi_sync(flash->spi, &m);

403 404
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
405

D
David Brownell 已提交
406
	mutex_unlock(&flash->lock);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

424 425
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
426

427 428 429 430
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
431
	t[0].len = m25p_cmdsz(flash);
432 433 434 435 436
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
437
	mutex_lock(&flash->lock);
438 439

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
440 441
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
442
		return 1;
C
Chen Gong 已提交
443
	}
444 445 446 447

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
448
	flash->command[0] = flash->program_opcode;
449
	m25p_addr2cmd(flash, to, flash->command);
450

451
	page_offset = to & (flash->page_size - 1);
452 453

	/* do all the bytes fit onto one page? */
454
	if (page_offset + len <= flash->page_size) {
455 456 457 458
		t[1].len = len;

		spi_sync(flash->spi, &m);

459
		*retlen = m.actual_length - m25p_cmdsz(flash);
460 461 462 463
	} else {
		u32 i;

		/* the size of data remaining on the first page */
464
		page_size = flash->page_size - page_offset;
465 466 467 468

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

469
		*retlen = m.actual_length - m25p_cmdsz(flash);
470

471
		/* write everything in flash->page_size chunks */
472 473
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
474 475
			if (page_size > flash->page_size)
				page_size = flash->page_size;
476 477

			/* write the next page to flash */
478
			m25p_addr2cmd(flash, to + i, flash->command);
479 480 481 482 483 484 485 486 487 488

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
489
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
490 491
		}
	}
492

D
David Brownell 已提交
493
	mutex_unlock(&flash->lock);
494 495 496 497

	return 0;
}

498 499 500 501 502 503 504 505 506
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

507 508
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
509

510 511 512 513
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
514
	t[0].len = m25p_cmdsz(flash);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
533
		m25p_addr2cmd(flash, to, flash->command);
534 535 536 537 538 539 540

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
541
		*retlen += m.actual_length - m25p_cmdsz(flash);
542 543 544 545
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
546
	m25p_addr2cmd(flash, to, flash->command);
547 548

	/* Write out most of the data here. */
549
	cmd_sz = m25p_cmdsz(flash);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
573 574
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
575 576 577 578 579 580 581
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
582
		*retlen += m.actual_length - m25p_cmdsz(flash);
583 584 585 586 587 588 589
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

681 682 683 684 685 686 687
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
688 689 690 691 692
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
693
	u16             ext_id;
694 695 696 697

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
698
	unsigned	sector_size;
699 700
	u16		n_sectors;

701 702 703
	u16		page_size;
	u16		addr_width;

704 705
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
706
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
707
#define	SST_WRITE	0x04		/* use SST byte programming */
708
#define	M25P_NO_FR	0x08		/* Can't do fastread */
709
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
710 711
};

712 713 714 715 716 717
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
718
		.page_size = 256,					\
719 720
		.flags = (_flags),					\
	})
721

722
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
723 724 725 726 727
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
728
		.flags = (_flags),					\
729
	})
730 731 732 733 734

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
735
static const struct spi_device_id m25p_ids[] = {
736
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
737 738
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
739

740
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
741
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
742
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
743

744 745 746
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
747
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
748

749 750
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

751 752
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
753
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
754
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
755
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
756
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
757
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
758

759
	/* Everspin */
760
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
761
	{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
762

763 764 765 766
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

767 768 769 770 771
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

772
	/* Macronix */
J
John Crispin 已提交
773
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
774
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
775
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
776
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
777 778 779 780
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
781
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
782
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
783
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
784

785
	/* Micron */
786
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
787 788
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
789 790
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

791 792 793 794 795
	/* PMC */
	{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
	{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
	{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024,  64, SECT_4K) },

796 797 798
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
799 800
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
801 802
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
803 804
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
805 806 807 808
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
809 810 811 812 813
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
814 815
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
816 817

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
818 819 820 821
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
822
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
823 824 825 826
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
827 828

	/* ST Microelectronics -- newer production may have feature updates */
829 830 831 832 833 834 835 836 837
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
838
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
839

840 841 842 843 844 845 846 847 848 849
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

850 851 852 853
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

854
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
855 856
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
857

858 859 860 861
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
862

863
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
864 865 866 867 868 869
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
870
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
871
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
872
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
873
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
874
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
875
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
876
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
877
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
878
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
879 880

	/* Catalyst / On Semiconductor -- non-JEDEC */
881 882 883 884 885
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
886
	{ },
887
};
888
MODULE_DEVICE_TABLE(spi, m25p_ids);
889

B
Bill Pemberton 已提交
890
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
891 892 893
{
	int			tmp;
	u8			code = OPCODE_RDID;
894
	u8			id[5];
895
	u32			jedec;
896
	u16                     ext_jedec;
897 898 899 900 901 902
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
903
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
904
	if (tmp < 0) {
905
		pr_debug("%s: error %d reading JEDEC ID\n",
906
				dev_name(&spi->dev), tmp);
907
		return ERR_PTR(tmp);
908 909 910 911 912 913 914
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

915 916
	ext_jedec = id[3] << 8 | id[4];

917 918
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
919
		if (info->jedec_id == jedec) {
920
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
921
				continue;
922
			return &m25p_ids[tmp];
923
		}
924
	}
925
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
926
	return ERR_PTR(-ENODEV);
927 928 929
}


930 931 932 933 934
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
935
static int m25p_probe(struct spi_device *spi)
936
{
937
	const struct spi_device_id	*id = spi_get_device_id(spi);
938 939 940 941
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
942
	struct mtd_part_parser_data	ppdata;
943
	struct device_node __maybe_unused *np = spi->dev.of_node;
944

945
#ifdef CONFIG_MTD_OF_PARTS
946
	if (!of_device_is_available(np))
947 948 949
		return -ENODEV;
#endif

950
	/* Platform data helps sort out which chip type we have, as
951 952 953
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
954
	 */
955
	data = dev_get_platdata(&spi->dev);
956
	if (data && data->type) {
957
		const struct spi_device_id *plat_id;
958

959
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
960 961
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
962 963
				continue;
			break;
964 965
		}

966
		if (i < ARRAY_SIZE(m25p_ids) - 1)
967 968 969
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
970
	}
971

972 973 974 975 976 977
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
978 979
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
980 981 982 983 984 985 986 987 988 989 990 991 992 993
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
994

995
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
996 997
	if (!flash)
		return -ENOMEM;
998 999
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
1000 1001 1002 1003
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
1004 1005

	flash->spi = spi;
D
David Brownell 已提交
1006
	mutex_init(&flash->lock);
1007
	spi_set_drvdata(spi, flash);
1008

1009
	/*
1010
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1011
	 * up with the software protection bits set
1012 1013
	 */

1014 1015 1016
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1017 1018 1019 1020
		write_enable(flash);
		write_sr(flash, 0);
	}

1021
	if (data && data->name)
1022 1023
		flash->mtd.name = data->name;
	else
1024
		flash->mtd.name = dev_name(&spi->dev);
1025 1026

	flash->mtd.type = MTD_NORFLASH;
1027
	flash->mtd.writesize = 1;
1028 1029
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1030 1031
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1032

1033 1034 1035 1036 1037 1038
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1039
	/* sst flash chips use AAI word program */
1040
	if (info->flags & SST_WRITE)
1041
		flash->mtd._write = sst_write;
1042
	else
1043
		flash->mtd._write = m25p80_write;
1044

1045 1046 1047 1048
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1049 1050 1051
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1052 1053 1054 1055 1056
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1057 1058 1059
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1060
	ppdata.of_node = spi->dev.of_node;
1061
	flash->mtd.dev.parent = &spi->dev;
1062
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1063
	flash->mtd.writebufsize = flash->page_size;
1064

1065 1066 1067 1068 1069 1070 1071
	flash->fast_read = false;
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif
1072 1073
	if (info->flags & M25P_NO_FR)
		flash->fast_read = false;
1074

1075 1076 1077 1078 1079 1080 1081 1082
	/* Default commands */
	if (flash->fast_read)
		flash->read_opcode = OPCODE_FAST_READ;
	else
		flash->read_opcode = OPCODE_NORM_READ;

	flash->program_opcode = OPCODE_PP;

1083 1084
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1085
	else if (flash->mtd.size > 0x1000000) {
1086
		/* enable 4-byte addressing if the device exceeds 16MiB */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			flash->read_opcode = flash->fast_read ?
				OPCODE_FAST_READ_4B :
				OPCODE_NORM_READ_4B;
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1097
		} else
1098 1099 1100
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1101
	}
1102

1103
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1104
			(long long)flash->mtd.size >> 10);
1105

1106
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1107
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1108
		flash->mtd.name,
1109
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1110 1111 1112 1113 1114
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1115
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1116
				".erasesize = 0x%.8x (%uKiB), "
1117
				".numblocks = %d }\n",
1118
				i, (long long)flash->mtd.eraseregions[i].offset,
1119 1120 1121 1122 1123 1124 1125 1126
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1127 1128 1129
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1130 1131 1132
}


B
Bill Pemberton 已提交
1133
static int m25p_remove(struct spi_device *spi)
1134
{
1135
	struct m25p	*flash = spi_get_drvdata(spi);
1136 1137 1138
	int		status;

	/* Clean up MTD stuff. */
1139
	status = mtd_device_unregister(&flash->mtd);
1140 1141
	if (status == 0) {
		kfree(flash->command);
1142
		kfree(flash);
1143
	}
1144 1145 1146 1147 1148 1149 1150 1151 1152
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1153
	.id_table	= m25p_ids,
1154
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1155
	.remove	= m25p_remove,
1156 1157 1158 1159 1160

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1161 1162
};

1163
module_spi_driver(m25p80_driver);
1164 1165 1166 1167

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");