m25p80.c 32.3 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55 56
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

57 58 59 60 61
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

62 63 64 65
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

66 67 68
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

69 70 71
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
72
/* meaning of other SR_* bits may differ between vendors */
73 74 75 76 77 78
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
79
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
80
#define	MAX_CMD_SIZE		5
81

82 83
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

84 85 86 87
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
88
	struct mutex		lock;
89
	struct mtd_info		mtd;
90 91
	u16			page_size;
	u16			addr_width;
92
	u8			erase_opcode;
93 94
	u8			read_opcode;
	u8			program_opcode;
95
	u8			*command;
96
	bool			fast_read;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

132 133 134 135 136 137 138 139 140 141 142
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
143 144 145 146 147 148 149 150 151

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

152
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
153 154
}

155 156 157 158 159 160 161 162 163
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
164

165 166 167
/*
 * Enable/disable 4-byte addressing mode.
 */
168
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
169
{
170 171
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
172
	case 0xEF /* winbond */:
173 174 175 176 177 178 179 180
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
181 182
}

183 184 185 186 187 188
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
189
	unsigned long deadline;
190 191
	int sr;

P
Peter Horton 已提交
192 193 194
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
195 196 197 198 199
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
200 201 202
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
203 204 205 206

	return 1;
}

C
Chen Gong 已提交
207 208 209 210 211
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
212
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
213
{
214 215
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
216 217 218 219 220 221 222 223 224

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
225
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
226 227 228 229 230

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
231

232 233 234 235 236 237
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
238
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
239 240 241 242 243 244 245
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

246 247 248 249 250 251 252 253
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
254 255
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
256 257 258 259 260 261 262 263 264

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
265
	flash->command[0] = flash->erase_opcode;
266
	m25p_addr2cmd(flash, offset, flash->command);
267

268
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
287
	uint32_t rem;
288

289 290 291
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
292

293 294
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
295 296 297 298 299
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
300
	mutex_lock(&flash->lock);
301

302
	/* whole-chip erase? */
303 304 305 306 307 308
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
309 310 311 312 313 314 315

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
316 317 318 319 320 321 322 323 324 325
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
326 327 328
		}
	}

D
David Brownell 已提交
329
	mutex_unlock(&flash->lock);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
347
	uint8_t opcode;
348

349 350
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
351

352 353 354
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

355 356 357 358
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
359
	t[0].tx_buf = flash->command;
360
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
361 362 363 364 365 366
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
367
	mutex_lock(&flash->lock);
368 369 370 371

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
372
		mutex_unlock(&flash->lock);
373 374 375
		return 1;
	}

376 377 378 379
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
380 381

	/* Set up the write data buffer. */
382
	opcode = flash->read_opcode;
383
	flash->command[0] = opcode;
384
	m25p_addr2cmd(flash, from, flash->command);
385 386 387

	spi_sync(flash->spi, &m);

388 389
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
390

D
David Brownell 已提交
391
	mutex_unlock(&flash->lock);
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

409 410
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
411

412 413 414 415
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
416
	t[0].len = m25p_cmdsz(flash);
417 418 419 420 421
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
422
	mutex_lock(&flash->lock);
423 424

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
425 426
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
427
		return 1;
C
Chen Gong 已提交
428
	}
429 430 431 432

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
433
	flash->command[0] = flash->program_opcode;
434
	m25p_addr2cmd(flash, to, flash->command);
435

436
	page_offset = to & (flash->page_size - 1);
437 438

	/* do all the bytes fit onto one page? */
439
	if (page_offset + len <= flash->page_size) {
440 441 442 443
		t[1].len = len;

		spi_sync(flash->spi, &m);

444
		*retlen = m.actual_length - m25p_cmdsz(flash);
445 446 447 448
	} else {
		u32 i;

		/* the size of data remaining on the first page */
449
		page_size = flash->page_size - page_offset;
450 451 452 453

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

454
		*retlen = m.actual_length - m25p_cmdsz(flash);
455

456
		/* write everything in flash->page_size chunks */
457 458
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
459 460
			if (page_size > flash->page_size)
				page_size = flash->page_size;
461 462

			/* write the next page to flash */
463
			m25p_addr2cmd(flash, to + i, flash->command);
464 465 466 467 468 469 470 471 472 473

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
474
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
475 476
		}
	}
477

D
David Brownell 已提交
478
	mutex_unlock(&flash->lock);
479 480 481 482

	return 0;
}

483 484 485 486 487 488 489 490 491
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

492 493
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
494

495 496 497 498
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
499
	t[0].len = m25p_cmdsz(flash);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
518
		m25p_addr2cmd(flash, to, flash->command);
519 520 521 522 523 524 525

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
526
		*retlen += m.actual_length - m25p_cmdsz(flash);
527 528 529 530
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
531
	m25p_addr2cmd(flash, to, flash->command);
532 533

	/* Write out most of the data here. */
534
	cmd_sz = m25p_cmdsz(flash);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
558 559
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
560 561 562 563 564 565 566
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
567
		*retlen += m.actual_length - m25p_cmdsz(flash);
568 569 570 571 572 573 574
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

666 667 668 669 670 671 672
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
673 674 675 676 677
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
678
	u16             ext_id;
679 680 681 682

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
683
	unsigned	sector_size;
684 685
	u16		n_sectors;

686 687 688
	u16		page_size;
	u16		addr_width;

689 690
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
691
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
692
#define	SST_WRITE	0x04		/* use SST byte programming */
693 694
};

695 696 697 698 699 700
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
701
		.page_size = 256,					\
702 703
		.flags = (_flags),					\
	})
704

705 706 707 708 709 710 711 712
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
713 714 715 716 717

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
718
static const struct spi_device_id m25p_ids[] = {
719
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
720 721
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
722

723
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
724
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
725
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
726

727 728 729
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
730
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
731

732 733
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

734 735
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
736
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
737
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
738
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
739
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
740
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
741

742 743 744
	/* Everspin */
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2) },

745 746 747 748
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

749 750 751 752 753
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

754
	/* Macronix */
J
John Crispin 已提交
755
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
756
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
757
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
758
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
759 760 761 762
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
763
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
764
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
765
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
766

767
	/* Micron */
768
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
769 770
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
771 772
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

773 774 775
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
776 777
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
778 779
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
780 781
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
782 783 784 785
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
786 787 788 789 790
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
791 792
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
793 794

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
795 796 797 798
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
799
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
800 801 802 803
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
804 805

	/* ST Microelectronics -- newer production may have feature updates */
806 807 808 809 810 811 812 813 814
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
815
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
816

817 818 819 820 821 822 823 824 825 826
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

827 828 829 830
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

831
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
832 833
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
834

835 836 837 838
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
839

840
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
841 842 843 844 845 846
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
847
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
848
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
849
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
850
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
851
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
852
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
853
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
854
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
855 856 857 858 859 860 861

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
862
	{ },
863
};
864
MODULE_DEVICE_TABLE(spi, m25p_ids);
865

B
Bill Pemberton 已提交
866
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
867 868 869
{
	int			tmp;
	u8			code = OPCODE_RDID;
870
	u8			id[5];
871
	u32			jedec;
872
	u16                     ext_jedec;
873 874 875 876 877 878
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
879
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
880
	if (tmp < 0) {
881
		pr_debug("%s: error %d reading JEDEC ID\n",
882
				dev_name(&spi->dev), tmp);
883
		return ERR_PTR(tmp);
884 885 886 887 888 889 890
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

891 892
	ext_jedec = id[3] << 8 | id[4];

893 894
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
895
		if (info->jedec_id == jedec) {
896
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
897
				continue;
898
			return &m25p_ids[tmp];
899
		}
900
	}
901
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
902
	return ERR_PTR(-ENODEV);
903 904 905
}


906 907 908 909 910
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
911
static int m25p_probe(struct spi_device *spi)
912
{
913
	const struct spi_device_id	*id = spi_get_device_id(spi);
914 915 916 917
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
918
	struct mtd_part_parser_data	ppdata;
919
	struct device_node __maybe_unused *np = spi->dev.of_node;
920

921
#ifdef CONFIG_MTD_OF_PARTS
922
	if (!of_device_is_available(np))
923 924 925
		return -ENODEV;
#endif

926
	/* Platform data helps sort out which chip type we have, as
927 928 929
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
930 931
	 */
	data = spi->dev.platform_data;
932
	if (data && data->type) {
933
		const struct spi_device_id *plat_id;
934

935
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
936 937
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
938 939
				continue;
			break;
940 941
		}

942
		if (i < ARRAY_SIZE(m25p_ids) - 1)
943 944 945
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
946
	}
947

948 949 950 951 952 953
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
954 955
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
956 957 958 959 960 961 962 963 964 965 966 967 968 969
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
970

971
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
972 973
	if (!flash)
		return -ENOMEM;
974 975
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
976 977 978 979
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
980 981

	flash->spi = spi;
D
David Brownell 已提交
982
	mutex_init(&flash->lock);
983
	spi_set_drvdata(spi, flash);
984

985
	/*
986
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
987
	 * up with the software protection bits set
988 989
	 */

990 991 992
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
993 994 995 996
		write_enable(flash);
		write_sr(flash, 0);
	}

997
	if (data && data->name)
998 999
		flash->mtd.name = data->name;
	else
1000
		flash->mtd.name = dev_name(&spi->dev);
1001 1002

	flash->mtd.type = MTD_NORFLASH;
1003
	flash->mtd.writesize = 1;
1004 1005
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1006 1007
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1008

1009 1010 1011 1012 1013 1014
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1015
	/* sst flash chips use AAI word program */
1016
	if (info->flags & SST_WRITE)
1017
		flash->mtd._write = sst_write;
1018
	else
1019
		flash->mtd._write = m25p80_write;
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1030 1031 1032
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1033
	ppdata.of_node = spi->dev.of_node;
1034
	flash->mtd.dev.parent = &spi->dev;
1035
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1036
	flash->mtd.writebufsize = flash->page_size;
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	flash->fast_read = false;
#ifdef CONFIG_OF
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;
#endif

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif

1048 1049 1050 1051 1052 1053 1054 1055
	/* Default commands */
	if (flash->fast_read)
		flash->read_opcode = OPCODE_FAST_READ;
	else
		flash->read_opcode = OPCODE_NORM_READ;

	flash->program_opcode = OPCODE_PP;

1056 1057
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1058
	else if (flash->mtd.size > 0x1000000) {
1059
		/* enable 4-byte addressing if the device exceeds 16MiB */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			flash->read_opcode = flash->fast_read ?
				OPCODE_FAST_READ_4B :
				OPCODE_NORM_READ_4B;
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1070
		} else
1071 1072 1073
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1074
	}
1075

1076
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1077
			(long long)flash->mtd.size >> 10);
1078

1079
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1080
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1081
		flash->mtd.name,
1082
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1083 1084 1085 1086 1087
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1088
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1089
				".erasesize = 0x%.8x (%uKiB), "
1090
				".numblocks = %d }\n",
1091
				i, (long long)flash->mtd.eraseregions[i].offset,
1092 1093 1094 1095 1096 1097 1098 1099
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1100 1101 1102
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1103 1104 1105
}


B
Bill Pemberton 已提交
1106
static int m25p_remove(struct spi_device *spi)
1107
{
1108
	struct m25p	*flash = spi_get_drvdata(spi);
1109 1110 1111
	int		status;

	/* Clean up MTD stuff. */
1112
	status = mtd_device_unregister(&flash->mtd);
1113 1114
	if (status == 0) {
		kfree(flash->command);
1115
		kfree(flash);
1116
	}
1117 1118 1119 1120 1121 1122 1123 1124 1125
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1126
	.id_table	= m25p_ids,
1127
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1128
	.remove	= m25p_remove,
1129 1130 1131 1132 1133

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1134 1135
};

1136
module_spi_driver(m25p80_driver);
1137 1138 1139 1140

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");