m25p80.c 23.0 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
22
#include <linux/mutex.h>
23
#include <linux/math64.h>
D
David Brownell 已提交
24

25 26
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
27

28 29 30 31 32 33 34
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>


#define FLASH_PAGESIZE		256

/* Flash opcodes. */
35 36
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
37
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
38
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
39 40
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
41
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
42
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
43
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
44
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
45 46
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

47 48 49 50 51
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

52 53 54
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
55
/* meaning of other SR_* bits may differ between vendors */
56 57 58 59 60 61
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
62
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
63
#define	CMD_SIZE		4
64

65 66 67 68 69 70 71
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
72 73 74 75 76

/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
77
	struct mutex		lock;
78
	struct mtd_info		mtd;
79 80
	unsigned		partitioned:1;
	u8			erase_opcode;
81
	u8			command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

117 118 119 120 121 122 123 124 125 126 127
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
128 129 130 131 132 133 134 135 136

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

137
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
138 139
}

140 141 142 143 144 145 146 147 148
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
149 150 151 152 153 154 155

/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
156
	unsigned long deadline;
157 158
	int sr;

P
Peter Horton 已提交
159 160 161
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
162 163 164 165 166
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
167 168 169
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
170 171 172 173

	return 1;
}

C
Chen Gong 已提交
174 175 176 177 178
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
179
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
180
{
181
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
182 183
	      dev_name(&flash->spi->dev), __func__,
	      (long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
184 185 186 187 188 189 190 191 192

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
193
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
194 195 196 197 198

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
199 200 201 202 203 204 205 206 207

/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
208
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
209
			dev_name(&flash->spi->dev), __func__,
210
			flash->mtd.erasesize / 1024, offset);
211 212 213 214 215 216 217 218 219

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
220
	flash->command[0] = flash->erase_opcode;
221 222 223 224
	flash->command[1] = offset >> 16;
	flash->command[2] = offset >> 8;
	flash->command[3] = offset;

225
	spi_write(flash->spi, flash->command, CMD_SIZE);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
244
	uint32_t rem;
245

246
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
247 248
	      dev_name(&flash->spi->dev), __func__, "at",
	      (long long)instr->addr, (long long)instr->len);
249 250 251 252

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
253 254
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
255 256 257 258 259
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
260
	mutex_lock(&flash->lock);
261

262
	/* whole-chip erase? */
263 264 265 266 267 268
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
269 270 271 272 273 274 275

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
276 277 278 279 280 281 282 283 284 285
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
286 287 288
		}
	}

D
David Brownell 已提交
289
	mutex_unlock(&flash->lock);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
309
			dev_name(&flash->spi->dev), __func__, "from",
310 311 312 313 314 315 316 317 318
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

319 320 321
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

322 323 324 325
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
326
	t[0].tx_buf = flash->command;
327
	t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
328 329 330 331 332 333 334 335 336 337
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
	if (retlen)
		*retlen = 0;

D
David Brownell 已提交
338
	mutex_lock(&flash->lock);
339 340 341 342

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
343
		mutex_unlock(&flash->lock);
344 345 346
		return 1;
	}

347 348 349 350
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
351 352 353 354 355 356 357 358 359

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
	flash->command[1] = from >> 16;
	flash->command[2] = from >> 8;
	flash->command[3] = from;

	spi_sync(flash->spi, &m);

360
	*retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
361

D
David Brownell 已提交
362
	mutex_unlock(&flash->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
381
			dev_name(&flash->spi->dev), __func__, "to",
382 383 384 385 386 387 388 389 390 391 392 393
			(u32)to, len);

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

394 395 396 397
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
398
	t[0].len = CMD_SIZE;
399 400 401 402 403
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
404
	mutex_lock(&flash->lock);
405 406

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
407 408
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
409
		return 1;
C
Chen Gong 已提交
410
	}
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* what page do we start with? */
	page_offset = to % FLASH_PAGESIZE;

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= FLASH_PAGESIZE) {
		t[1].len = len;

		spi_sync(flash->spi, &m);

429
		*retlen = m.actual_length - CMD_SIZE;
430 431 432 433 434 435 436 437 438
	} else {
		u32 i;

		/* the size of data remaining on the first page */
		page_size = FLASH_PAGESIZE - page_offset;

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

439
		*retlen = m.actual_length - CMD_SIZE;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

		/* write everything in PAGESIZE chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > FLASH_PAGESIZE)
				page_size = FLASH_PAGESIZE;

			/* write the next page to flash */
			flash->command[1] = (to + i) >> 16;
			flash->command[2] = (to + i) >> 8;
			flash->command[3] = (to + i);

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
David Brownell 已提交
461
			if (retlen)
462
				*retlen += m.actual_length - CMD_SIZE;
D
David Brownell 已提交
463 464
		}
	}
465

D
David Brownell 已提交
466
	mutex_unlock(&flash->lock);
467 468 469 470

	return 0;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
	t[0].len = CMD_SIZE;
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
		flash->command[1] = to >> 16;
		flash->command[2] = to >> 8;
		flash->command[3] = to;

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - CMD_SIZE;
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* Write out most of the data here. */
	cmd_sz = CMD_SIZE;
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
		flash->command[1] = to >> 16;
		flash->command[2] = to >> 8;
		flash->command[3] = to;
		t[0].len = CMD_SIZE;
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - CMD_SIZE;
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
576 577 578 579 580 581 582 583 584

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
	char		*name;
585 586 587 588 589 590

	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
591
	u16             ext_id;
592 593 594 595

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
596
	unsigned	sector_size;
597 598 599 600
	u16		n_sectors;

	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
601 602
};

603 604 605 606 607

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
608
static struct flash_info __devinitdata m25p_data [] = {
609 610

	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
611 612
	{ "at25fs010",  0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
	{ "at25fs040",  0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
613

614 615
	{ "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
	{ "at25df641",  0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
616

617 618 619 620
	{ "at26f004",   0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
	{ "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
	{ "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
	{ "at26df321",  0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
621

622
	/* Macronix */
623 624
	{ "mx25l3205d", 0xc22016, 0, 64 * 1024, 64, },
	{ "mx25l6405d", 0xc22017, 0, 64 * 1024, 128, },
625
	{ "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
626
	{ "mx25l12855e", 0xc22618, 0, 64 * 1024, 256, },
627

628 629 630
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
631 632 633 634 635
	{ "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
	{ "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
	{ "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
	{ "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
	{ "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
636
	{ "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
637
	{ "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
638 639
	{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, },
	{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, },
640 641

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
642 643 644 645
	{ "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
	{ "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
	{ "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
	{ "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
646 647 648 649
	{ "sst25wf512",  0xbf2501, 0, 64 * 1024, 1, SECT_4K, },
	{ "sst25wf010",  0xbf2502, 0, 64 * 1024, 2, SECT_4K, },
	{ "sst25wf020",  0xbf2503, 0, 64 * 1024, 4, SECT_4K, },
	{ "sst25wf040",  0xbf2504, 0, 64 * 1024, 8, SECT_4K, },
650 651

	/* ST Microelectronics -- newer production may have feature updates */
652 653 654 655 656 657 658 659 660 661
	{ "m25p05",  0x202010,  0, 32 * 1024, 2, },
	{ "m25p10",  0x202011,  0, 32 * 1024, 4, },
	{ "m25p20",  0x202012,  0, 64 * 1024, 4, },
	{ "m25p40",  0x202013,  0, 64 * 1024, 8, },
	{ "m25p80",         0,  0, 64 * 1024, 16, },
	{ "m25p16",  0x202015,  0, 64 * 1024, 32, },
	{ "m25p32",  0x202016,  0, 64 * 1024, 64, },
	{ "m25p64",  0x202017,  0, 64 * 1024, 128, },
	{ "m25p128", 0x202018, 0, 256 * 1024, 64, },

662
	{ "m45pe10", 0x204011,  0, 64 * 1024, 2, },
663 664 665 666 667
	{ "m45pe80", 0x204014,  0, 64 * 1024, 16, },
	{ "m45pe16", 0x204015,  0, 64 * 1024, 32, },

	{ "m25pe80", 0x208014,  0, 64 * 1024, 16, },
	{ "m25pe16", 0x208015,  0, 64 * 1024, 32, SECT_4K, },
668

669
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
670 671 672 673 674 675 676
	{ "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
	{ "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
	{ "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
	{ "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
	{ "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
	{ "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
	{ "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
677 678
};

679 680 681 682
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
{
	int			tmp;
	u8			code = OPCODE_RDID;
683
	u8			id[5];
684
	u32			jedec;
685
	u16                     ext_jedec;
686 687 688 689 690 691
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
692
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
693 694
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
695
			dev_name(&spi->dev), tmp);
696 697 698 699 700 701 702 703
		return NULL;
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

704 705
	ext_jedec = id[3] << 8 | id[4];

706 707 708
	for (tmp = 0, info = m25p_data;
			tmp < ARRAY_SIZE(m25p_data);
			tmp++, info++) {
709
		if (info->jedec_id == jedec) {
710
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
711
				continue;
712
			return info;
713
		}
714 715 716 717 718 719
	}
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
	return NULL;
}


720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
733 734 735
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
736 737
	 */
	data = spi->dev.platform_data;
738 739 740 741 742 743 744
	if (data && data->type) {
		for (i = 0, info = m25p_data;
				i < ARRAY_SIZE(m25p_data);
				i++, info++) {
			if (strcmp(data->type, info->name) == 0)
				break;
		}
745

746 747 748
		/* unrecognized chip? */
		if (i == ARRAY_SIZE(m25p_data)) {
			DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
749
					dev_name(&spi->dev), data->type);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
			info = NULL;

		/* recognized; is that chip really what's there? */
		} else if (info->jedec_id) {
			struct flash_info	*chip = jedec_probe(spi);

			if (!chip || chip != info) {
				dev_warn(&spi->dev, "found %s, expected %s\n",
						chip ? chip->name : "UNKNOWN",
						info->name);
				info = NULL;
			}
		}
	} else
		info = jedec_probe(spi);

	if (!info)
767 768
		return -ENODEV;

769
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
770 771 772 773
	if (!flash)
		return -ENOMEM;

	flash->spi = spi;
D
David Brownell 已提交
774
	mutex_init(&flash->lock);
775 776
	dev_set_drvdata(&spi->dev, flash);

777
	/*
778 779
	 * Atmel and SST serial flash tend to power
	 * up with the software protection bits set
780 781
	 */

782 783
	if (info->jedec_id >> 16 == 0x1f ||
	    info->jedec_id >> 16 == 0xbf) {
784 785 786 787
		write_enable(flash);
		write_sr(flash, 0);
	}

788
	if (data && data->name)
789 790
		flash->mtd.name = data->name;
	else
791
		flash->mtd.name = dev_name(&spi->dev);
792 793

	flash->mtd.type = MTD_NORFLASH;
794
	flash->mtd.writesize = 1;
795 796 797 798
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
799 800 801 802 803 804

	/* sst flash chips use AAI word program */
	if (info->jedec_id >> 16 == 0xbf)
		flash->mtd.write = sst_write;
	else
		flash->mtd.write = m25p80_write;
805

806 807 808 809 810 811 812 813 814
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

815 816
	flash->mtd.dev.parent = &spi->dev;

817 818
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
			(long long)flash->mtd.size >> 10);
819 820

	DEBUG(MTD_DEBUG_LEVEL2,
821
		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
822
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
823
		flash->mtd.name,
824
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
825 826 827 828 829 830
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
831
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
832
				".erasesize = 0x%.8x (%uKiB), "
833
				".numblocks = %d }\n",
834
				i, (long long)flash->mtd.eraseregions[i].offset,
835 836 837 838 839 840 841 842 843 844 845 846
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

847 848 849
		if (mtd_has_cmdlinepart()) {
			static const char *part_probes[]
					= { "cmdlinepart", NULL, };
850

851 852 853
			nr_parts = parse_mtd_partitions(&flash->mtd,
					part_probes, &parts, 0);
		}
854 855 856 857 858 859 860

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

		if (nr_parts > 0) {
861
			for (i = 0; i < nr_parts; i++) {
862
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
863 864
					"{.name = %s, .offset = 0x%llx, "
						".size = 0x%llx (%lldKiB) }\n",
865
					i, parts[i].name,
866 867 868
					(long long)parts[i].offset,
					(long long)parts[i].size,
					(long long)(parts[i].size >> 10));
869 870 871 872
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
873
	} else if (data && data->nr_parts)
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
	if (status == 0)
		kfree(flash);
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
905 906 907 908 909

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
910 911 912
};


913
static int __init m25p80_init(void)
914 915 916 917 918
{
	return spi_register_driver(&m25p80_driver);
}


919
static void __exit m25p80_exit(void)
920 921 922 923 924 925 926 927 928 929 930
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");