m25p80.c 27.0 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

56 57 58 59
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

60 61 62
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

63 64 65
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
66
/* meaning of other SR_* bits may differ between vendors */
67 68 69 70 71 72
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
73
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74
#define	MAX_CMD_SIZE		5
75

76 77 78 79 80 81 82
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
83

84 85
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

86 87 88 89
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
90
	struct mutex		lock;
91
	struct mtd_info		mtd;
92 93
	u16			page_size;
	u16			addr_width;
94
	u8			erase_opcode;
95
	u8			*command;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

131 132 133 134 135 136 137 138 139 140 141
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
142 143 144 145 146 147 148 149 150

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

151
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 153
}

154 155 156 157 158 159 160 161 162
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
163

164 165 166
/*
 * Enable/disable 4-byte addressing mode.
 */
167
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168
{
169 170 171 172 173 174 175 176 177 178
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
179 180
}

181 182 183 184 185 186
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
187
	unsigned long deadline;
188 189
	int sr;

P
Peter Horton 已提交
190 191 192
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
193 194 195 196 197
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
198 199 200
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
201 202 203 204

	return 1;
}

C
Chen Gong 已提交
205 206 207 208 209
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
210
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
211
{
212 213
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
214 215 216 217 218 219 220 221 222

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
223
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
224 225 226 227 228

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
229

230 231 232 233 234 235
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
236
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
237 238 239 240 241 242 243
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

244 245 246 247 248 249 250 251
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
252 253
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
254 255 256 257 258 259 260 261 262

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
263
	flash->command[0] = flash->erase_opcode;
264
	m25p_addr2cmd(flash, offset, flash->command);
265

266
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
285
	uint32_t rem;
286

287 288 289
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
290

291 292
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
293 294 295 296 297
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
298
	mutex_lock(&flash->lock);
299

300
	/* whole-chip erase? */
301 302 303 304 305 306
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
307 308 309 310 311 312 313

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
314 315 316 317 318 319 320 321 322 323
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
324 325 326
		}
	}

D
David Brownell 已提交
327
	mutex_unlock(&flash->lock);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

346 347
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
348

349 350 351
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

352 353 354 355
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
356
	t[0].tx_buf = flash->command;
357
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358 359 360 361 362 363
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
364
	mutex_lock(&flash->lock);
365 366 367 368

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
369
		mutex_unlock(&flash->lock);
370 371 372
		return 1;
	}

373 374 375 376
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
377 378 379

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
380
	m25p_addr2cmd(flash, from, flash->command);
381 382 383

	spi_sync(flash->spi, &m);

384
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
385

D
David Brownell 已提交
386
	mutex_unlock(&flash->lock);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

404 405
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
406

407 408 409 410
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
411
	t[0].len = m25p_cmdsz(flash);
412 413 414 415 416
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
417
	mutex_lock(&flash->lock);
418 419

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
420 421
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
422
		return 1;
C
Chen Gong 已提交
423
	}
424 425 426 427 428

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
429
	m25p_addr2cmd(flash, to, flash->command);
430

431
	page_offset = to & (flash->page_size - 1);
432 433

	/* do all the bytes fit onto one page? */
434
	if (page_offset + len <= flash->page_size) {
435 436 437 438
		t[1].len = len;

		spi_sync(flash->spi, &m);

439
		*retlen = m.actual_length - m25p_cmdsz(flash);
440 441 442 443
	} else {
		u32 i;

		/* the size of data remaining on the first page */
444
		page_size = flash->page_size - page_offset;
445 446 447 448

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

449
		*retlen = m.actual_length - m25p_cmdsz(flash);
450

451
		/* write everything in flash->page_size chunks */
452 453
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
454 455
			if (page_size > flash->page_size)
				page_size = flash->page_size;
456 457

			/* write the next page to flash */
458
			m25p_addr2cmd(flash, to + i, flash->command);
459 460 461 462 463 464 465 466 467 468

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
469
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
470 471
		}
	}
472

D
David Brownell 已提交
473
	mutex_unlock(&flash->lock);
474 475 476 477

	return 0;
}

478 479 480 481 482 483 484 485 486
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

487 488
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
489

490 491 492 493
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
494
	t[0].len = m25p_cmdsz(flash);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
513
		m25p_addr2cmd(flash, to, flash->command);
514 515 516 517 518 519 520

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
521
		*retlen += m.actual_length - m25p_cmdsz(flash);
522 523 524 525
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
526
	m25p_addr2cmd(flash, to, flash->command);
527 528

	/* Write out most of the data here. */
529
	cmd_sz = m25p_cmdsz(flash);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
553 554
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
555 556 557 558 559 560 561
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
562
		*retlen += m.actual_length - m25p_cmdsz(flash);
563 564 565 566 567 568 569
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
570 571 572 573 574 575 576 577

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
578 579 580 581 582
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
583
	u16             ext_id;
584 585 586 587

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
588
	unsigned	sector_size;
589 590
	u16		n_sectors;

591 592 593
	u16		page_size;
	u16		addr_width;

594 595
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
596
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
597 598
};

599 600 601 602 603 604
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
605
		.page_size = 256,					\
606 607
		.flags = (_flags),					\
	})
608

609 610 611 612 613 614 615 616
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
617 618 619 620 621

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
622
static const struct spi_device_id m25p_ids[] = {
623
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
624 625
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
626

627
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
628
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
629
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
630

631 632 633
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
634
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
635

636 637
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
638
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
639
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
640 641
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },

642 643 644 645 646
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

647
	/* Macronix */
648
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
649
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
650
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
651 652 653 654
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
655
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
656
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
657

658 659 660
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
661 662 663 664
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
665
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
666
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
667 668
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
669 670
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
671 672 673 674
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
675 676
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
677 678

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
679 680 681 682 683 684 685 686
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
687 688

	/* ST Microelectronics -- newer production may have feature updates */
689 690 691 692 693 694 695 696 697 698
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

699 700 701 702 703 704 705 706 707 708
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

709 710 711 712 713 714
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
715

716 717 718 719
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
720

721
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
722 723 724 725 726 727
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
728
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
729
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
730
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
731 732 733 734 735 736 737

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
738
	{ },
739
};
740
MODULE_DEVICE_TABLE(spi, m25p_ids);
741

742
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
743 744 745
{
	int			tmp;
	u8			code = OPCODE_RDID;
746
	u8			id[5];
747
	u32			jedec;
748
	u16                     ext_jedec;
749 750 751 752 753 754
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
755
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
756
	if (tmp < 0) {
757
		pr_debug("%s: error %d reading JEDEC ID\n",
758
				dev_name(&spi->dev), tmp);
759
		return ERR_PTR(tmp);
760 761 762 763 764 765 766
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

767 768
	ext_jedec = id[3] << 8 | id[4];

769 770
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
771
		if (info->jedec_id == jedec) {
772
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
773
				continue;
774
			return &m25p_ids[tmp];
775
		}
776
	}
777
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
778
	return ERR_PTR(-ENODEV);
779 780 781
}


782 783 784 785 786 787 788
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
789
	const struct spi_device_id	*id = spi_get_device_id(spi);
790 791 792 793
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
794
	struct mtd_part_parser_data	ppdata;
795

796 797 798 799 800
#ifdef CONFIG_MTD_OF_PARTS
	if (!of_device_is_available(spi->dev.of_node))
		return -ENODEV;
#endif

801
	/* Platform data helps sort out which chip type we have, as
802 803 804
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
805 806
	 */
	data = spi->dev.platform_data;
807
	if (data && data->type) {
808
		const struct spi_device_id *plat_id;
809

810
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
811 812
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
813 814
				continue;
			break;
815 816
		}

817
		if (i < ARRAY_SIZE(m25p_ids) - 1)
818 819 820
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
821
	}
822

823 824 825 826 827 828
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
829 830
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
831 832 833 834 835 836 837 838 839 840 841 842 843 844
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
845

846
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
847 848
	if (!flash)
		return -ENOMEM;
849
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
850 851 852 853
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
854 855

	flash->spi = spi;
D
David Brownell 已提交
856
	mutex_init(&flash->lock);
857 858
	dev_set_drvdata(&spi->dev, flash);

859
	/*
860
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
861
	 * up with the software protection bits set
862 863
	 */

864 865 866
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
867 868 869 870
		write_enable(flash);
		write_sr(flash, 0);
	}

871
	if (data && data->name)
872 873
		flash->mtd.name = data->name;
	else
874
		flash->mtd.name = dev_name(&spi->dev);
875 876

	flash->mtd.type = MTD_NORFLASH;
877
	flash->mtd.writesize = 1;
878 879
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
880 881
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
882 883

	/* sst flash chips use AAI word program */
884
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
885
		flash->mtd._write = sst_write;
886
	else
887
		flash->mtd._write = m25p80_write;
888

889 890 891 892 893 894 895 896 897
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

898 899 900
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

901
	ppdata.of_node = spi->dev.of_node;
902
	flash->mtd.dev.parent = &spi->dev;
903
	flash->page_size = info->page_size;
B
Brian Norris 已提交
904
	flash->mtd.writebufsize = flash->page_size;
905 906 907 908 909 910 911

	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
912
			set_4byte(flash, info->jedec_id, 1);
913 914 915
		} else
			flash->addr_width = 3;
	}
916

917
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
918
			(long long)flash->mtd.size >> 10);
919

920
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
921
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
922
		flash->mtd.name,
923
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
924 925 926 927 928
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
929
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
930
				".erasesize = 0x%.8x (%uKiB), "
931
				".numblocks = %d }\n",
932
				i, (long long)flash->mtd.eraseregions[i].offset,
933 934 935 936 937 938 939 940
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
941 942 943
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
944 945 946 947 948 949 950 951 952
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
953
	status = mtd_device_unregister(&flash->mtd);
954 955
	if (status == 0) {
		kfree(flash->command);
956
		kfree(flash);
957
	}
958 959 960 961 962 963 964 965 966
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
967
	.id_table	= m25p_ids,
968 969
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
970 971 972 973 974

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
975 976
};

977
module_spi_driver(m25p80_driver);
978 979 980 981

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");