m25p80.c 28.5 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
33

34 35 36 37
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
38 39
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
40
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
41
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
42 43
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
44
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
45
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
46
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
47
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
48 49
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

50 51 52 53 54
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

55 56 57 58
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

59 60 61
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

62 63 64
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
65
/* meaning of other SR_* bits may differ between vendors */
66 67 68 69 70 71
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
72
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
73
#define	MAX_CMD_SIZE		5
74

75 76 77 78 79 80 81
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
82

83 84
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

85 86 87 88
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
89
	struct mutex		lock;
90
	struct mtd_info		mtd;
91
	unsigned		partitioned:1;
92 93
	u16			page_size;
	u16			addr_width;
94
	u8			erase_opcode;
95
	u8			*command;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

131 132 133 134 135 136 137 138 139 140 141
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
142 143 144 145 146 147 148 149 150

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

151
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 153
}

154 155 156 157 158 159 160 161 162
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
163

164 165 166
/*
 * Enable/disable 4-byte addressing mode.
 */
167
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168
{
169 170 171 172 173 174 175 176 177 178
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
179 180
}

181 182 183 184 185 186
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
187
	unsigned long deadline;
188 189
	int sr;

P
Peter Horton 已提交
190 191 192
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
193 194 195 196 197
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
198 199 200
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
201 202 203 204

	return 1;
}

C
Chen Gong 已提交
205 206 207 208 209
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
210
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
211
{
212
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
213 214
	      dev_name(&flash->spi->dev), __func__,
	      (long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
215 216 217 218 219 220 221 222 223

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
224
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
225 226 227 228 229

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
230

231 232 233 234 235 236
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
237
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
238 239 240 241 242 243 244
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

245 246 247 248 249 250 251 252
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
253
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
254
			dev_name(&flash->spi->dev), __func__,
255
			flash->mtd.erasesize / 1024, offset);
256 257 258 259 260 261 262 263 264

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
265
	flash->command[0] = flash->erase_opcode;
266
	m25p_addr2cmd(flash, offset, flash->command);
267

268
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
287
	uint32_t rem;
288

289
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
290 291
	      dev_name(&flash->spi->dev), __func__, "at",
	      (long long)instr->addr, (long long)instr->len);
292 293 294 295

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
296 297
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
298 299 300 301 302
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
303
	mutex_lock(&flash->lock);
304

305
	/* whole-chip erase? */
306 307 308 309 310 311
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
312 313 314 315 316 317 318

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
319 320 321 322 323 324 325 326 327 328
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
329 330 331
		}
	}

D
David Brownell 已提交
332
	mutex_unlock(&flash->lock);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
352
			dev_name(&flash->spi->dev), __func__, "from",
353 354 355 356 357 358 359 360 361
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

362 363 364
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

365 366 367 368
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
369
	t[0].tx_buf = flash->command;
370
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
371 372 373 374 375 376 377
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
D
Dan Carpenter 已提交
378
	*retlen = 0;
379

D
David Brownell 已提交
380
	mutex_lock(&flash->lock);
381 382 383 384

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
385
		mutex_unlock(&flash->lock);
386 387 388
		return 1;
	}

389 390 391 392
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
393 394 395

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
396
	m25p_addr2cmd(flash, from, flash->command);
397 398 399

	spi_sync(flash->spi, &m);

400
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
401

D
David Brownell 已提交
402
	mutex_unlock(&flash->lock);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
421
			dev_name(&flash->spi->dev), __func__, "to",
422 423
			(u32)to, len);

D
Dan Carpenter 已提交
424
	*retlen = 0;
425 426 427 428 429 430 431 432

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

433 434 435 436
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
437
	t[0].len = m25p_cmdsz(flash);
438 439 440 441 442
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
443
	mutex_lock(&flash->lock);
444 445

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
446 447
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
448
		return 1;
C
Chen Gong 已提交
449
	}
450 451 452 453 454

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
455
	m25p_addr2cmd(flash, to, flash->command);
456

457
	page_offset = to & (flash->page_size - 1);
458 459

	/* do all the bytes fit onto one page? */
460
	if (page_offset + len <= flash->page_size) {
461 462 463 464
		t[1].len = len;

		spi_sync(flash->spi, &m);

465
		*retlen = m.actual_length - m25p_cmdsz(flash);
466 467 468 469
	} else {
		u32 i;

		/* the size of data remaining on the first page */
470
		page_size = flash->page_size - page_offset;
471 472 473 474

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

475
		*retlen = m.actual_length - m25p_cmdsz(flash);
476

477
		/* write everything in flash->page_size chunks */
478 479
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
480 481
			if (page_size > flash->page_size)
				page_size = flash->page_size;
482 483

			/* write the next page to flash */
484
			m25p_addr2cmd(flash, to + i, flash->command);
485 486 487 488 489 490 491 492 493 494

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
495
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
496 497
		}
	}
498

D
David Brownell 已提交
499
	mutex_unlock(&flash->lock);
500 501 502 503

	return 0;
}

504 505 506 507 508 509 510 511 512
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

513 514 515 516
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
			dev_name(&flash->spi->dev), __func__, "to",
			(u32)to, len);

D
Dan Carpenter 已提交
517
	*retlen = 0;
518 519 520 521 522 523 524 525 526 527 528 529

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
530
	t[0].len = m25p_cmdsz(flash);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
549
		m25p_addr2cmd(flash, to, flash->command);
550 551 552 553 554 555 556

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
557
		*retlen += m.actual_length - m25p_cmdsz(flash);
558 559 560 561
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
562
	m25p_addr2cmd(flash, to, flash->command);
563 564

	/* Write out most of the data here. */
565
	cmd_sz = m25p_cmdsz(flash);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
589 590
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
591 592 593 594 595 596 597
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
598
		*retlen += m.actual_length - m25p_cmdsz(flash);
599 600 601 602 603 604 605
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
606 607 608 609 610 611 612 613

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
614 615 616 617 618
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
619
	u16             ext_id;
620 621 622 623

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
624
	unsigned	sector_size;
625 626
	u16		n_sectors;

627 628 629
	u16		page_size;
	u16		addr_width;

630 631
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
632
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
633 634
};

635 636 637 638 639 640
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
641
		.page_size = 256,					\
642 643
		.flags = (_flags),					\
	})
644

645 646 647 648 649 650 651 652
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
653 654 655 656 657

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
658
static const struct spi_device_id m25p_ids[] = {
659
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
660 661
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
662

663 664
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
665

666 667 668
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
669
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
670

671 672
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
673 674 675
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },

676 677 678 679 680
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

681
	/* Macronix */
682
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
683
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
684
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
685 686 687 688
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
689
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
690
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
691

692 693 694
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
695 696 697 698
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
699
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
700
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
701 702
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
703 704
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
705 706 707 708
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
709 710
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
711 712

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
713 714 715 716 717 718 719 720
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
721 722

	/* ST Microelectronics -- newer production may have feature updates */
723 724 725 726 727 728 729 730 731 732
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

733 734 735 736 737 738 739 740 741 742
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

743 744 745 746 747 748
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
749

750 751 752 753
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
754

755
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
756 757 758 759 760 761
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
762
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
763
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
764
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
765 766 767 768 769 770 771

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
772
	{ },
773
};
774
MODULE_DEVICE_TABLE(spi, m25p_ids);
775

776
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
777 778 779
{
	int			tmp;
	u8			code = OPCODE_RDID;
780
	u8			id[5];
781
	u32			jedec;
782
	u16                     ext_jedec;
783 784 785 786 787 788
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
789
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
790 791
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
792
			dev_name(&spi->dev), tmp);
793
		return ERR_PTR(tmp);
794 795 796 797 798 799 800
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

801 802
	ext_jedec = id[3] << 8 | id[4];

803 804
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
805
		if (info->jedec_id == jedec) {
806
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
807
				continue;
808
			return &m25p_ids[tmp];
809
		}
810
	}
811
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
812
	return ERR_PTR(-ENODEV);
813 814 815
}


816 817 818 819 820 821 822
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
823
	const struct spi_device_id	*id = spi_get_device_id(spi);
824 825 826 827 828 829
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
830 831 832
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
833 834
	 */
	data = spi->dev.platform_data;
835
	if (data && data->type) {
836
		const struct spi_device_id *plat_id;
837

838
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
839 840
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
841 842
				continue;
			break;
843 844
		}

845
		if (i < ARRAY_SIZE(m25p_ids) - 1)
846 847 848
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
849
	}
850

851 852 853 854 855 856
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
857 858
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
859 860 861 862 863 864 865 866 867 868 869 870 871 872
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
873

874
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
875 876
	if (!flash)
		return -ENOMEM;
877
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
878 879 880 881
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
882 883

	flash->spi = spi;
D
David Brownell 已提交
884
	mutex_init(&flash->lock);
885 886
	dev_set_drvdata(&spi->dev, flash);

887
	/*
888
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
889
	 * up with the software protection bits set
890 891
	 */

892 893 894
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
895 896 897 898
		write_enable(flash);
		write_sr(flash, 0);
	}

899
	if (data && data->name)
900 901
		flash->mtd.name = data->name;
	else
902
		flash->mtd.name = dev_name(&spi->dev);
903 904

	flash->mtd.type = MTD_NORFLASH;
905
	flash->mtd.writesize = 1;
906 907 908 909
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
910 911

	/* sst flash chips use AAI word program */
912
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
913 914 915
		flash->mtd.write = sst_write;
	else
		flash->mtd.write = m25p80_write;
916

917 918 919 920 921 922 923 924 925
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

926 927 928
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

929
	flash->mtd.dev.parent = &spi->dev;
930
	flash->page_size = info->page_size;
931 932 933 934 935 936 937

	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
938
			set_4byte(flash, info->jedec_id, 1);
939 940 941
		} else
			flash->addr_width = 3;
	}
942

943
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
944
			(long long)flash->mtd.size >> 10);
945 946

	DEBUG(MTD_DEBUG_LEVEL2,
947
		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
948
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
949
		flash->mtd.name,
950
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
951 952 953 954 955 956
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
957
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
958
				".erasesize = 0x%.8x (%uKiB), "
959
				".numblocks = %d }\n",
960
				i, (long long)flash->mtd.eraseregions[i].offset,
961 962 963 964 965 966 967 968 969 970 971 972
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

973 974 975
		if (mtd_has_cmdlinepart()) {
			static const char *part_probes[]
					= { "cmdlinepart", NULL, };
976

977 978 979
			nr_parts = parse_mtd_partitions(&flash->mtd,
					part_probes, &parts, 0);
		}
980 981 982 983 984 985

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

A
Andres Salomon 已提交
986
#ifdef CONFIG_MTD_OF_PARTS
987 988 989 990 991 992
		if (nr_parts <= 0 && spi->dev.of_node) {
			nr_parts = of_mtd_parse_partitions(&spi->dev,
					spi->dev.of_node, &parts);
		}
#endif

993
		if (nr_parts > 0) {
994
			for (i = 0; i < nr_parts; i++) {
995
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
996 997
					"{.name = %s, .offset = 0x%llx, "
						".size = 0x%llx (%lldKiB) }\n",
998
					i, parts[i].name,
999 1000 1001
					(long long)parts[i].offset,
					(long long)parts[i].size,
					(long long)(parts[i].size >> 10));
1002 1003 1004 1005
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
1006
	} else if (data && data->nr_parts)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
1024 1025
	if (status == 0) {
		kfree(flash->command);
1026
		kfree(flash);
1027
	}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
1038
	.id_table	= m25p_ids,
1039 1040
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
1041 1042 1043 1044 1045

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1046 1047 1048
};


1049
static int __init m25p80_init(void)
1050 1051 1052 1053 1054
{
	return spi_register_driver(&m25p80_driver);
}


1055
static void __exit m25p80_exit(void)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");